

623 E. 100 S. Salt Lake City, UT 84102

# Test Report Certification

| FCC ID                    | 2AJAC-CORE5                           |  |
|---------------------------|---------------------------------------|--|
| IC ID                     | 7848A-CORE5                           |  |
| Equipment Under Test      | C4-CORE5                              |  |
| Test Report Serial Number | TR7030_01                             |  |
| Date of Test(s)           | January 6, 2022, and January 20, 2022 |  |
| Report Issue Date         | 5 April 2022                          |  |

| Test Specification            | Applicant                             |
|-------------------------------|---------------------------------------|
| 47 CFR FCC Part 15, Subpart C | Snap One LLC                          |
| ICES-003, Issue 7             | 1800 Continental Blvd., Suite 200-300 |
|                               | Charlotte NC 28273                    |
|                               | U.S.A.                                |

population of R TESTING

NVLAP LAB CODE 600293-0



## **Certification of Engineering Report**

This report has been prepared by Compliance Test Services (CTS) to document compliance of the device described below with the requirement of Federal Communication Commissions (FCC) Part 15, Subpart C. This report may be reproduced in full. Partial reproduction of this report may only be made with the written consent of the laboratory. The results in this report apply only to the sample tested.

| Applicant    | Snap One LLC |
|--------------|--------------|
| Manufacturer | Snap One LLC |
| Brand Name   | Control 4    |
| Model Number | C4-CORE5     |
| FCC ID       | 2AJAC-CORE5  |
| IC ID        | 7848A-CORE5  |

On this 5<sup>th</sup> day of April 2022, I individually and for Compliance Test Services certify that the statements made in this engineering report are true, complete, and correct to the best of my knowledge and are made in good faith.

Although NVLAP has accredited the Compliance Test Services testing facilities, this report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the U.S. federal government.

Compliance Test Services

Written By: Clay Allred

Reviewed By: Joseph W. Jackson



| Revision History          |                         |              |  |
|---------------------------|-------------------------|--------------|--|
| Revision Description Date |                         |              |  |
| 01                        | Original Report Release | 5 April 2022 |  |



# Table of Contents

| 1 | Clie | nt Information                                                                   | 5  |
|---|------|----------------------------------------------------------------------------------|----|
|   | 1.1  | Applicant                                                                        | 5  |
|   | 1.2  | Manufacturer                                                                     | 5  |
| 2 | Equi | ipment Under Test (EUT)                                                          | 6  |
|   | 2.1  | Identification of EUT                                                            | 6  |
|   | 2.2  | Description of EUT                                                               | 6  |
|   | 2.3  | EUT and Support Equipment                                                        | 6  |
|   | 2.4  | Interface Ports on EUT                                                           | 7  |
|   | 2.5  | Operating Environment                                                            | 8  |
|   | 2.6  | Operating Modes                                                                  | 8  |
|   | 2.7  | EUT Exercise Software                                                            | 8  |
|   | 2.8  | Block Diagram of Test Configuration                                              | 8  |
|   | 2.9  | Modification Incorporated/Special Accessories on EUT                             | 8  |
|   | 2.10 | Deviation, Opinions Additional Information or Interpretations from Test Standard | 8  |
| 3 | Test | Specification, Method and Procedures                                             | 9  |
|   | 3.1  | Test Specification                                                               | 9  |
|   | 3.2  | Methods & Procedures                                                             | 9  |
|   | 3.3  | FCC Part 15, Subpart C                                                           | 9  |
|   | 3.4  | Results                                                                          | 9  |
|   | 3.5  | Test Location                                                                    | 10 |
| 4 | Test | Equipment                                                                        | 10 |
|   | 4.1  | Conducted Emissions at Mains Ports                                               | 10 |
|   | 4.2  | Radiated Emissions                                                               | 11 |
|   | 4.3  | Equipment Calibration                                                            | 12 |
|   | 4.4  | Measurement Uncertainty                                                          | 12 |
| 5 | Test | Results                                                                          | 13 |
|   | 5.1  | Conducted Emissions at Mains Ports Data                                          | 13 |
|   | 5.2  | Radiated Emissions: 908 MHz                                                      | 15 |
|   | 5.3  | Radiated Emissions: 916 MHz                                                      | 15 |
|   | 5.4  | Bandwidth                                                                        | 19 |
|   | 5.5  | Fundamental Field Strength                                                       | 20 |



# **1** Client Information

# 1.1 Applicant

| Company      | Snap One LLC<br>1800 Continental Blvd., Suite 200-300<br>Charlotte NC 28273<br>U.S.A. |
|--------------|---------------------------------------------------------------------------------------|
| Contact Name | Roger Midgley                                                                         |
| Title        | Principle Compliance Manager                                                          |

#### 1.2 Manufacturer

| Company      | Snap One LLC<br>1800 Continental Blvd., Suite 200-300<br>Charlotte NC 28273<br>U.S.A. |
|--------------|---------------------------------------------------------------------------------------|
| Contact Name | Roger Midgley                                                                         |
| Title        | Principle Compliance Manager                                                          |



# 2 Equipment Under Test (EUT)

#### 2.1 Identification of EUT

| Brand Name                  | Snap One LLC                                                    |  |
|-----------------------------|-----------------------------------------------------------------|--|
| Model Number                | C4-CORE5                                                        |  |
| Hardware VersionRev 4.0     |                                                                 |  |
| Serial Number / MAC Address | ST21520017036F13, 000FFF0C3313                                  |  |
| Rating/power supply         | Input: AC 100V-240 VAC,50Hz/60Hz, Max 18W,<br>Idle 9W, and PoE+ |  |
| RCB revision                | Rev 4.0                                                         |  |
| Schematic revision          | Rev 4.0                                                         |  |
| Firmware/Software revision  | 3.3.0.618634                                                    |  |
| Dimensions (mm)             | 42 x 442 x 252                                                  |  |

#### 2.2 Description of EUT

The C4-CORE5 is a home entertainment controller, used to control home entertainment and home automation which features five independent audio outputs – three digital coaxial, three unbalanced stereo analog, one HDMI Out, wireless Zigbee and Z-wave communications, IR, serial, contacts and relays, and IP control. It also features a USB 3.0 connection for connection to external hard drives and a gigabit LAN port. It is powered via the AC mains and an internal 100-240Vac, 50/60Hz power supply.

The highest internal clocks or internal clock frequency on the EUT is the 2.4 GHz Zigbee wireless clock, and the internal system clock of 1.6 GHz.

This report covers the circuitry of the device subject to FCC Part 15, Subpart C. The circuitry of the device subject to FCC Part 15 Subpart B was found to be compliant and is covered under a separate Compliance Test Services test report.

# 2.3 EUT and Support Equipment

The EUT and support equipment used during the test are listed below.

| Brand Name<br>Model Number<br>Serial Number              | Description                   | Name of Interface Ports /<br>Interface Cables |
|----------------------------------------------------------|-------------------------------|-----------------------------------------------|
| BN: Snap One LLC<br>MN: C4-CORE5<br>SN: ST21520017036F13 | Home Entertainment Controller | EUT                                           |

TR7030\_C4\_C4-CORE5\_FCC\_15.249\_01



| Controller                    | Network/Cat 5e Cable                                 |
|-------------------------------|------------------------------------------------------|
|                               |                                                      |
|                               |                                                      |
| 4K TV                         | HDMI, Blue Jeans Cable                               |
|                               |                                                      |
|                               |                                                      |
| Network switch + PoE Injector | Network/Cat 5e Cable                                 |
|                               |                                                      |
|                               | Controller<br>4K TV<br>Network switch + PoE Injector |

Notes: (1) EUT

(2) Interface port connected to EUT (See Section 2.4)

The support equipment listed above was not modified in order to achieve compliance with this standard.

#### 2.4 Interface Ports on EUT

| Name of<br>Ports                           | No. of Ports<br>Fitted to EUT | Shielded<br>Cable | Ferrite Core<br>Installed | Cable Description/Length                                           |
|--------------------------------------------|-------------------------------|-------------------|---------------------------|--------------------------------------------------------------------|
| Contact                                    | 1                             | No                | No                        | Phoenix Contact connector w/12<br>unshielded conductors/1 meter    |
| Relay                                      | 1                             | No                | No                        | Phoenix Contact connector w/12<br>unshielded conductors/1 meter    |
| Ethernet                                   | 1                             | No                | No                        | Cat 5e/5 meters                                                    |
| HDMI Out                                   | 1                             | Yes               | No                        | 1 meter                                                            |
| USB (3.0)                                  | 1                             | Yes               | No                        | USBA extension cable to USB flash<br>drive/1 meter                 |
| Serial                                     | 2                             | No                | No                        | Shielded cable with DB9 connectors/1 meter                         |
| IR Sensors                                 | 8                             | No                | No                        | IR transmitters with unshielded cables<br>with mono jacks/2 meters |
| Digital In                                 | 1                             | Yes               | No                        | Cables with RCA connector/1 meter                                  |
| Digital Out                                | 3                             | Yes               | No                        | Cables with RCA connector/1 meter                                  |
| Analog<br>Audio In<br>(Left and<br>Right)  | 2                             | Yes               | No                        | Cables with RCA connector/1 meter                                  |
| Analog<br>Audio Out<br>(Left and<br>Right) | 2                             | Yes               | No                        | Cables with RCA connector/1 meter                                  |
| 802.15.4<br>Antenna                        | 1                             |                   |                           | RP-SMA connectors direct to antenna                                |
| Z-Wave<br>Antenna                          | 1                             |                   |                           | RP-SMA connectors direct to antenna                                |

TR7030\_C4\_C4-CORE5\_FCC\_15.249\_01



## 2.5 Operating Environment

| Power Supply        | 120V       |  |
|---------------------|------------|--|
| AC Mains Frequency  | 60Hz       |  |
| Temperature         | 22 – 24 °C |  |
| Humidity            | 20 – 27 %  |  |
| Barometric Pressure | 1019 mBar  |  |

#### 2.6 Operating Modes

The C4-CORE5 was set to constant transmit on low and high channels of the Z-wave radio. The Zigbee radio was also enabled to ensure emissions during simultaneous transmission were compliant. This configuration was determined to produce the worse-case emissions.

#### 2.7 EUT Exercise Software

EUT firmware version 3.3.0.618634 was used to operate the transmitter using a constant transmit mode.

# 2.8 Block Diagram of Test Configuration



**Diagram 1: Test Configuration Block Diagram** 

#### 2.9 Modification Incorporated/Special Accessories on EUT

There were no modifications made to the EUT during testing to comply with the specification.

# 2.10 Deviation, Opinions Additional Information or Interpretations from Test Standard

There were no deviations, opinions, additional information or interpretations from the test specification.



# **3** Test Specification, Method and Procedures

#### 3.1 Test Specification

| Title           | <ul><li>47 CFR FCC Part 15, Subpart C</li><li>15.207, 15.215, and 15.249</li><li>Limits and methods of measurement of radio interference characteristics of radio frequency devices.</li></ul> |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Purpose of Test | The tests were performed to demonstrate initial compliance                                                                                                                                     |

#### 3.2 Methods & Procedures

#### 3.2.1 47 CFR FCC Part 15 Section 15.207

See test standard for details.

#### 3.2.2 47 CFR FCC Part 15 Section 15.215

See test standard for details.

#### 3.2.3 47 CFR FCC Part 15 Section 15.249

See test standard for details.

#### 3.3 FCC Part 15, Subpart C

#### 3.3.1 Summary of Tests

| FCC Section                                                                                                                                                                       | ISED Section   | Environmental<br>Phenomena             | Frequency<br>Range (MHZ) | Result    |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------|--------------------------|-----------|--|--|--|
| 15.207                                                                                                                                                                            | RSS-Gen        | Conducted Disturbance at<br>Mains Port | 0.15 to 30               | Compliant |  |  |  |
| 15.215                                                                                                                                                                            | RSS-Gen        | Bandwidth Requirement                  | 902 - 928                | Compliant |  |  |  |
| 15.249                                                                                                                                                                            | RSS-Gen        | Fundamental Field Strength             | 902 - 928                | Compliant |  |  |  |
| 15.249                                                                                                                                                                            | 0.009 to 26000 | Compliant                              |                          |           |  |  |  |
| The testing was performed according to the procedures in ANSI C63.10-2013, KDB 558074 and 47 CFR Part 15. Where applicable, KDB 662911 was followed to sum required measurements. |                |                                        |                          |           |  |  |  |

#### 3.4 Results

In the configuration tested, the EUT complied with the requirements of the specification.



## 3.5 Test Location

Testing was performed at the Compliance Test Services Draper location at 427 West 12800 South, Draper, UT 84020. Compliance Test Services is accredited by National Voluntary Laboratory Accreditation Program (NVLAP); NVLAP Code 600293-0 which is effective until December 31, 2022.

# 4 Test Equipment

### 4.1 Conducted Emissions at Mains Ports

| Type of<br>Equipment | Manufacturer           | Model<br>Number | delAssetDate of LastberNumberCalibration |          | Due Date of<br>Calibration |
|----------------------|------------------------|-----------------|------------------------------------------|----------|----------------------------|
| EMI Receiver         | AFJ                    | FFT3010         | CTS-2500                                 | CTS-6754 | 12/8/2021                  |
| LISN                 | AFJ                    | LS16C/10        | CTS-2512 CTS-6749                        |          | 12/6/2021                  |
| Cat6 ISN             | Teseq                  | ISN T8-<br>Cat6 | ISN T8-<br>Cat6 CTS-2971 CTS-2971        |          | 1/30/2022                  |
| ISN                  | Teseq                  | ISN T800        | CTS-2974                                 | CTS-2974 | 6/4/2021                   |
| LISN                 | Com-Power              | LIN-120C        | CTS-2612                                 | CTS-2612 | 1/6/2022                   |
| AC Power<br>Source   | Laplace<br>Instruments | AC1000A         | CTS-2857                                 | N/A      | N/A                        |
| Test Software        | CTS                    | Revision 1      | CTS-3107                                 | N/A      | N/A                        |

Table 1: List of equipment used for Conducted Emissions Testing at Mains Port



**Figure 1: Conducted Emissions Test** 



# 4.2 Radiated Emissions

| Type of<br>Equipment           | Manufacturer                                | Manufacturer Model Asset<br>Number Number |                      | Date of Last<br>Calibration | Due Date of<br>Calibration |
|--------------------------------|---------------------------------------------|-------------------------------------------|----------------------|-----------------------------|----------------------------|
| EMI Receiver                   | Keysight                                    | N9038A                                    | CTS-2778             | 6/21/2021                   | 6/21/2022                  |
| Pre-Amplifier<br>9 kHz – 1 GHz | Pre-AmplifierSonoma9 kHz - 1 GHzInstruments |                                           | CTS-2889             | 10/7/2021                   | 10/7/2022                  |
| Broadband<br>Antenna           | Broadband Scwarzbeck                        |                                           | VULB 9163 CTS-3062 8 |                             | 8/27/2022                  |
| Broadband<br>Antenna           | Scwarzbeck                                  | VULB 9163                                 | CTS-3071             | 5/19/2020                   | 5/19/2022                  |
| Double Ridge<br>Horn Antenna   | Scwarzbeck                                  | BBHA<br>9120D                             | CTS-3065             | 7/8/2021                    | 7/8/2022                   |
| Log Periodic                   | Scwarzbeck                                  | STLP 9129                                 | CTS-3068             | 11/16/2020                  | 11/16/2022                 |
| 15 - 40 GHz<br>Horn Antenna    | Scwarzbeck                                  | BBHA 9170                                 | CTS-2487             | 5/21/2020                   | 5/21/2022                  |
| 1 – 18 GHz<br>Amplifier        | Com-Power                                   | PAM 118A                                  | CTS-3833             | 10/7/2021                   | 10/7/2022                  |
| Test Software                  | CTS                                         | Revision 1                                | CTS-3108             | N/A                         | N/A                        |

Table 2: List of equipment used for Radiated Emissions



Figure 2: Radiated Emissions Test



# 4.3 Equipment Calibration

All applicable equipment is calibrated using either an independent calibration laboratory or Compliance Test Services personnel at intervals defined in ANSI C63.4:2014 following outlined calibration procedures. All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Supporting documentation relative to traceability is on file and is available for examination upon request.

#### 4.4 Measurement Uncertainty

| Test                                 | Uncertainty ( <u>+</u> dB) | Confidence (%) |
|--------------------------------------|----------------------------|----------------|
| Conducted Emissions                  | 1.44                       | 95             |
| Asymmetric Mode Conducted Emissions  | 3.61                       | 95             |
| Shielded CDN Conducted Emissions     | 3.33                       | 95             |
| Radiated Emissions (30 MHz to 1 GHz) | 4.38                       | 95             |
| Radiated Emissions (1 GHz to 17 GHz) | 4.37                       | 95             |



# 5 Test Results

# 5.1 Conducted Emissions at Mains Ports Data

| Frequency<br>(MHZ) | Detector            | Receiver<br>Measured<br>Level<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Receiver<br>Level<br>(dBµV) | Limit<br>Class B<br>Limit<br>(dBµV) | Margin<br>(dB) |
|--------------------|---------------------|-----------------------------------------|--------------------------------|------------------------------------------|-------------------------------------|----------------|
| 13.56              | Quasi-Peak (Note 2) | 47.2                                    | 9.9                            | 57.1                                     | 60                                  | -2.9           |
| 10.61              | Quasi-Peak (Note 2) | 30.8                                    | 9.9                            | 40.6                                     | 60                                  | -19.4          |
| 0.150              | Quasi-Peak (Note 2) | 35.5                                    | 9.5                            | 45                                       | 66                                  | -21.0          |
| 15.23              | Quasi-Peak (Note 2) | 24.5                                    | 9.9                            | 34.2                                     | 60                                  | -25.7          |
| 0.261              | Quasi-Peak (Note 2) | 17.6                                    | 9.6                            | 27.2                                     | 61.4                                | -34.2          |

Note 2: The reference detector used for the measurements was quasi-peak and average and the data was compared to the respective limits.

#### Sample Field Strength Calculation

Correction Factor = LISN Insertion Loss + Cable Insertion Loss + Transient Limiter Insertion Loss

Conducted Emissions Amplitude = Receiver Reading + Correction Factor

#### Result

The EUT complied with the specification limit by a margin of -2.9 dB.



**Graph 1: Conducted Emissions Plot - Neutral** 



| Frequency<br>(MHZ) | Detector            | Receiver<br>Measured<br>Level<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Corrected<br>Receiver<br>Level<br>(dBµV) | Limit<br>Class B<br>Limit<br>(dBµV) | Margin<br>(dB) |
|--------------------|---------------------|-----------------------------------------|--------------------------------|------------------------------------------|-------------------------------------|----------------|
| 13.56              | Quasi-Peak (Note 2) | 47.1                                    | 9.9                            | 57                                       | 60                                  | -3.0           |
| 10.71              | Quasi-Peak (Note 2) | 30.1                                    | 9.9                            | 40                                       | 60                                  | -20.0          |
| 0.156              | Quasi-Peak (Note 2) | 30.9                                    | 9.5                            | 40.5                                     | 65.7                                | -25.2          |
| 29.38              | Quasi-Peak (Note 2) | 17.4                                    | 10.2                           | 27.6                                     | 60                                  | -32.4          |
| 0.390              | Quasi-Peak (Note 2) | 14.6                                    | 9.6                            | 24.2                                     | 58.1                                | -33.8          |
| 0.198              | Average (Note 2)    | 17.1                                    | 9.5                            | 26.6                                     | 53.7                                | -27.0          |

Note 2: The reference detector used for the measurements was quasi-peak and average and the data was compared to the respective limits.

#### Sample Field Strength Calculation

Correction Factor = LISN Insertion Loss + Cable Insertion Loss + Transient Limiter Insertion Loss

Conducted Emissions Amplitude = Receiver Reading + Correction Factor

#### Result

The EUT complied with the specification limit by a margin of -3.0 dB.



**Graph 2: Conducted Emissions Plot – Line 1** 



## 5.2 Radiated Emissions: 908 MHz

| Freq.<br>(MHZ)                               | Level<br>(dBµV/m)                                             | Limit<br>(dBµV/m) | Margin<br>(dB) | Azimuth (°) | Height<br>(m) | Pol. | Cor.<br>(dB) | Det. |  |
|----------------------------------------------|---------------------------------------------------------------|-------------------|----------------|-------------|---------------|------|--------------|------|--|
| 11638                                        | 55.111                                                        | 74                | -18.889        | 97          | 3.233         | Hztl | 13.942       | Pk   |  |
| 15004                                        | 58.559                                                        | 74                | -15.441        | 107         | 3.097         | Hztl | 16.089       | Pk   |  |
| 16805                                        | 59.336                                                        | 74                | -14.664        | 84          | 3.444         | Hztl | 17.628       | Pk   |  |
| 11638                                        | 42.01                                                         | 54                | -11.99         | 97          | 3.233         | Hztl | 13.942       | Avg  |  |
| 15004                                        | 45.275                                                        | 54                | -8.725         | 107         | 3.097         | Hztl | 16.089       | Avg  |  |
| 16805                                        | 45.633                                                        | 54                | -8.367         | 84          | 3.444         | Hztl | 17.628       | Avg  |  |
| Sample Field                                 | Sample Field Strength Calculation                             |                   |                |             |               |      |              |      |  |
| Level = Receiver Reading + Correction Factor |                                                               |                   |                |             |               |      |              |      |  |
| Corre                                        | Correction Factor = Antenna Factor + Cable Factor - Amplifier |                   |                |             |               |      |              |      |  |
| Margi                                        | in = Level - Limit                                            |                   |                |             |               |      |              |      |  |

#### Result

The EUT complied with the specification limit by a margin of -8.367 dB.

Emissions below 1 GHz were investigated but worst case was with 916 MHz transmitting

| Freq.<br>(MHz) | Level<br>(dBµV/m)                | Limit<br>(dBµV/m) | Margin<br>(dB) | Azimuth (°) | Height<br>(m) | Pol. | Cor.<br>(dB) | Det. |  |
|----------------|----------------------------------|-------------------|----------------|-------------|---------------|------|--------------|------|--|
| 30.485         | 25.896                           | 30                | -4.104         | 298         | 2.352         | Vrt  | -11.794      | QP   |  |
| 40.864         | 25.187                           | 30                | -4.813         | 102         | 3.847         | Vrt  | -11.183      | QP   |  |
| 54.347         | 25.423                           | 30                | -4.577         | 102         | 3.42          | Vrt  | -12.11       | QP   |  |
| 178.41         | 24.79                            | 33.5              | -8.71          | 204         | 1.311         | Vrt  | -15.747      | QP   |  |
| 11068          | 55.212                           | 74                | -18.788        | 95          | 3.773         | Hztl | 14.103       | Pk   |  |
| 14451          | 58.125                           | 74                | -15.875        | 354         | 1.862         | Hztl | 15.998       | Pk   |  |
| 16904          | 60.06                            | 74                | -13.94         | 237         | 3.08          | Hztl | 18.354       | Pk   |  |
| 11068          | 41.638                           | 54                | -12.362        | 95          | 3.773         | Hztl | 14.103       | Avg  |  |
| 14451          | 45.144                           | 54                | -8.856         | 354         | 1.862         | Hztl | 15.998       | Avg  |  |
| 16904          | 46.322                           | 54                | -7.678         | 237         | 3.08          | Hztl | 18.354       | Avg  |  |
| Sample Field   | ample Field Strength Calculation |                   |                |             |               |      |              |      |  |

# 5.3 Radiated Emissions: 916 MHz

Level = Receiver Reading + Correction Factor Correction Factor = Antenna Factor + Cable Factor - Amplifier Margin = Level - Limit



#### Result

The EUT complied with the specification limit by a margin of -4.104 dB.



**30-1000MHz** worst case with **916 MHz** transmitting









1-17 GHz 916 MHz





1-17 GHz 908 MHz and 2440 MHz for reference only



1-17 Hz 916 MHz and 2440 MHz for reference only

TR7030\_C4\_C4-CORE5\_FCC\_15.249\_01



#### 5.4 Bandwidth



908 MHz OBW



#### 916 MHz OBW



### 5.5 Fundamental Field Strength

| Freq.<br>(MHZ)            | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Azimuth<br>(°) | Height<br>(m) | Pol. | Cor.<br>(dB) | Det. |
|---------------------------|-------------------|-------------------|----------------|----------------|---------------|------|--------------|------|
| 908.46                    | 94.06             | 114               | -19.94         | 114            | 1.08          | Hor1 | 32.185       | Pk   |
| 908.46                    | 90.79             | 94                | -3.2           | 114            | 1.08          | Hor1 | 32.185       | Avg  |
| 915.96                    | 95.88             | 114               | -18.12         | 277            | 1.08          | Hor1 | 32.221       | Pk   |
| 915.96                    | 93.41             | 94                | -0.59          | 277            | 1.08          | Hor1 | 32.221       | Avg  |
| <sup>1</sup> : Worst case | polarity          |                   |                | •              |               | -    |              |      |





TR7030\_C4\_C4-CORE5\_FCC\_15.249\_01

Page 20 of 21

#### PROPRIETARY



-- End of Test Report --