	CTC advanced				
Bundesnetzagentur TEST R Test report no.: 1-1					
Testing laboratory	Applicant				
CTC advanced GmbH Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: https://www.ctcadvanced.com e-mail: mail@ctcadvanced.com	Berlinger & Co.AG Mitteldorfstrasse 2 9608 Ganterschwil / SWITZERLAND Phone: +41 71 982 88 11 Contact: Bernd Heisterkamp e-mail: <u>RnD@berlinger.com</u>				
Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.	Manufacturer Berlinger & Co.AG Mitteldorfstrasse 2 9608 Ganterschwil / SWITZERLAND				
Test sta	ndard/s				

	lest standard/s
FCC - Title 47 CFR Part 22	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 22 - Public mobile services
FCC - Title 47 CFR Part 24	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 24 - Personal communications services
For further applied test standa	rds please refer to section 3 of this test report.

Test Item

Kind of test item:	SmartMonitor
Model name:	Shipment Logger L/M, Site Logger
FCC ID:	2AIEO-SMSHL, 2AIEO-SMSIL
ISED certification number:	21299-SMSHL, 21299-SMSIL
Frequency:	GSM 850 MHz and GSM 1900 MHz
Technology tested:	GSM
Antenna:	Integrated antenna
Power supply:	5 V DC by external mains adapter 3.6 V DC by battery
Temperature range:	-30°C to +75°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Test performed:

Andreas Luckenbill Head of Department Radio Communications Marco Bertolino Lab Manager Radio Communications

Table of contents 1

1	Table	of contents	2
2	Gener	ral information	3
	2.1 2.2 2.3	Notes and disclaimer Application details Test laboratories sub-contracted	3
3	Test s	standard/s, references and accreditations	4
4	Repor	rting statements of conformity – decision rule	5
5	Test e	environment	6
6	Test i	tem	6
	6.1 6.2	General description Additional information	
7	Descr	iption of the test setup	7
	7.1 7.2 7.3 7.4	Shielded semi anechoic chamber Shielded fully anechoic chamber Radiated measurements > 18 GHz Conducted measurements normal and extreme conditions	9 10
8	Meas	urement uncertainty	12
9	Sumn	nary of measurement results	13
	9.1 9.2	GSM 850 PCS 1900	
10	Res	sults GSM 850	14
	10.1 10.2 10.3 10.4 10.5 10.6	RF output power Frequency stability Spurious emissions radiated Spurious emissions conducted Block edge compliance Occupied bandwidth	17 19 25 33
11	Res	sults PCS 1900	44
	11.1 11.2 11.3 11.4 11.5 11.6	RF output power Frequency stability Spurious emissions radiated Spurious emissions conducted Block edge compliance Occupied bandwidth	47 49 55 63
12	Obs	servations	74
13	Glo	ssary	75
14	Doc	cument history	76
15	Acc	reditation Certificate – D-PL-12076-01-04	76
16	Acc	reditation Certificate – D-PL-12076-01-05	77
© (CTC adv	anced GmbH	Page 2 of 77

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-2685/21-03-07 and dated 2022-02-25.

2.2 **Application details**

Date of receipt of order: 2021-10-19 Date of receipt of test item: 2022-02-04 Start of test:* 2022-02-04 End of test:* 2022-02-08 -/-

Person(s) present during the test:

*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

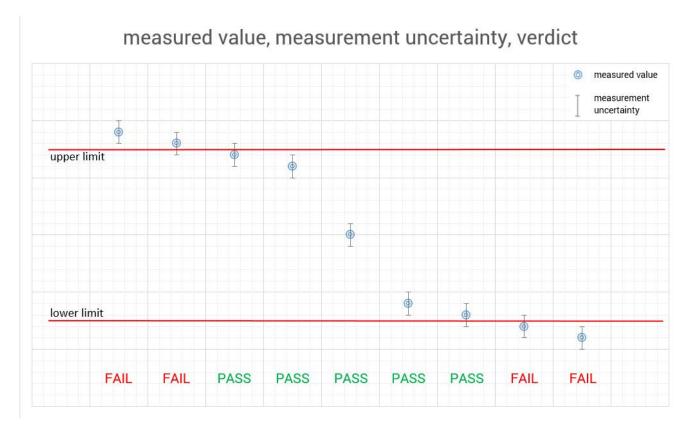
2.3 Test laboratories sub-contracted

None

3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 22	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 22 - Public mobile services
FCC - Title 47 CFR Part 24	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 24 - Personal communications services
RSS - 132 Issue 3	January 2013	Spectrum Management and Telecommunications Radio Standards Specification - Cellular Telephone Systems Operating in the Bands 824-849 MHz and 869-894 MHz
RSS - 133 Issue 6	January 2018	Spectrum Management and Telecommunications Policy - Radio Standards Specifications, 2 GHz Personal Communication Services
Guidance	Version	Description
ANSI C63.4-2014 ANSI C63.26-2015 Power Meas License Systems: KDB 971168 D01	-/- -/- v03r01	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services Measurement Guidance for Certification of Licensed Digital Transmitters

Accreditation	Description	
D-PL-12076-01-04	Telecommunication and EMC Canada https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf	Datkse Deutsche Akkreditierungsstelle D-PL-12076-01-04
D-PL-12076-01-05	Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf	Dakks Deutsche Akkreditierungsstelle D-PL-12076-01-05


ISED Testing Laboratory Recognized Listing Number: DE0001 FCC designation number: DE0002

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 8, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

5 **Test environment**

Temperature :		T _{nom} T _{max} T _{min}	 +20 °C during room temperature tests +60 °C during high temperature tests -30 °C during low temperature tests 			
Relative humidity content	:		42 %			
Barometric pressure			1018 hpa			
Power supply		V _{nom} V _{max} V _{min}	 5 V DC by external mains adapter 3.6 V DC by battery 4.0 3.2 			

6 **Test item**

General description 6.1

Kind of toot itom	Crearth (anitar			
Kind of test item .	SmartMonitor			
Model name :	Shipment Logger L/M			
HMN :	-/-			
PMN :	SmartMonitor			
HVIN :	BE14002 / BE14003			
FVIN :	V01			
S/N serial number :	Radiated unit: AL008			
S/N Senai number .	Conducted unit: AL010			
Hardware status :	V3			
Software status :	n.a.			
Firmware status :	V0.2.3			
Frequency band :	GSM 850 MHz and GSM 1900 MHz			
Type of radio transmission :	modulated carrier			
Use of frequency spectrum :				
Type of modulation :	GMSK; 8-PSK			
Antenna :	Integrated antenna			
Device events	5 V DC by external mains adapter			
Power supply :	3.6 V DC by battery			
Temperature range :	-30°C to +75°C			

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

1-2685/21-03-01_AnnexA 1-2685/21-03-01_AnnexB 1-2685/21-03-01_AnnexD

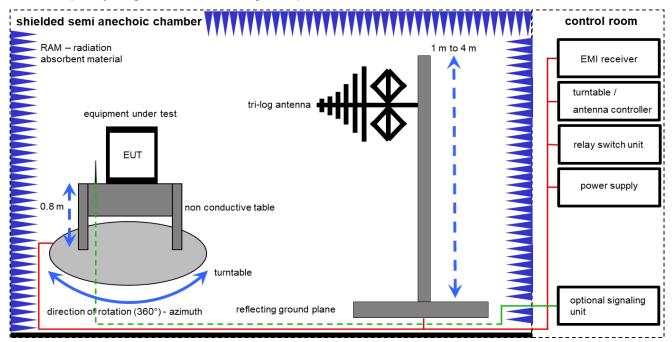
7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration


- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

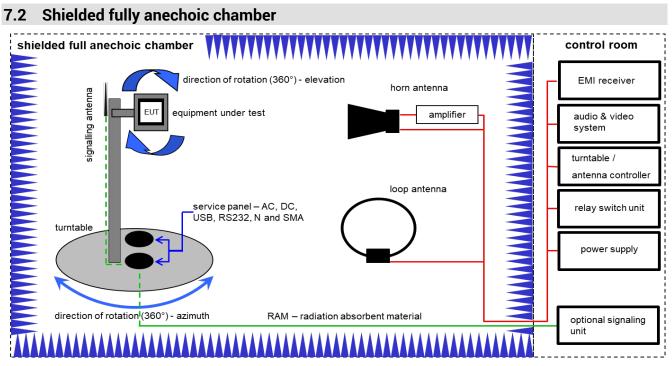
- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

CTC | advanced

Measurement distance: tri-log antenna 10 meter; EMC32 software version: 10.59.00


FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

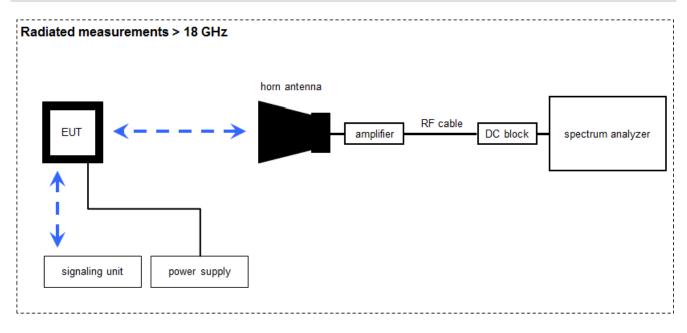
No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Semi anechoic chamber	3000023	MWB AG	-/-	300000551	ne	-/-	-/-
3	А	Analyzer-Reference-System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vlKl!	29.12.2021	28.12.2023
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	Α	Turntable Interface-Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	А	TRILOG Broadband Test- Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vlKl!	30.09.2021	29.09.2023
8	Α	Turntable	2089-4.0	EMCO	-/-	300004394	ne	-/-	-/-
9	Α	PC	TecLine	F+W	-/-	300004388	ne	-/-	-/-
10	A	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	08.12.2021	07.12.2022
11	А	Universal Radio Communication Tester	CMU200	R&S	103992	300003231	vlKl!	10.12.2020	09.12.2022

CTC | advanced

member of RWTÜV group

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

OP = AV + D - G + CA


(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

OP [dBm] = -39.0 [dBm] + 57.0 [dB] - 12.0 [dBi] + (-36.0) [dB] = -30 [dBm] (1 μW)

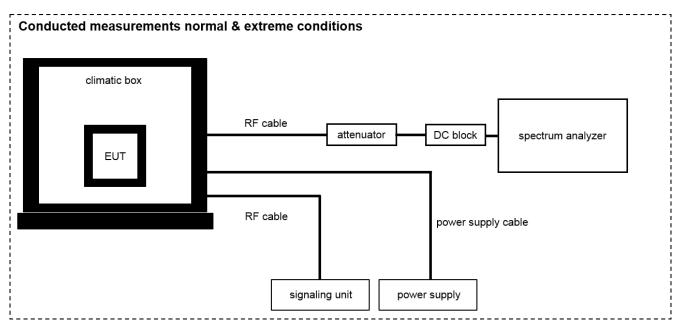
No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A, B, C	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3696	300001604	vIKI!	12.03.2021	11.03.2023
2	A, B	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	-/-	-/-
3	В	Band Reject Filter	WRCG1850/1910- 1835/1925-40/8SS	Wainwright	23	400000149	ne	-/-	-/-
4	A, B	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
5	Α	Band Reject Filter	WRCG824/849- 810/863-60/9SS	Wainwright	6	300003791	ne	-/-	-/-
6	A, B	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	ev	-/-	-/-
7	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
8	A, B, C	Computer	Intel Core i3 3220/3,3 GHz, Prozessor	-/-	2V2403033A54 21	300004591	ne	-/-	-/-
9	A, B, C	NEXIO EMV- Software	BAT EMC V3.21.0.27	EMCO	-/-	300004682	ne	-/-	-/-
10	A, B, C	Anechoic chamber	-/-	TDK	-/-	300003726	ne	-/-	-/-
11	A, B, C	EMI Test Receiver 9kHz-26,5GHz	ESR26	Rohde & Schwarz	101376	300005063	k	15.12.2021	14.12.2022
12	А, В	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011571	300005240	ev	-/-	-/-
13	A, B, C	Universal Radio Communication Tester	CMU200	R&S	103992	300003231	vIKI!	10.12.2020	09.12.2022
14	А, В	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKl!	01.07.2021	30.06.2023

7.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)


Example calculation:

OP [dBm] = -59.0 [dBm] + 44.0 [dB] - 20.0 [dBi] + 5.0 [dB] = -30 [dBm] (1 μW)

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	A	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	01096	300000486	vIKI!	-/-	-/-
3	Α	Signal analyzer	FSV40	Rohde&Schwarz	101042	300004517	k	25.01.2022	24.01.2023
4	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
5	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-
6	А	Universal Radio Communication Tester	CMU200	R&S	103992	300003231	vIKI!	10.12.2020	09.12.2022

7.4 Conducted measurements normal and extreme conditions

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Temperature Test Chamber	VT 4002	Heraeus Voetsch	521/83761	300002326	g	-/-	-/-
2	А	Universal Radio Communication Tester	CMU200	R&S	103992	300003231	viKi!	10.12.2020	09.12.2022
3	А	Hygro-Thermometer	-/-, 5-45°C, 20- 100%rF	Thies Clima	-/-	400000108	ev	13.08.2020	12.08.2022
4	А	PC Tester R005	Intel Core i3 3220/3,3 GHz, Prozessor	-/-	2V2403033A45 23	300004589	ne	-/-	-/-
5	Α	Teststand	Teststand Custom Sequence Editor	National Instruments GmbH	-/-	300004590	ne	-/-	-/-
6	А	Resistive Power Dividers, DC-40 GHz, 1W	1575	MRC COMPONENTS	-/-	300004671	ne	-/-	-/-
7	Α	USB-GPIB-Adapter	GPIB-USB-HS	National Instruments	1829974	400001136	ne	-/-	-/-
8	А	RF-Cable	ST18/SMAm/SMAm/ 72	Huber & Suhner	Batch no. 699714	400001184	ev	-/-	-/-
9	А	Synchron Power Meter	SPM-4	СТС	1	300005580	ev	-/-	-/-
10	Α	Signal analyzer	FSV40	Rohde&Schwarz	101042	300004517	k	25.01.2022	24.01.2023
11	А	RF-Cable	ST18/SMAm/SMAm/ 36	Huber & Suhner	Batch no. 601494	400001309	ev	-/-	-/-
12	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-

Measurement uncertainty 8

Measurement unce	ertainty
Test case	Uncertainty
RF output power conducted	± 1 dB
RF output power radiated	± 3 dB
Frequency stability	± 20 Hz
Spurious emissions radiated below 30 MHz	± 3 dB
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB
Spurious emissions radiated above 12.75 GHz	± 4.5 dB
Spurious emissions conducted	± 3 dB
Block edge compliance	± 3 dB
Occupied bandwidth	± RBW

Summary of measurement results 9

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC identifier	Description	verdict	date	Remark
RF-Testing	CFR Part 22, 24	See table!	2022-04-06	-/-
	RSS 132, 133			,

9.1 GSM 850

Test Case	temperature conditions	power source voltages	С	NC	NA	NP	Remark
RF Output Power Nominal		Nominal	X				-/-
Frequency Stability Nominal		Nominal	X				-/-
Spurious Emissions Radiated Nominal		Nominal	X				-/-
Spurious Emissions Conducted	Nominal	Nominal	\boxtimes				-/-
Block Edge Compliance	Nominal	Nominal	X				-/-
Occupied Bandwidth	Nominal	Nominal	\boxtimes				-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

9.2 PCS 1900

Test Case temperature conditions power source voltages		с	NC	NA	NP	Remark	
RF Output Power	Nominal	Nominal	\boxtimes				-/-
Frequency Stability Nominal		Nominal					-/-
Spurious Emissions Radiated Nominal		Nominal					-/-
Spurious Emissions Conducted Nominal		Nominal	\boxtimes				-/-
Block Edge Compliance	Nominal	Nominal	\boxtimes				-/-
Occupied Bandwidth	Nominal	Nominal					-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

All GSM-band measurements are done in GSM mode only (circuit switched). All relevant tests have been repeated using 8-PSK modulation if EDGE mode is supported. All tests were performed with one timeslot in uplink activated and one timeslot in downlink activated. For each mode the highest output power was determined and used.

10.1 RF output power

Description:

This paragraph contains average power, peak output power, PAPR and ERP measurements for the mobile station.

The plots in this test report represents only an example of the measurements. All plots of this chapter are available on request.

The red line in the measurements indicates the ideal Gaussian distribution for the measured amplitude range.

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

To determine the Peak-To-Average Power Ratio (PAPR) the measurement was performed with the Power Complementary Cumulative Distribution Function (CCDF).

Measuremen	nt parameters
Detector:	Sample
AQT:	See plot
Resolution bandwidth:	1 MHz
Used equipment:	See chapter 7.1 – A & 7.4 – A
Measurement uncertainty:	see chapter 8

<u>Limits:</u>

FCC	ISED
In measuring transmissions in this band using an averag	5 dBm e power technique, the peak-to-average ratio (PAR) of the
transmission may	not exceed 13 dB.

<u>Results:</u>

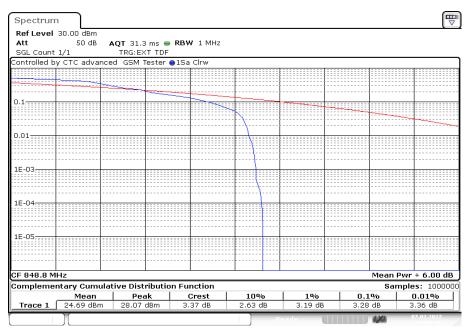
	Output Power (conducted) GMSK mode	
Frequency (MHz)	Peak Output Power (dBm)	Average Output Power (dBm)	Peak to Average Ratio (dB) CCDF
824.2	32.5	32.2	0.3
836.4	32.4	32.1	0.3
848.8	32.4	32.1	0.2

	Output Power (conducted) 8-PSK mode	
Frequency (MHz)	Peak Output Power (dBm)	Average Output Power (dBm)	Peak to Average Ratio (dB) CCDF
824.2	28.2	24.5	3.5
836.4	28.7	25.4	3.3
848.8	28.1	24.7	3.3

	Output Power (radiated) GMSK mode						
Frequency (MHz) Average Output Power (dBm) - ERP							
824.2	29.3						
836.4	28.6						
848.8	29.0						

	Output Power (radiated) 8-PSK mode						
Frequency (MHz) Average Output Power (dBm) - ERP							
824.2	21.6						
836.4	21.9						
848.8	21.6						

Plots: GMSK



	.evel	30.00							_	_	_																		
Att			50 dB	A	рт з				RB۱	V 1	L MI	ΗZ																	
	Count				TRG																			_				_	
ontro	olled b	у стс	adva				este	er 😑	1Sa	i Cli	rw																		
																									-				
				1													1			1	 		1						
·																					 								
n_1												_																	
1																			-	+									
-																					 			-					
-1																				- †	 		1						
				1																-1	 		1						
1. 01 -													= = =								 							= = = ?	
										===							1111				 								
.Е <mark>-</mark> ОЗ																					 								
- 5-													222								 		1111						
																	[1.	 								
LE-04																													
.E-04										888			3 5 5 5				8888												
										===										11	 								
LE-05																					 								
												222	333		2223		1111			5 1 5 5	 		222					2223	2222
	8.8 M																						Me	an	P٧	ł۲ ·	+ 6.	.00	i dE
omp	leme	ntary	Cum	ulati	ve D	istı	ibu	tior	ı Fu	nct	ion	1												Sa	mp	le	s: :	100)00
		P	1ean		1)ea	k	1	1	Cre	st			1	109	/o			1%			0.1	<u>%</u>		T	0	.01	%	
Trac	ce 1	32	13 dBr	~	32.3	20 4	1B m		0	26	dв			0.3	12.	-lo		0	17 d	D	0	1 10	l dB		_	0	25	db	

Date: 7.FEB.2022 08:22:08

Plots: 8 PSK

Plot 1: CCDF, channel 251, example plot

Date: 7.FEB.2022 09:06:05

10.2 Frequency stability

Description:

In order to measure the carrier frequency under normal conditions it is necessary to make measurements with the mobile station connected to R&S CMU200 Wideband Radio Communication Tester.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the mobile station to overnight soak at -30 C.
- 3. With the mobile station powered with V_{nom} connected to the CMU200 on the center channel. Measure the carrier frequency. These measurements should be made within two minutes of powering up the mobile station to prevent significant self warming.
- 4. Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 15 minutes at each temperature unpowered before making measurements.
- 5. Remeasure carrier frequency at room temperature with V_{nom} . Vary supply voltage to V_{min} and measure the carrier frequency then setup V_{max} and repeat the measurement.
- 6. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

Measurement:

Measurement parameters				
Detector:				
Sweep time:				
Video bandwidth:	Measured with CMU200			
Resolution bandwidth:	Measured with CMO200			
Span:				
Trace mode:				
Test setup:	See chapter 7.4 – A			
Measurement uncertainty:	See chapter 8			

Limits:

FCC	ISED
± 2.5	ppm

Results:

AFC FREQ ERROR versus VOLTAGE

Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)
3.2	23	0.03
3.6	23	0.03
4.0	23	0.03

AFC FREQ ERROR versus TEMPERATURE

Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)
-30	37	0.04
-20	35	0.04
-10	31	0.04
± 0	28	0.03
10	27	0.03
20	23	0.03
30	21	0.03
40	20	0.02
50	18	0.02

10.3 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2014 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 848.8 MHz. Measurements made up to 12.75 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the GSM-850 band.

Measurement:

Measurement parameters				
Detector:	Peak			
Sweep time:	2 s			
Resolution bandwidth:	100 kHz			
Video bandwidth:	300 kHz			
Span:	100 MHz Steps			
Trace mode:	Max Hold			
Used equipment:	See chapter 7.1 – A & 7.2 – A			
Measurement uncertainty:	See chapter 8			

<u>Limits:</u>

FCC	ISED
	43 + 10log(P) in Watts)
-13	dBm

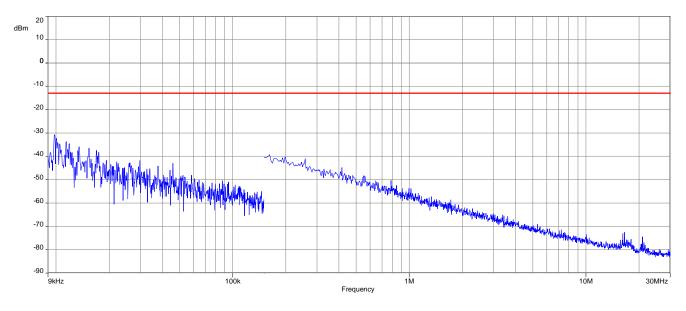
Results GPRS & EGPRS:

Radiated emissions measurements were made only at the center carrier frequency of the GSM-850 band (836.4 MHz). The measurements shows the cabinet radiation in transmit mode. The antenna port can be terminated with 50 Ω .

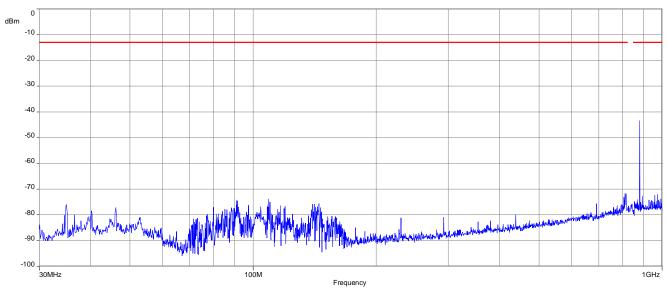
Results: GMSK

Spurious emission level (dBm)								
Harmonic	Ch. 128 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 189 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 251 Freq. (MHz)	Level [dBm]
2	1648.4	-	2	1672.8	-42.3	2	1697.6	-
3	2472.6	-	3	2509.2	-30.7	3	2546.4	-
4	3296.8	-	4	3345.6	-	4	3395.2	-
5	4121.0	-	5	4182.0	-	5	4244.0	-
6	4945.2	-	6	5018.4	-	6	5092.8	-
7	5769.4	-	7	5854.8	-	7	5941.6	-
8	6593.6	-	8	6691.2	-	8	6790.4	-
9	7417.8	-	9	7527.6	-	9	7639.2	-
10	8242.0	-	10	8364.0	-	10	8488.0	-

Results: 8 PSK

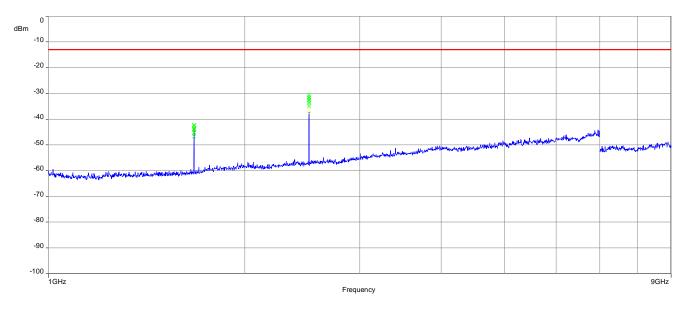

Spurious emission level (dBm)								
Harmonic	Ch. 128 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 189 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 251 Freq. (MHz)	Level [dBm]
2	1648.4	-	2	1672.8	-43.5	2	1697.6	-
3	2472.6	-	3	2509.2	-35.3	3	2546.4	-
4	3296.8	-	4	3345.6	-	4	3395.2	-
5	4121.0	-	5	4182.0	-	5	4244.0	-
6	4945.2	-	6	5018.4	-	6	5092.8	-
7	5769.4	-	7	5854.8	-	7	5941.6	-
8	6593.6	-	8	6691.2	-	8	6790.4	-
9	7417.8	-	9	7527.6	-	9	7639.2	-
10	8242.0	-	10	8364.0	-	10	8488.0	-

Test report no.: 1-2685/21-03-07-A

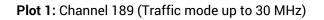


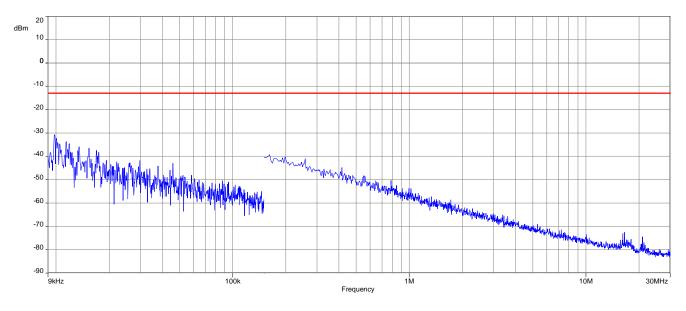
Plots: GMSK

Plot 2: Channel 189 (30 MHz – 1 GHz)

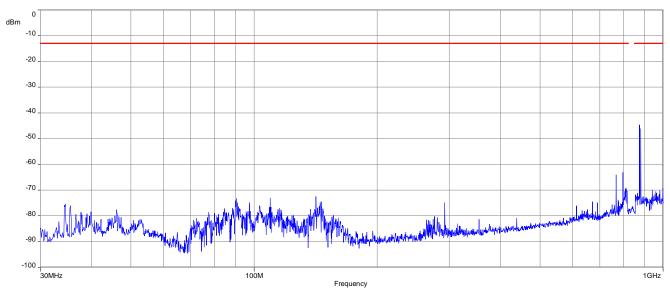


The carrier signal is notched with a band rejection filter.


Plot 3: Channel 189 (1 GHz – 9 GHz)

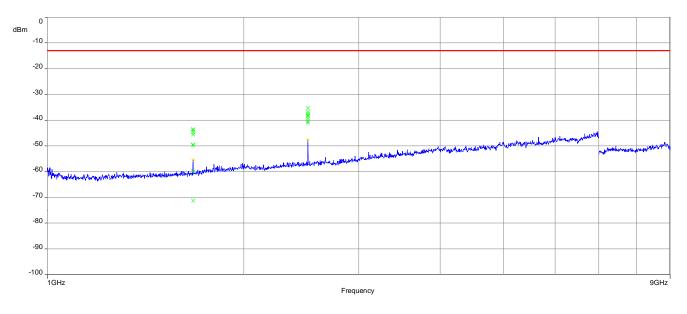


Test report no.: 1-2685/21-03-07-A



Plots: 8 PSK

Plot 2: Channel 189 (30 MHz – 1 GHz)



The carrier signal is notched with a band rejection filter.

Plot 3: Channel 189 (1 GHz – 9 GHz)

10.4 Spurious emissions conducted

Description:

The following steps outline the procedure used to measure the conducted emissions from the mobile station. 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 9 GHz, data taken from 10 MHz to 9 GHz.

2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

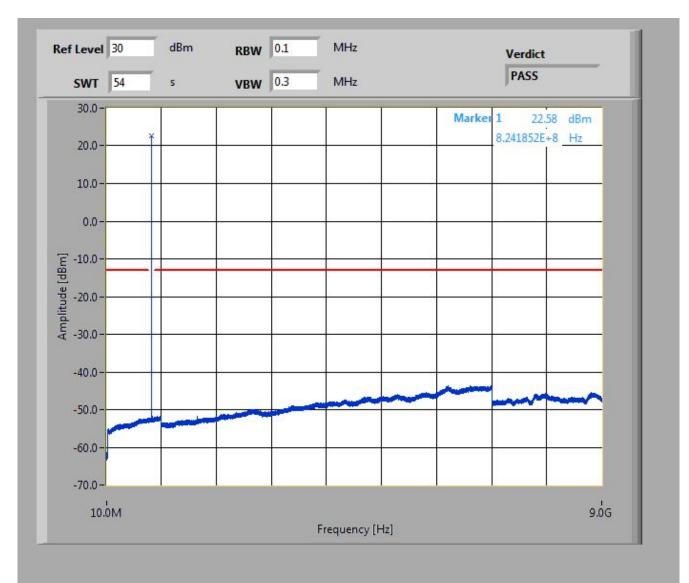
GSM-850 Transmitter Channel Frequency 128 824.2 MHz 189 836.4 MHz 251 848.8 MHz

Measurement:

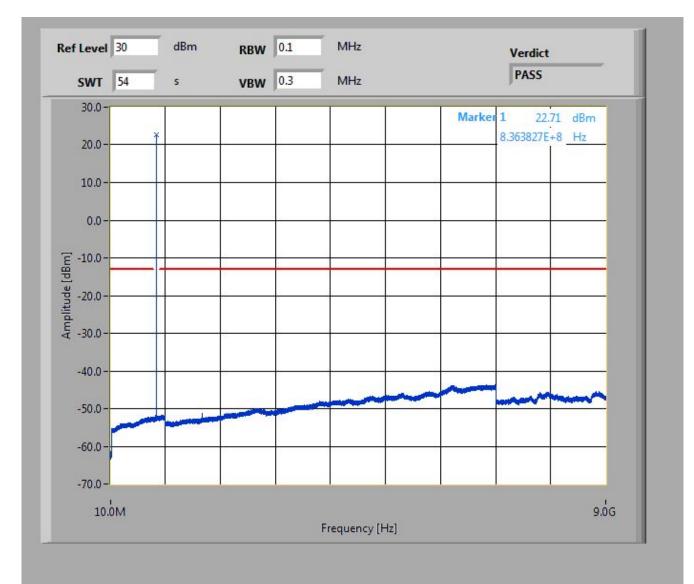
Measurement parameters				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	100 kHz			
Video bandwidth:	300 kHz			
Span:	10 MHz – 9 GHz			
Trace mode:	Max Hold			
Used equipment:	See chapter 7.4 - A			
Measurement uncertainty:	See chapter 8			

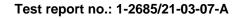
<u>Limits:</u>

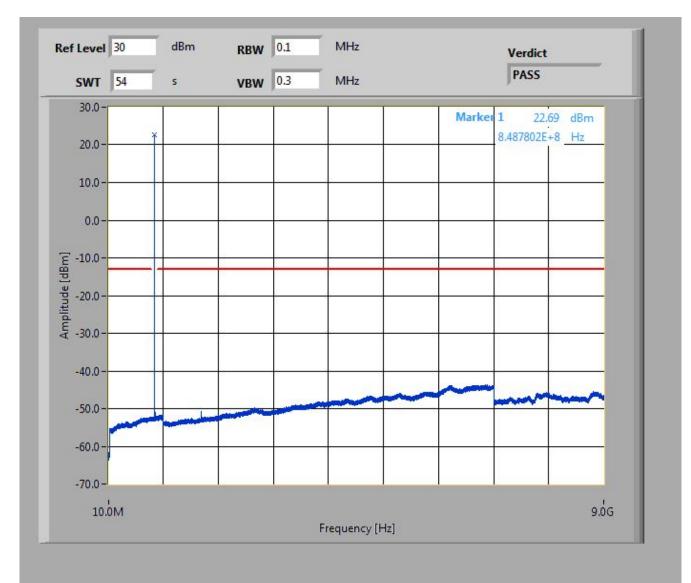
FCC	ISED	
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)		
-13 dBm		

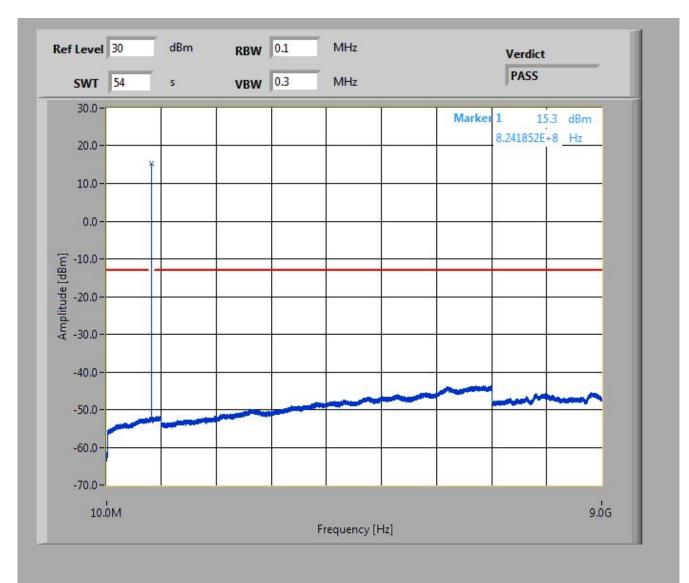

Results:

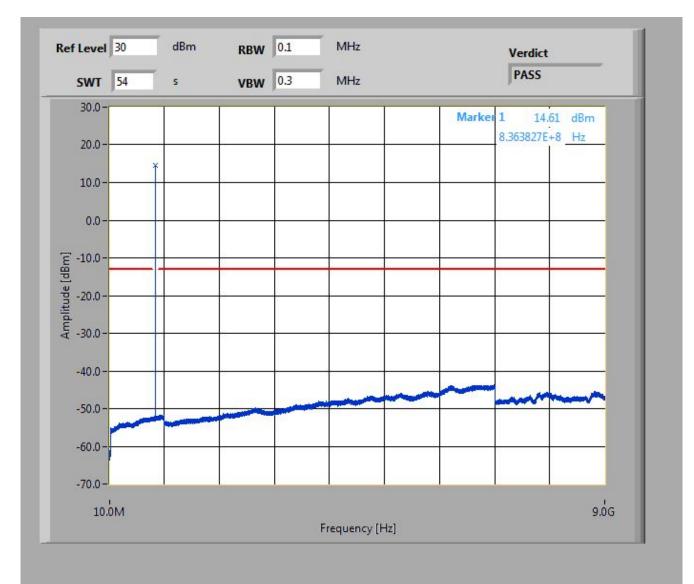
Spurious emission level (dBm)								
Harmonic	Ch. 128 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 189 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 251 Freq. (MHz)	Level [dBm]
2	1648.4	-	2	1672.8	-	2	1697.6	-
3	2472.6	-	3	2509.2	-	3	2546.4	-
4	3296.8	-	4	3345.6	-	4	3395.2	-
5	4121.0	-	5	4182.0	-	5	4244.0	-
6	4945.2	-	6	5018.4	-	6	5092.8	-
7	5769.4	-	7	5854.8	-	7	5941.6	-
8	6593.6	-	8	6691.2	-	8	6790.4	-
9	7417.8	-	9	7527.6	-	9	7639.2	-
10	8242.0	-	10	8364.0	-	10	8488.0	-

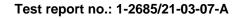

Plots: GMSK

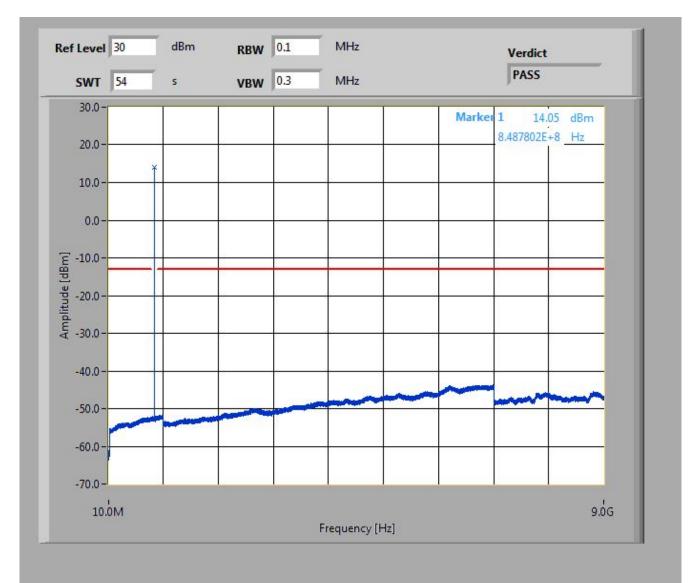

Plot 1: Channel 128 (10 MHz - 9 GHz)


Plot 2: Channel 189 (10 MHz - 9 GHz)


Plot 3: Channel 251 (10 MHz - 9 GHz)


Plots: 8 PSK


Plot 1: Channel 128 (10 MHz - 9 GHz)


Plot 2: Channel 189 (10 MHz - 9 GHz)

Plot 3: Channel 251 (10 MHz - 9 GHz)

10.5 Block edge compliance

Description:

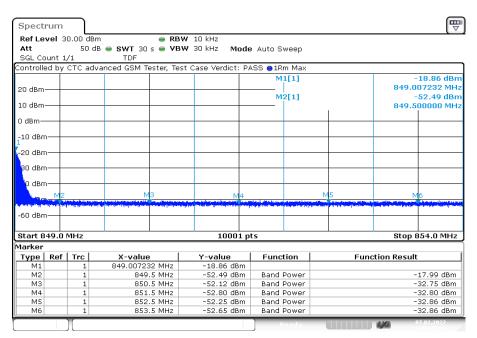
The spectrum at the band edges must comply with the spurious emissions limits.

Measurement:

Measurement parameters				
Detector:	RMS			
Sweep time:	30 sec.			
Video bandwidth:	1% - 5% of the OBW			
Resolution bandwidth:	≥ 3xRBW			
Span:	5 MHz			
Trace mode:	Max Hold			
Used equipment:	See chapter 7.4 – A			
Measurement uncertainty:	See chapter 8			

<u>Limits:</u>

FCC	ISED				
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)					
-13 dBm					


Plots: GMSK

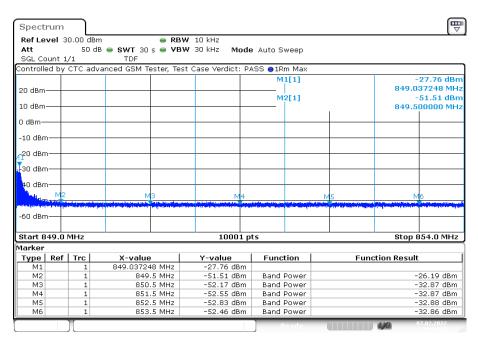
Plot 1: Channel 128

Spectr		0.00 dBr		RBW	10 1015				
Att	er 3		n B 👄 SWT 30			de Auto C			
SGL Co	unt 1		TDF	5 - 4044	SU KHZ INI	ue Auto 5	weep		
			vanced GSM Te	ector Tost (ase Verdict:		m Mav		
oncrone		cic au		55(6), 165(\		-	1[1]		-20.17 dBr
20 dBm-							<u>, , , , , , , , , , , , , , , , , , , </u>		823.999744 MH
:u abm-						M	2[1]		-52.24 dBr
.0 dBm-	_								823.500000 MH
								1	
) dBm—									+
10 dBm	_								
20 dBm									
30 dBm									
40 dBm	-								
50 dBm	_M6		M	5	M	4		M3	M2
Street Breezeway	د و المحمد ال	and the second se		all the second second second	a second s	And the model and the first state		all search and s	and a spin out on the first section of the section
60 dBm									
Start 819.0 MHz 10001 pt				lpts	s Stop 824.0 MHz				
larker									
Туре	Ref	Trc	X-value		Y-value	Func	tion 📋	Fun	iction Result
M1		1	823.99974		-20.17 dB				
M2		1		5 MHz	-52.24 dB				-18.04 dBm
MЗ		1		5 MHz	-52.50 dB				-32.91 dBm
M4		1		5 MHz	-52.29 dB				-32.91 dBm
M5		1		5 MHz	-52.40 dB				-32.93 dBm
M6		1	819.	5 MHz	-52.86 dB	m∣ Band	Power		-32.97 dBm

Date: 7.FEB.2022 08:11:33

Plot 2: Channel 251

Date: 7.FEB.2022 08:22:40


Plots: 8 PSK

Plot 1: Channel 128

Spect										∇
	vel 3	0.00 dB			/ 10 kHz					
Att				s 👄 VBV	/ 30 kHz Mo	de Auto S	weep			
SGL Co			TDF	<u> </u>						
ontrolle	dby	CTC ad	vanced GSM Te	ester, Test	: Case Verdict:	-	_			
						м	1[1]			25.50 dBr
20 dBm-										72224 MH
LO dBm-						IVI	2[1]			-53.07 dBr 00000 MH
to upin								1	023.3	
) dBm—										
-10 dBm	_									
-20 dBm										
-40 dBm										
50. dBm	6		M		M	4		MЗ	N	2
and the second		Transferrar bill	ter - set - ter - ter - ter -	and a second second						and a supplicit state
-60 dBm										
Start 8	19.01	чнz			10001	. pts			stop	324.0 MHz
1arker						1 =				
Type M1	Ref		X-value 823.97222		<u>Y-value</u> -25,50 dBr	Func	tion	Fu	nction Result	
M1 M2		1		.5 MHz	-25.50 dBr		Dowor	-25.18 dBm		
M3		1		.5 MHz	-52.91 dBr		Band Power Band Power		-25.16 UBM -32.97 dBm	
M4		1		.5 MHz	-52.71 dBr		Power			32.97 dBm
M5		1		5 MHz	-52.61 dBr		Power			32.98 dBm
M6		1	819	5 MHz	-52.16 dBr	m Band	Power		-	33.02 dBm

Date: 7.FEB.2022 08:42:24

Plot 2: Channel 251

Date: 7.FEB.2022 09:06:38

10.6 Occupied bandwidth

Description:

Measurement of the occupied bandwidth of the transmitted signal.

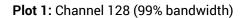
Measurement:

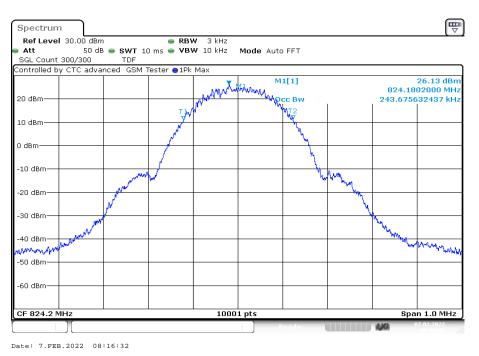
Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the GSM-850 frequency band. The table below lists the measured 99% power and -26dBc occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Measurement parameters				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	1% - 5% of the OBW			
Video bandwidth:	≥ 3xRBW			
Span:	2 x nominal BW			
Trace mode:	Max Hold			
Used equipment:	See chapter 7.4 – A			
Measurement uncertainty:	See chapter 8			

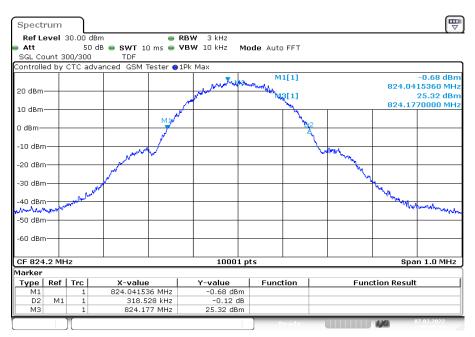
<u>Limits:</u>

FCC	ISED				
Spectrum must fall completely in the specified band					

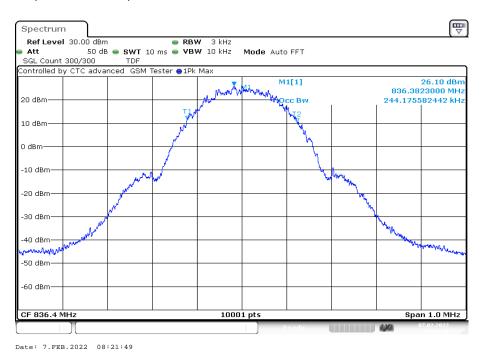

<u>Results:</u>

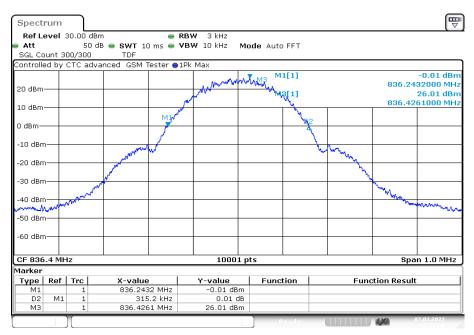

Occupied bandwidth - GMSK mode										
Frequency (MHz)99% OBW (kHz)-26 dBc BW (kHz)										
824.2	244	319								
836.4	244	315								
848.8	246	319								

Occupied bandwidth – 8 PSK mode										
Frequency (MHz)99% OBW (kHz)-26 dBc BW (kHz)										
824.2	239	314								
836.4	238	310								
848.8	238	310								

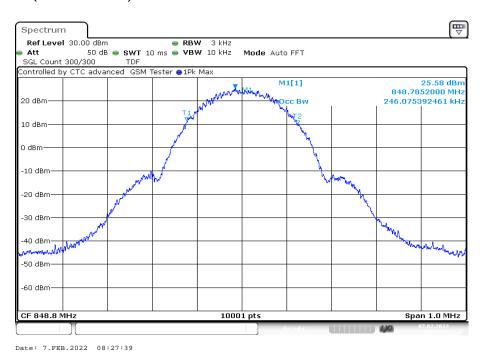


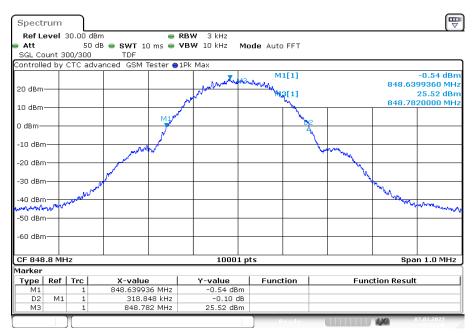
Plots: GMSK


Plot 2: Channel 128 (-26 dBc bandwidth)

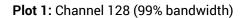

Date: 7.FEB.2022 08:16:39

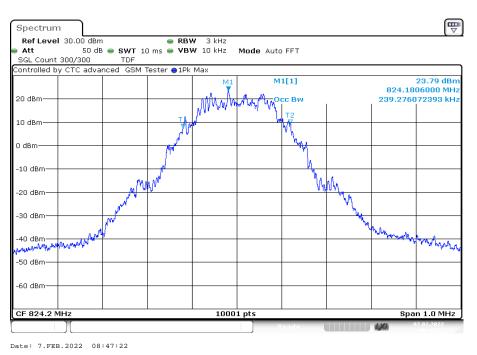
Plot 3: Channel 189 (99% bandwidth)


Plot 4: Channel 189 (-26 dBc bandwidth)

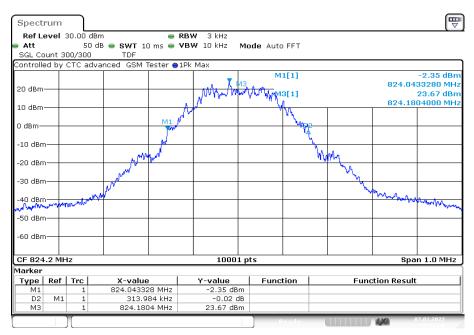

Date: 7.FEB.2022 08:21:56

Plot 5: Channel 251 (99% bandwidth)

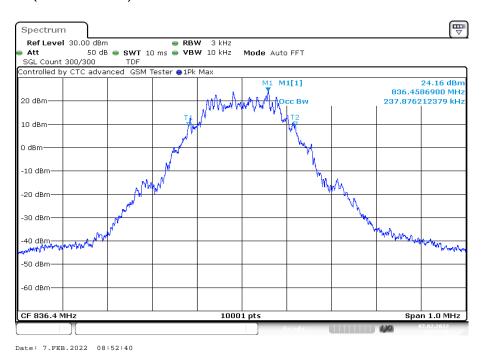

Plot 6: Channel 251 (-26 dBc bandwidth)

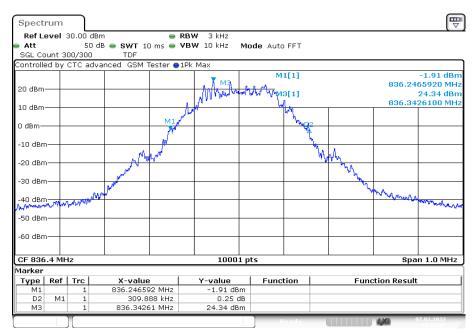


Date: 7.FEB.2022 08:27:46

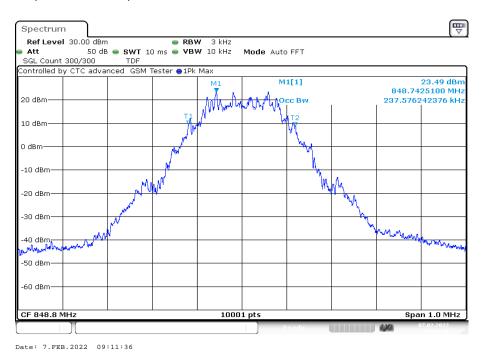


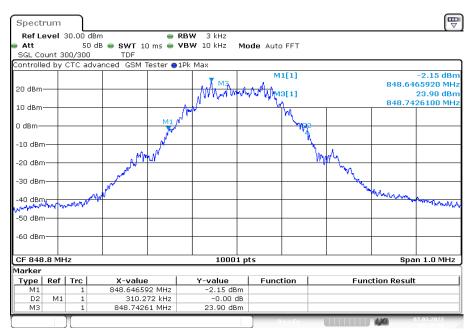
Plots: 8 PSK


Plot 2: Channel 128 (-26 dBc bandwidth)


Date: 7.FEB.2022 08:47:30

Plot 3: Channel 189 (99% bandwidth)


Plot 4: Channel 189 (-26 dBc bandwidth)


Date: 7.FEB.2022 08:52:47

Plot 5: Channel 251 (99% bandwidth)

Plot 6: Channel 251 (-26 dBc bandwidth)

Date: 7.FEB.2022 09:11:44

11 Results PCS 1900

All GSM-band measurements are done in GSM mode only (circuit switched). All relevant tests have been repeated using 8-PSK modulation if EDGE mode is supported. All tests were performed with one timeslot in uplink activated and one timeslot in downlink activated. For each mode the highest output power was determined and used.

11.1 RF output power

Description:

This paragraph contains average power, peak output power, PAPR and ERP measurements for the mobile station.

The plots in this test report represents only an example of the measurements. All plots of this chapter are available on request.

The red line in the measurements indicates the ideal Gaussian distribution for the measured amplitude range.

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

To determine the Peak-To-Average Power Ratio (PAPR) the measurement was performed with the Power Complementary Cumulative Distribution Function (CCDF).

Measurement parameters							
Detector:	Sample						
AQT:	See plot						
Resolution bandwidth:	1 MHz						
Used equipment:	See chapter 7.2 – C & 7.4 – A						
Measurement uncertainty:	See chapter 8						

Limits:

FCC	ISED					
In measuring transmissions in this band using an averag	0 dBm e power technique, the peak-to-average ratio (PAR) of the not exceed 13 dB.					

Results:

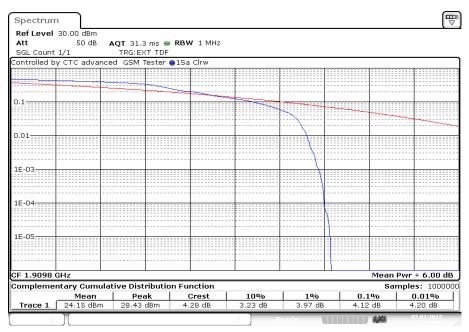
Output Power (conducted) GMSK mode										
Frequency (MHz)	Peak Output Power (dBm)	Average Output Power (dBm)	Peak to Average Ratio (dB) CCDF							
1850.2	29.6	29.3	0.3							
1880.0	29.4	29.1	0.3							
1909.8	29.7	29.3	0.3							

Output Power (conducted) 8-PSK mode										
Frequency (MHz)	Peak Output Power (dBm)	Average Output Power (dBm)	Peak to Average Ratio (dB) CCDF							
1850.2	29.8	25.5	4.1							
1880.0	29.6	25.4	4.1							
1909.8	28.4	24.2	4.1							

Output Power (radiated) GMSK mode								
Frequency (MHz) Average Output Power (dBm) - EIRP								
1850.2	29.8							
1880.0	30.3							
1909.8	32.3							

Output Power (radiated) 8-PSK mode								
Frequency (MHz) Average Output Power (dBm) - EIRP								
1850.2	26.0							
1880.0	26.6							
1909.8	27.2							

Plots: GMSK



Att SGL (Count		50 dB		QT 3 TRG:				BW	/ 1	ΜН	z															
			adva:						ISa	Clr	w																
<u></u>																											
)(1— \ \																					-						
).01																											
E-03																											
E-04													 														
E-05																											
= 1 0	9098	CH7											 									Mea	anl	Divir	+	6.0	n di
			Cum	ulati	ve D	stri	buti	ion	Fu	nct	ion		 					_			_	_	_	nple	_	_	_
			Mean	1		eal		1		Cre		1	109	/o	1	1	%		1	0	.19		1			1%	

Date: 7.FEB.2022 09:39:51

Plots: 8 PSK

Plot 1: CCDF, channel 810, example plot

Date: 7.FEB.2022 12:34:05

11.2 Frequency stability

Description:

In order to measure the carrier frequency under normal conditions it is necessary to make measurements with the mobile station connected to a R&S CMU200 Wideband Radio Communication Tester.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the mobile station to overnight soak at -30 C.
- 3. With the mobile station powered with V_{nom} connected to the CMU200 on the center channel. Measure the carrier frequency. These measurements should be made within two minutes of powering up the mobile station to prevent significant self warming.
- 4. Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 15 minutes at each temperature unpowered before making measurements.
- 5. Remeasure carrier frequency at room temperature with V_{nom} . Vary supply voltage to V_{min} and measure the carrier frequency then setup V_{max} and repeat the measurement.
- 6. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

Measurement:

Measurement parameters							
Detector:							
Sweep time:							
Video bandwidth:	Measured with CMU200						
Resolution bandwidth:							
Span:							
Trace mode:							
Test setup:	See chapter 7.4 – A						
Measurement uncertainty:	See chapter 8						

Limits:

FCC	ISED
	icient to ensure that the fundamental authorized frequency block.

Results:

AFC FREQ ERROR versus VOLTAGE

Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)
3.2	21	0.01
3.6	21	0.01
4.0	21	0.01

AFC FREQ ERROR versus TEMPERATURE

Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)
-30	64	0.03
-20	57	0.03
-10	46	0.02
± 0	37	0.02
10	36	0.02
20	21	0.01
30	19	0.01
40	15	0.01
50	19	0.01

11.3 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2014 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. Measurement made up to 25 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the PCS1900 band.

Measurement:

Measuremer	Measurement parameters						
Detector:	Peak						
Sweep time:	2 sec.						
Resolution bandwidth:	1 MHz						
Video bandwidth:	3 MHz						
Span:	100 MHz Steps						
Trace mode:	Max Hold						
Used equipment:	See chapter 7.1 – A & 7.2 – B						
Measurement uncertainty:	See chapter 8						

<u>Limits:</u>

FCC	ISED						
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)							
-13 dBm							

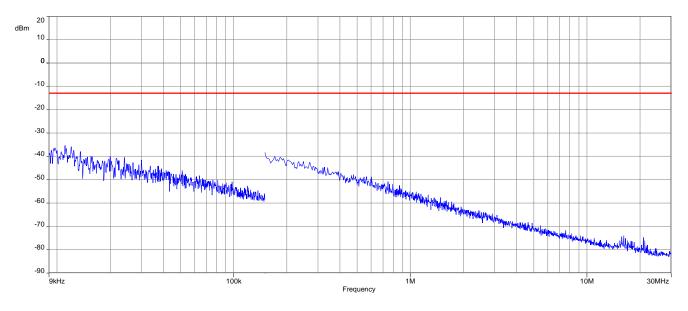
Results GPRS & EGPRS:

Radiated emissions measurements were made only at the center carrier frequencies of the PCS1900 band (1880.0 MHz) to show the compliance with cabinet radiation limits.

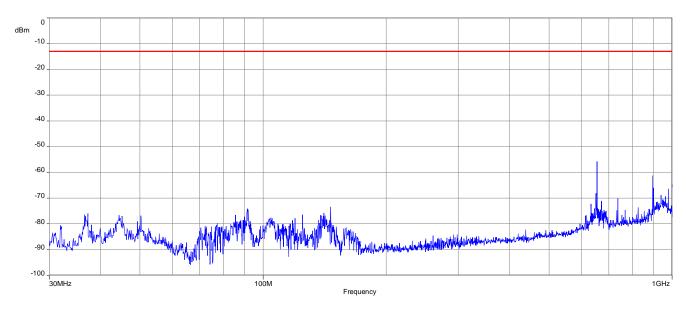
Results: GMSK

	Spurious emission level (dBm)											
Harmonic	Ch. 512 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 661 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 810 Freq. (MHz)	Level [dBm]				
2	3700.4	-	2	3760.0	-38.4	2	3819.6	-				
3	5550.6	-	3	5640.0	-38.8	3	5729.4	-				
4	7400.8	-	4	7520.0	-	4	7639.2	-				
5	9251.0	-	5	9400.0	-	5	9549.0	-				
6	11101.2	-	6	11280.0	-	6	11458.8	-				
7	12951.4	-	7	13160.0	-	7	13368.6	-				
8	14801.6	-	8	15040.0	-	8	15278.4	-				
9	16651.8	-	9	16920.0	-	9	17188.2	-				
10	18502.0	-	10	18800.0	-	10	19098.0	-				

Results: 8 PSK

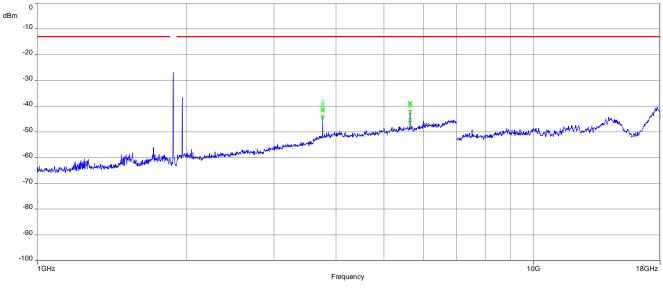

	Spurious emission level (dBm)											
Harmonic	Ch. 512 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 661 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 810 Freq. (MHz)	Level [dBm]				
2	3700.4	-	2	3760.0	-40.3	2	3819.6	-				
3	5550.6	-	3	5640.0	-	3	5729.4	-				
4	7400.8	-	4	7520.0	-	4	7639.2	-				
5	9251.0	-	5	9400.0	-	5	9549.0	-				
6	11101.2	-	6	11280.0	-	6	11458.8	-				
7	12951.4	-	7	13160.0	-	7	13368.6	-				
8	14801.6	-	8	15040.0	-	8	15278.4	-				
9	16651.8	-	9	16920.0	-	9	17188.2	-				
10	18502.0	-	10	18800.0	-	10	19098.0	-				

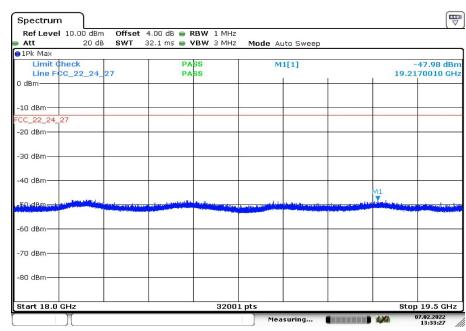
Test report no.: 1-2685/21-03-07-A



Plots: GMSK

Plot 1: Channel 661 (Traffic mode up to 30 MHz)

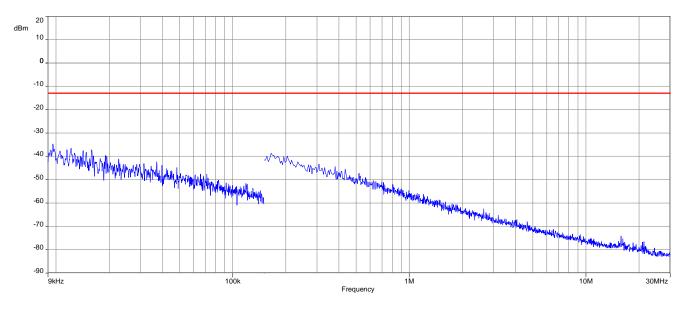

Plot 2: Channel 661 (30 MHz - 1 GHz)



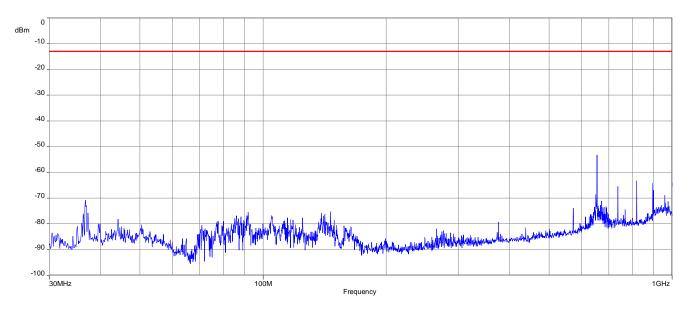
Plot 3: Channel 661 (1 GHz – 18 GHz)

Carrier notched with 1.9 GHz rejection filter

Plot 3: Channel 661 (18 GHz - 19.5 GHz)

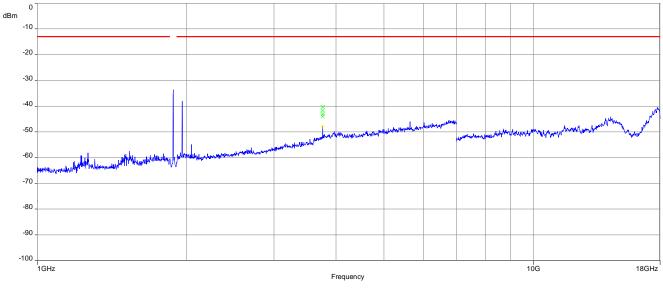

Date: 7.FEB.2022 13:33:27

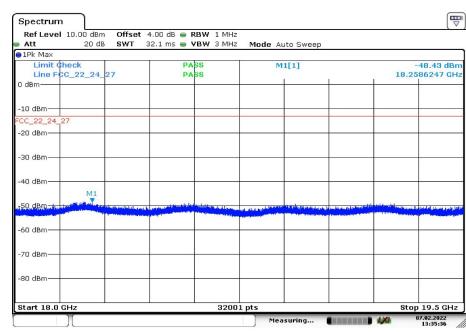
Test report no.: 1-2685/21-03-07-A



Plots: 8 PSK

Plot 1: Channel 661 (Traffic mode up to 30 MHz)


Plot 2: Channel 661 (30 MHz - 1 GHz)



Plot 3: Channel 661 (1 GHz – 18 GHz)

Carrier notched with 1.9 GHz rejection filter

Plot 4: Channel 661 (18 GHz - 19.5 GHz)

Date: 7.FEB.2022 13:35:36

11.4 Spurious emissions conducted

Description:

The following steps outline the procedure used to measure the conducted emissions from the mobile station. 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 26 GHz.

2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

PCS1900 Transmitter Channel Frequency 512 1850.2 MHz 661 1880.0 MHz 810 1909.8 MHz

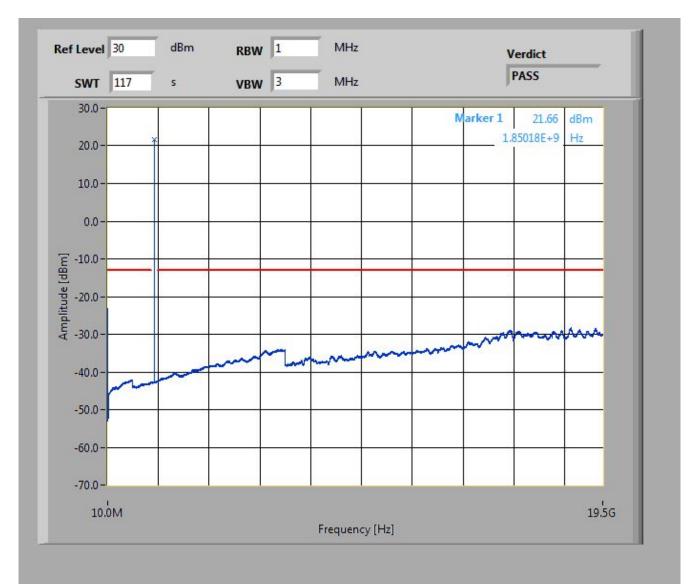
Measurement:

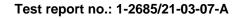
Measuremen	Measurement parameters						
Detector:	Peak						
Sweep time:	Auto						
Resolution bandwidth:	1 MHz						
Video bandwidth:	3 MHz						
Span:	10 MHz – 26 GHz						
Trace mode:	Max Hold						
Used equipment:	See chapter 7.4 - A						
Measurement uncertainty:	See chapter 8						

<u>Limits:</u>

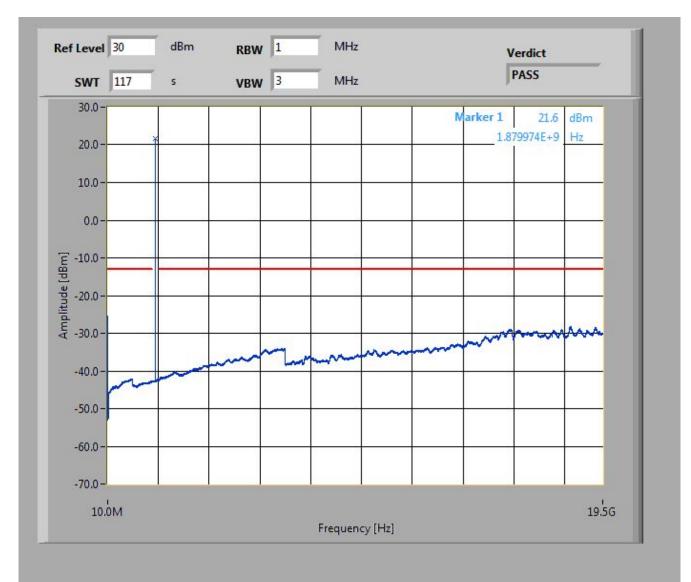
FCC	ISED						
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)							
-13 dBm							

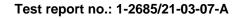
Results:

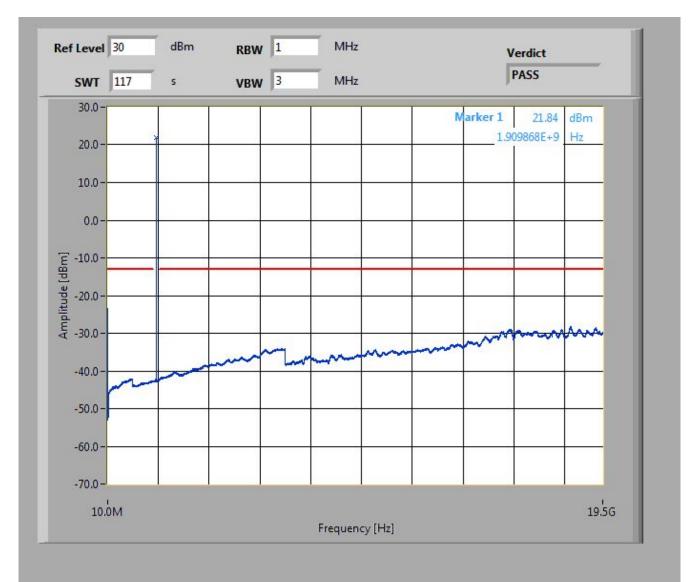

	Spurious emission level (dBm)											
Harmonic	Ch. 512 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 661 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 810 Freq. (MHz)	Level [dBm]				
2	3700.4	-	2	3760.0	-	2	3819.6	-				
3	5550.6	-	3	5640.0	-	3	5729.4	-				
4	7400.8	-	4	7520.0	-	4	7639.2	-				
5	9251.0	-	5	9400.0	-	5	9549.0	-				
6	11101.2	-	6	11280.0	-	6	11458.8	-				
7	12951.4	-	7	13160.0	-	7	13368.6	-				
8	14801.6	-	8	15040.0	-	8	15278.4	-				
9	16651.8	-	9	16920.0	-	9	17188.2	-				
10	18502.0	-	10	18800.0	-	10	19098.0	-				


Test report no.: 1-2685/21-03-07-A

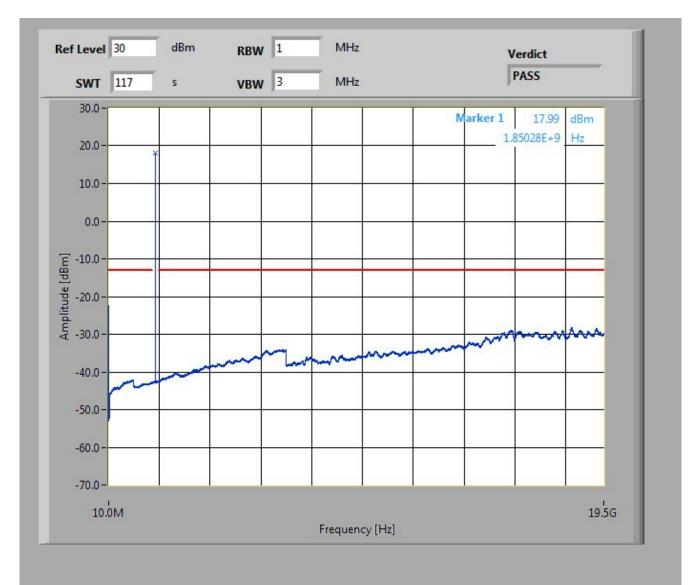
Plots: GMSK

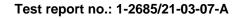

Plot 1: Channel 512 (10 MHz - 19.5 GHz)



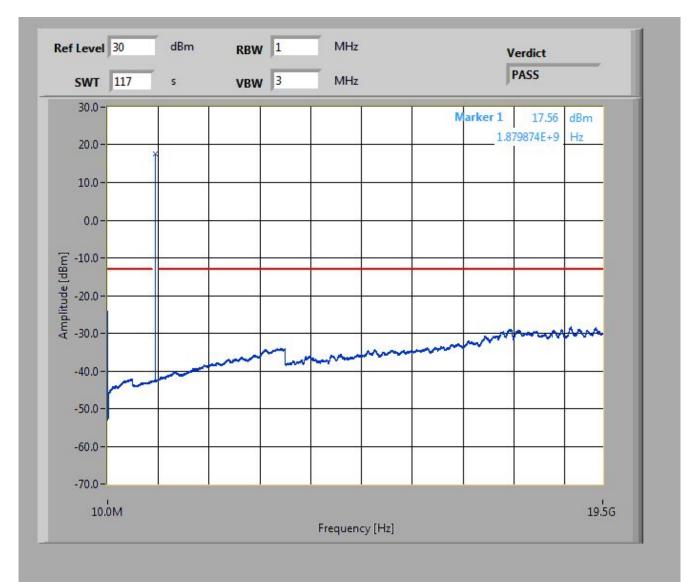

Plot 2: Channel 661 (10 MHz - 19.5 GHz)

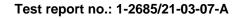
Plot 3: Channel 810 (10 MHz - 19.5 GHz)

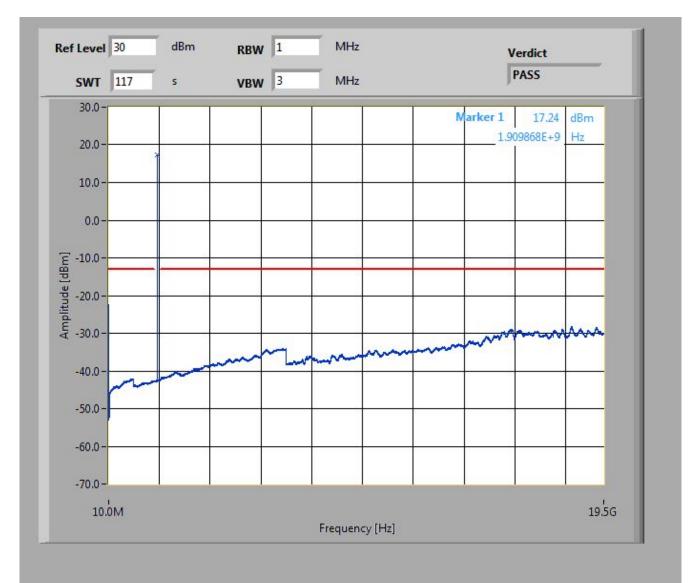



Test report no.: 1-2685/21-03-07-A

Plots: 8 PSK


Plot 1: Channel 512 (10 MHz - 19.5 GHz)




Plot 2: Channel 661 (10 MHz - 19.5 GHz)

Plot 3: Channel 810 (10 MHz - 19.5 GHz)

Description:

The spectrum at the band edges must comply with the spurious emissions limits.

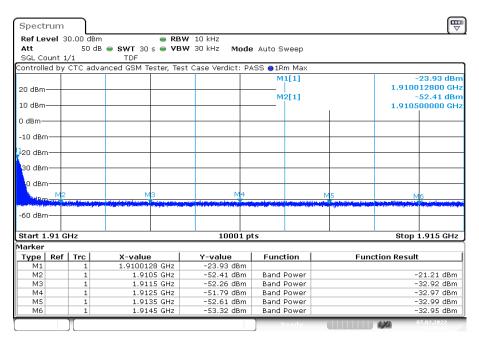
Measurement:

Measuremen	Measurement parameters						
Detector:	RMS						
Sweep time:	30 sec.						
Video bandwidth:	1% - 5% of the OBW						
Resolution bandwidth:	≥ 3xRBW						
Span:	5 MHz						
Trace mode:	Max Hold						
Used equipment:	See chapter 7.4 - A						
Measurement uncertainty:	See chapter 8						

<u>Limits:</u>

FCC	ISED						
	43 + 10log(P) in Watts)						
-13 dBm							

CTC I advanced


Test report no.: 1-2685/21-03-07-A

Plot 1: Channel 512

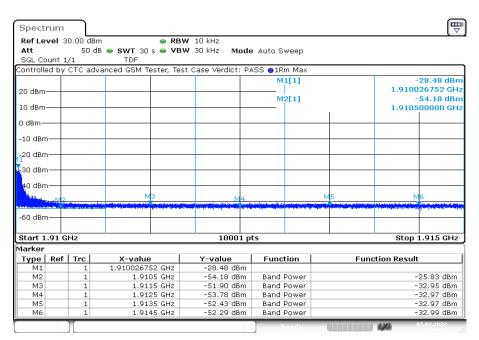
Spect	rum						7
		0.00 dB		W 10 kHz			
Att			iB 👄 SWT 30 s 👄 VB	W 30 kHz Mode	Auto Sweep		
SGL Co			TDF				
ontrolle	ed by	CTC ad	vanced GSM Tester, Te	st Case Verdict: PA	÷		
					M1[1]		-22.51 dBr
0 dBm							1.849994752 GH
					M2[1]		-51.51 dBr
0 dBm						1	1.849500000 GH
dBm—							
10 dBrr	η						
20 dBm							
to ubn	'						
30 dBrr	∩+-						
40 dBm							
чо ивп			ME				
50.dBn	<u>M6</u>	Linear descents	IV 5	M4	ware to a shirt shall be as that if it the bill	MЗ	17 Z
	no se	- Contraction of the	the spinor balance being being a set of the	the second s	alahar bara bara bara bara bara bara bara		a se a la se a
50 dBrr	–						
tart 1	.845	GHz		10001 pt	ts		Stop 1.85 GHz
arker							
Type	Ref	Trc	X-value	Y-value	Function	Fund	tion Result
M1		1	1.849994752 GHz	-22.51 dBm			
M2		1	1.8495 GHz	-51.51 dBm	Band Power		-20.82 dBm
MЗ		1	1.8485 GHz	-52.37 dBm	Band Power		-32.99 dBm
M4		1	1.8475 GHz	-52.96 dBm	Band Power		-33.06 dBm
M5		1	1.8465 GHz	-52.10 dBm Band Power			-33.09 dBm
M6		1	1.8455 GHz	-53.67 dBm	Band Power		-33.09 dBm

Date: 7.FEB.2022 09:18:01

Plot 2: Channel 810

Date: 7.FEB.2022 09:40:24

CTC I advanced


Plots: 8 PSK

Plot 1: Channel 512

Spectru												7
Ref Leve	1 30.0				V 10 kHz							
Att		50 dE		s 👄 VB	N 30 kHz N	lode	Auto S	weep				
SGL Cour			TDF									
ontrolled	Бу СТ	C adv	anced GSM Te	ester, Tes	t Case Verdic	t: PA	-					
							M	1[1]				-29.05 dBi
20 dBm—	+		_					0[1]			1.84	9985792 GH -52.30 dBi
LO dBm—							IN .	2[1]			1.04	-52.30 UBI 9500000 GH
to abili									1		1.04	
) dBm—	-					+						-
10 dBm—	_					+						_
20 dBm—	_											
30 dBm—												
40 dBm—												
50 dBm-	M6		M	5		<u>v</u> 4			MЗ			M2
A Second Second				enter an approximation		T		and the second second second			a sector sector sector	nite internet to blick
60 dBm—			_			+						
Start 1.8	45.00	-			100	01 pt	~				04	op 1.85 GHz
larker	40 GH	2			100	JT PC					31	op 1.85 GH2
	ef T	rc	X-value	. 1	Y-value	- 1	Func	tion		Eun	ction Res	ult
M1		1	1.84998579		-29.05 d	Bm	Tune			- Tun	COULT VES	
M2		1		95 GHz	-52.30 dBm		Band Power		-25.56 dBm			
MЗ		1		35 GHz	-52.86 dBm		Band Power		-33.05 dBm			
M4		1	1.84	75 GHz	-52.66 d		Band		-33.04 dBm			
M5		1		55 GHz	-52.04 dBm		Band					-33.09 dBm
M6		1	1.84	55 GHz	-52.34 d	Bm	Band	Power				-33.10 dBm

Date: 7.FEB.2022 11:45:46

Plot 2: Channel 810

Date: 7.FEB.2022 12:34:37

11.6 Occupied bandwidth

Description:

Measurement of the occupied bandwidth of the transmitted signal.

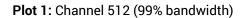
Measurement:

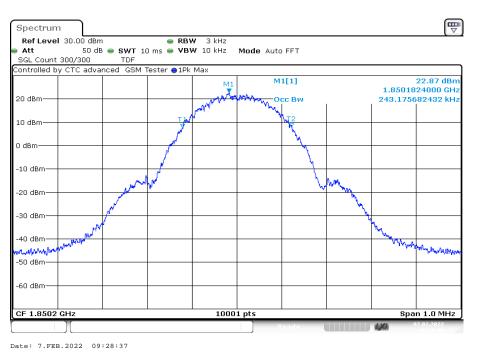
Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the PCS1900 frequency band. The table below lists the measured 99% power and -26dBc occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Measurement parameters	
Detector:	Peak
Sweep time:	Auto
Resolution bandwidth:	1% - 5% of the OBW
Video bandwidth:	≥ 3xRBW
Span:	2 x nominal BW
Trace mode:	Max Hold
Used equipment:	See chapter 7.4 - A
Measurement uncertainty:	See chapter 8

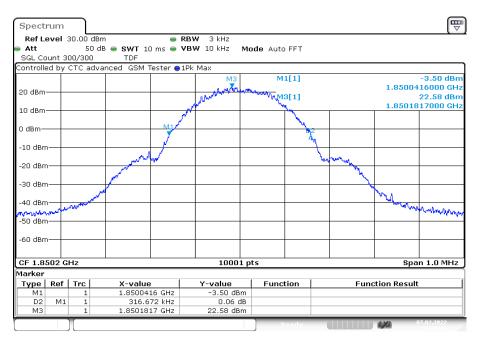
<u>Limits:</u>

FCC	ISED
Spectrum must fall completely in the specified band	

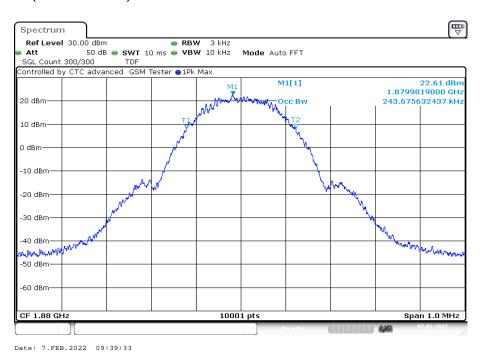

<u>Results:</u>

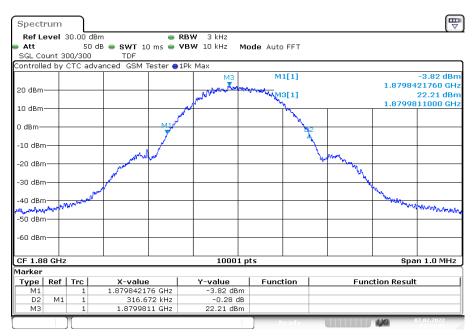

Occupied Bandwidth - GMSK mode			
Frequency (MHz)	99% OBW (kHz)	-26 dBc BW (kHz)	
1850.2	243	317	
1880.0	244	317	
1909.8	244	318	

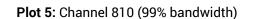
Occupied Bandwidth – 8-PSK mode		
Frequency (MHz)	99% OBW (kHz)	-26 dBc BW (kHz)
1850.2	241	314
1880.0	242	310
1909.8	237	308

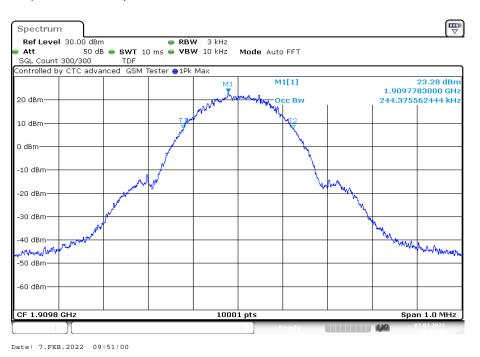


Plots: GMSK

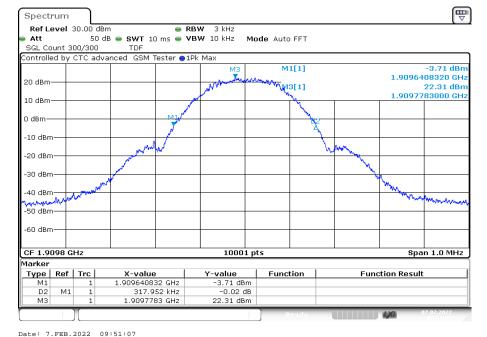

Plot 2: Channel 512 (-26 dBc bandwidth)


Date: 7.FEB.2022 09:28:45

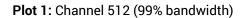

Plot 3: Channel 661 (99% bandwidth)

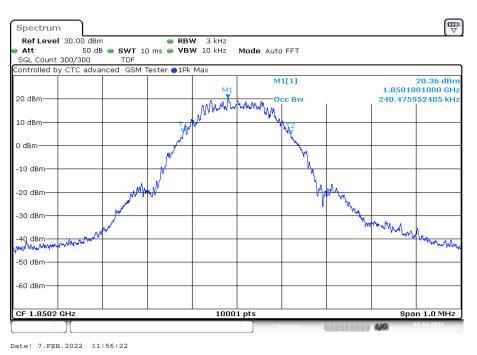


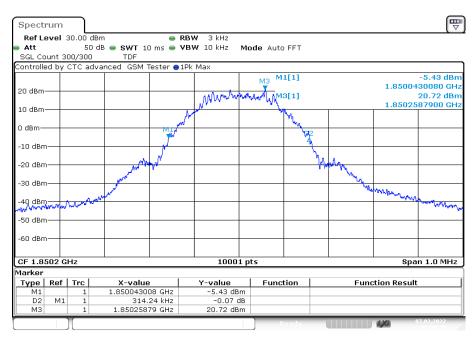
Plot 4: Channel 661 (-26 dBc bandwidth)



Date: 7.FEB.2022 09:39:40

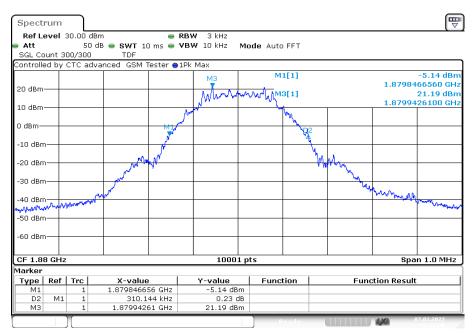

Plot 6: Channel 810 (-26 dBc bandwidth)

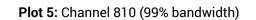


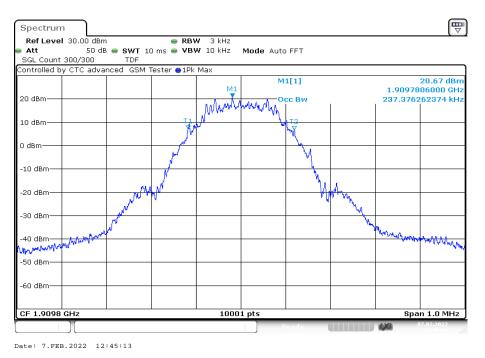


Plots: 8 PSK

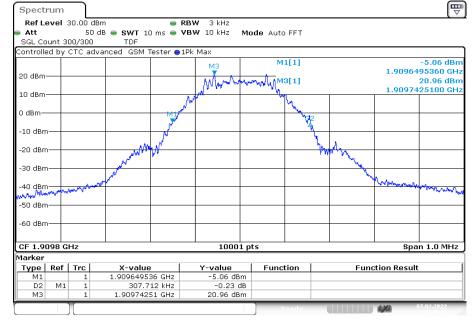
Plot 2: Channel 512 (-26 dBc bandwidth)


Date: 7.FEB.2022 11:56:30


Plot 3: Channel 661 (99% bandwidth)



Plot 4: Channel 661 (-26 dBc bandwidth)



Date: 7.FEB.2022 12:21:40

Plot 6: Channel 810 (-26 dBc bandwidth)

Date: 7.FEB.2022 12:45:21

12 Observations

No observations except those reported with the single test cases have been made.

C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz
GNSS	Global Navigation Satellite System
FHSS	Frequency hopping spread spectrum
OFDM	Orthogonal frequency division multiplexing
DSSS	Dynamic sequence spread spectrum
RLAN	Radio local area network
WLAN	Wireless local area network
MC	Modulated carrier
CW	Clean wave
PER	Packet error rate
DC	Duty cycle
NOP	Non occupancy period
OP	Occupancy period
CAC	Channel availability check
DFS	Dynamic frequency selection
OOB	Out of band
OBW	Occupied bandwidth
OCW	Operating channel bandwidth
00	Operating channel
AVG	Average
QP	Quasi peak
PP	Positive peak
NP	Not performed
NA	Not applicable
NC	Not compliant
C	Compliant
S/N or SN	Serial number
Inv. No.	Inventory number
SW	Software
HW	Hardware
EMC	Electromagnetic Compatibility
FVIN	Firmware version identification number
HVIN	Hardware version identification number
HMN	Host marketing name
PMN	Product marketing name
IC	Industry Canada
FCC ID	Company Identifier at FCC
FCC	Federal Communications Commission
EN	European Standard
ETSI	European Telecommunications Standards Institute
GUE	GNSS User Equipment
UUT	Unit under test
DUT	Device under test
EUT	Equipment under test

14 Document history

Version	Applied changes	Date of release
-/-	Initial release	2022-02-25
A	CCDF remeasured for GSM850 CS & GSM1900 CS	2022-04-06

15 Accreditation Certificate – D-PL-12076-01-04

first page	last page
<text><image/><image/><section-header><image/><image/><image/><section-header></section-header></section-header></text>	<text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text>
Second exercised	

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-04_Canada_TCEMC.pdf

16 Accreditation Certificate – D-PL-12076-01-05

first page	last page
<image/> <image/> <image/> <image/> <image/> <section-header><section-header><section-header><text><text><text><text><text><text></text></text></text></text></text></text></section-header></section-header></section-header>	Office Berlin Spittelmarkt 10 10117 Berlin Office Frankfurt am Main Europa Allee 52 60327 Frankfurt am Main Office Braunschweig Bundesallee 100 38116 Braunschweig The publication of extracts of the accreditation certificate is subject to the prior written approval by Devische Aktereditierungsstelle GmbH (DAMAS). Exempted is the unchanged form of separate diseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attesed by DMAS.
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01.01 Frankfurt am Main, 09.06.2020 The certificate pages of the status of the time of the dete of issue. The current status of the score of accreditation could be found in the status of a dete det of issue. The current status of the score of accreditation could be found in the status of a dete det of issue. The current status of the score of accreditation could be found in the status of a dete dete of issue. The current status of the score of accreditation could be found in the status of a detes dete dete dete deted issue. The current status of the score of accreditation could be found in the status of a detes detes of accreditation upgested detes.	The accreditation was granted pursuant to the Act on the Accreditation Body (AkdStelleG) of 31 July 2009 (Federal Law Gazette 1 p. 2625) and the Regulation (EC) No 755/2008 of the European Parlament and of the Council of July 2008 series of the European Union L 218 of 9 July 2009, p. 30). DAKKs is a signatory to the Multilaterial persents for Accreditation and marker soverlinkor (FA). International Accreditation Form (AF) and International Liberatory Accreditation for Accreditation (EA). International Accreditation Forum (AF) and International Liberatory Accreditation Cooperation (EA). International Accreditation Forum (AF) and International Liberatory Accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.ilac.org IAF: www.ilac.org IAF: www.ilat.org

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05_TCB_USA.pdf