

TEST REPORT

Product Name : Emax Pro BT Comms

Brand Name : Caldwell

Model : 1136235

Series Model : N/A

FCC ID : 2AF3W-1136235

Applicant : AOB Products Company

1800 North Route Z Suite A, Columbia, Missouri, United States, Address

65202

Manufacturer : Wenzhou Only Electronics Co.,Ltd.

No.139 Jiangnan Avenue, Nanbin

 Street, Ruian, Wenzhou, Zhejiang (Room 401,402,501,502, Building) Address

23, Gexiang High-Tech Industrial Park)

Standard(s) : FCC CFR Title 47 Part 95B

Date of Receipt: Aug. 08, 2024

Date of Test : Aug. 09, 2024~ Aug. 27, 2024

Issued Date : Sep. 03, 2024

Issued By: **Guangdong Asia Hongke Test Technology Limited**

B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

> Tel.: +86 0755-230967639 Fax.: +86 0755-230967639

Note: This device has been tested and found to comply with the standard(s) listed, this test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory. This report shall not be reproduced except in full, without the written approval of Guangdong Asia Hongke Test Technology Limited. If there is a need to alter or revise this document, the right belongs to Guangdong Asia Hongke Test Technology Limited, and it should give a prior written notice of the revision document. This test report must not be used by the client to claim product endorsement.

Report Revise Record

Report Version	Issued Date	Notes	
M1	Sep. 03, 2024	Initial Release	

Contents

1	TEST	SUMMARY	4
	1.1 1.2 1.3	TEST STANDARDS TEST SUMMARY TEST FACILITY	4
	1.4	MEASUREMENT UNCERTAINTY	5
2	GEN	GENERAL INFORMATION	6
	2.1	ENVIRONMENTAL CONDITIONS	
	2.3	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	6
	2.5	EQUIPMENT LIST FOR THE TEST	
3	TEST	CONDITIONS AND RESULTS	
	3.1	Maximum Transmitter Power	8
	3.2	Transmitter Radiated Spurious Emission	11
4	TEST	SETUP PHOTOGRAPHS OF EUT	14
5	EXTE	RNAL PHOTOGRAPHS OF EUT	15
6	INTE	RNAL PHOTOGRAPHS OF EUT	15

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

FCC Rules Part 95: PERSONAL RADIO SERVICES.

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

<u>ANSI C63.26:2015:</u> American National Standard of procedures for compliance testing of transmitters used in licensed radio services.

1.2 Test Summary

Description of Test Item	Standard clause	Verdict
Maximum Transmitter Power	FCC Part 95.567	PASS
Radiated Spurious Emission	FCC Part 95.579	PASS

Note: This report was updated based on the original report No. AIT22110413W2 (FCC ID: 2AF3W-1136235), for FRS antenna changed, only difference test items Maximum Transmitter Power and Radiated Spurious Emission was tested and recorded in this report.

Page 5 of 15 Report No.: AiTSZ-240808012FW1

1.3 Test Facility

Test Laboratory:

Guangdong Asia Hongke Test Technology Limited

B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

The test facility is recognized, certified or accredited by the following organizations:

FCC-Registration No.: 251906 Designation Number: CN1376

Guangdong Asia Hongke Test Technology Limited has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC —Registration No.: 31737 CAB identifier: CN0165

The 3m Semi-anechoic chamber of Guangdong Asia Hongke Test Technology Limited has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 31737

A2LA-Lab Cert. No.: 7133.01

Guangdong Asia Hongke Test Technology Limited has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

1.4 Measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods - Part 4: Uncertainty in EMC Measurements" and is documented in the Guangdong Asia Hongke Test Technology Limited's quality system according to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Asia Hongke laboratory is reported:

Test	Measurement Uncertainty	Notes
Power Line Conducted Emission	150KHz~30MHz \pm 1.20 dB	(1)
Radiated Emission	9KHz \sim 30Hz \pm 3.10dB	(1)
Radiated Emission	9KHz~1GHz ±3.75dB	(1)
Radiated Emission	1GHz~18GHz ±3.88 dB	(1)
Radiated Emission	18GHz-40GHz ±3.88dB	(1)
RF power, conducted	30MHz~6GHz \pm 0.16dB	(1)
RF power density, conducted	\pm 0.24dB	(1)
Spurious emissions, conducted	\pm 0.21dB	(1)
Temperature	±1°C	(1)
Humidity	±3%	(1)
DC and low frequency voltages	±1.5%	(1)
Time	±2%	(1)
Duty cycle	±2%	(1)

The report uncertainty of measurement y ± U, where expended uncertainty U is based on a standard uncertainty Multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%

2 GENGENERAL INFORMATION

2.1 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

raining and interest and environmental definitions were warm and neter rainges.						
Normal Temperature:	25°C					
Relative Humidity:	55 %					
Air Pressure:	101 kPa					

2.2 General Description of EUT

Name of EUT	Emax Pro BT Comms
Model Number	1136235
Power Supply	DC 3.70V from battery
Frequency Range	FRS: 462.5625MHz~462.7125MHz(1~7 channel) FRS: 462.5500MHz~462.7250MHz(8~14 channel) FRS: 467.5625MHz~467.7125MHz(15~22 channel)
Rate Power	0.002511886W
Modulation Type	FM
Channel Separation	12.5KHz
Antenna Type	FPC antenna
Antennal Gain	-1.11dBi

2.3 Description of Test Modes and Test Frequency

The EUT has been tested under typical operating condition. As, test modes selected as below by the technical parameters of the EUT:

Operation	Modulation	Channel Separation	Condition		
Mode No.	FM	12.5KHz	TX	RX	
1			\boxtimes		
2	\boxtimes	\boxtimes		\boxtimes	

Frequency list

Channel	Frequency(MHz)	Туре	Channel	Frequency(MHz)	Туре
1	462.5625	FRS	12	467.6625	FRS
2	462.5875	FRS	13	467.6875	FRS
3	462.6125	FRS	14	467.7125	FRS
4	462.6375	FRS	15	462.5500	FRS
5	462.6625	FRS	16	462.5750	FRS
6	462.6875	FRS	17	462.6000	FRS
7	462.7125	FRS	18	462.6250	FRS
8	467.5625	FRS	19	462.6500	FRS
9	467.5875	FRS	20	462.6750	FRS
10	467.6125	FRS	21	462.7000	FRS
11	467.6375	FRS	22	462.7250	FRS

Note1: In section 15.31(m), regards to the operating frequency range less than 1MHz, only one point centered in the frequency range of operation selected to measure.

Note2: The line display in grey was the channel selected for test.

2.4 Special Accessories

Follow auxiliary equipment(s) test with EUT that provided by the manufacturer or laboratory is listed as follow:

Description	Manufacturer	Model	Serial No.	Provided by	Other
1	1	1	/	1	1
1	/	1	/	/	1

2.5 Equipment List for the Test

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date
1	Spectrum Analyzer	R&S	FSV40	101470	2023.09.08	2024.09.07
2	Spectrum Analyzer	Keysight	N9020A	MY51280643	2023.09.08	2024.09.07
3	EMI Measuring Receiver	R&S	ESR	101660	2023.09.08	2024.09.07
4	Low Noise Pre-Amplifier	HP	HP8447E	1937A01855	2023.09.08	2024.09.07
5	Low Noise Pre-Amplifier	Tsj	MLA-0120- A02-34	2648A04738	2023.09.08	2024.09.07
6	Passive Loop	ETS	6512	00165355	2022.09.04	2024.09.03
7	TRILOG Super Broadband test Antenna	SCHWARZBECK	VULB9160	9160-3206	2021.08.29	2024.08.28
8	Broadband Horn Antenna	SCHWARZBECK	BBHA9120D	452	2021.08.29	2024.08.28
9	SHF-EHF Horn Antenna 15-40GHz	SCHWARZBECK	BBHA9170	BBHA9170367d	2021.08.29	2024.08.28
10	EMI Measuring Receiver	R&S	ESR	101160	2023.09.13	2024.09.12
11	LISN	SCHWARZBECK	NNLK 8129	8130179	2023.10.29	2024.10.28
12	Pulse Limiter	R&S	ESH3-Z2	102789	2023.09.13	2024.09.12
13	Pro.Temp&Humi.chamber	MENTEK	MHP-150-1C	MAA08112501	2023.09.08	2024.09.07
14	RF Automatic Test system	MW	MW100-RFCB	21033016	2023.09.08	2024.09.07
15	Signal Generator	Agilent	N5182A	MY50143009	2023.09.08	2024.09.07
16	Wideband Radio communication tester	R&S	CMW500	1201.0002K50	2023.09.08	2024.09.07
17	RF Automatic Test system	MW	MW100-RFCB	21033016	2023.09.08	2024.09.07
18	DC power supply	ZHAOXIN	RXN-305D-2	28070002559	N/A	N/A
19	RE Software	EZ	EZ-EMC_RE	Ver.AIT-03A	N/A	N/A
20	CE Software	EZ	EZ-EMC_CE	Ver.AIT-03A	N/A	N/A
21	RF Software	MW	MTS 8310	2.0.0.0	N/A	N/A
22	temporary antenna connector(Note)	NTS	R001	N/A	N/A	N/A
23	Radio Communication Tester	HP	8920A	116250	2023.09.08	2024.09.07

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

3 TEST CONDITIONS AND RESULTS

3.1 Maximum Transmitter Power

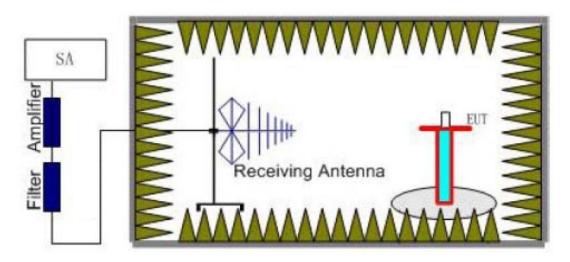
LIMITS

According to FCC Part 95.567:

Each FRS transmitter type must be designed such that the effective radiated power (ERP) on channels 8 through 14 does not exceed 0.5 Watts and the ERP on channels 1 through 7 and 15 through 22 does not exceed 2.0 Watts.

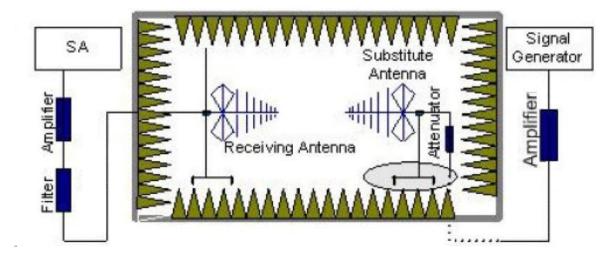
According to FCC Part 95.1767:

- (a) 462/467 MHz main channels. The limits in this paragraph apply to stations transmitting on any of the 462 MHz main channels or any of the 467 MHz main channels. Each GMRS transmitter type must be capable of operating within the allowable power range. GMRS licensees are responsible for ensuring that their GMRS stations operate in compliance with these limits.
- (1) The transmitter output power of mobile, repeater and base stations must not exceed 50 Watts.
- (2) The transmitter output power of fixed stations must not exceed 15 Watts.
- (b) 462 MHz interstitial channels. The effective radiated power (ERP) of mobile, hand-held portable and base stations transmitting on the 462 MHz interstitial channels must not exceed 5 Watts.
- (c) 467 MHz interstitial channels. The effective radiated power (ERP) of hand-held portable units transmitting on the 467 MHz interstitial channels must not exceed 0.5 Watt. Each GMRS transmitter type capable of transmitting on these channels must be designed such that the ERP does not exceed 0.5 Watt.


According to RSS-210 E.2.4:

For FRS transmitter the maximum permissible transmitter output power under any operating conditions is 0.5 W effective radiated power (e.r.p.). The radio shall be equipped with an integral antenna.

According to RSS-210 E.3.5:


A GMRS transmitter may transmit with a maximum power of 2 W e.r.p.

TEST CONFIGURATION

Measurement Procedure

- 1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all test transmit frequencies were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. An amplifier may be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) ,the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test.
 - The measurement results are obtained as described below: Power(EIRP)= $P_{Mea}+P_{Ag}-P_{cl}+G_a$
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST RESULTS

Remark;

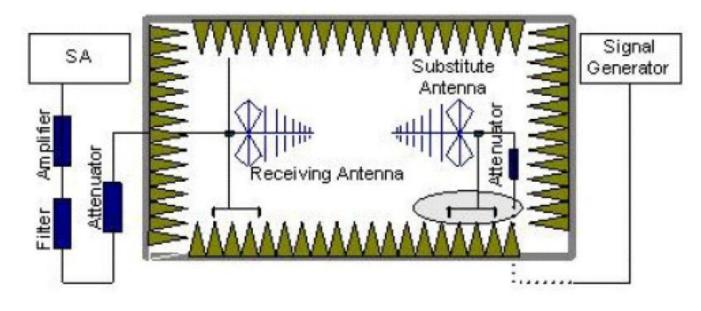
The field strength of radiation emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The data show in this report only with the worst case setup. After exploratory measurement the worst case of Z axis and receiver antenna at vertical polarization was reported.

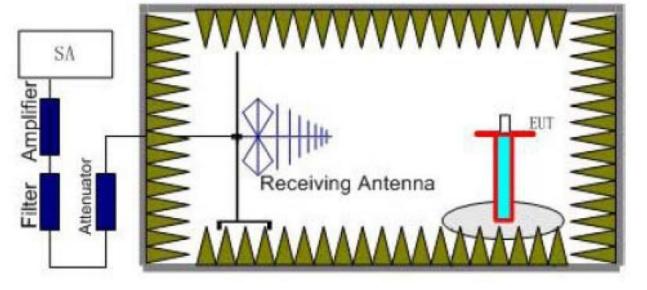
Channel	Test Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dBi)	Correcti on (dB)	P _{Ag} (dB)	ERP (dBm)	ERP (W)	Limit (W)	Polarizati on
4	462.6375	-30.61	2.41	6.9	2.15	31.89	3.58	0.0023	2.0	V
11	467.6375	-30.62	2.42	6.9	2.15	31.91	3.47	0.0022	0.5	V
19	462.6500	-30.97	2.41	6.9	2.15	31.89	3.29	0.0021	2.0	V

Remark:

- 1. $EIRP=P_{Mea}(dBm) + P_{Ag}(dB) P_{cl}(dB) + G_a(dBi)$
- 2. ERP = EIRP 2.15dBi as EIRP by subtracting the gain of the dipole.

15


3.2 Transmitter Radiated Spurious Emission


Limit

The unwanted emission should be attenuated below TP by at least 43+10log(Transmit Power) dB and unwanted emissions falling within the restricted bands of RSS-Gen shall be attenuated to the limits provided in this section or to the general field strength limits shown in RSS-Gen, whichever are less stringent.

Page 11 of

TEST CONFIGURATION

TEST PROCEDURE

- a. EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all test transmit frequencies were measured with peak detector.
- b. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- c. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum 100 kHz below 1GHz and 1MHz above 1GHz, Sweep from 30MHz to the 10th harmonic of the fundamental frequency; and recorded the level of the concerned spurious emission point as (P_r).
- d. The EUT then replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

The measurement results are obtained as described below:

Power
$$(EIRP)$$
= P_{Mea} - P_{cl} + G_a

Where;

P_{Mea} is the recorded signal generator level

P_{cl} is the cable loss connect between instruments

G_a Substitution Antenna Gain

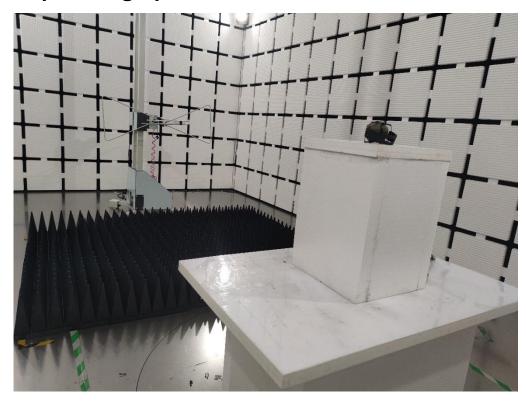
- e. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- f. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.
- g. Test site anechoic chamber refer to ANSI C63.

TEST RESULTS

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency; and worst spurious emissions recorded as below:

Page 13 of

15


requericy, and worst spurious emissions recorded as below.								
Test Frequency (MHz)	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dBi)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Pol.
	925.30	-39.35	2.41	4.95	-36.81	-13.00	-23.81	٧
	1387.25	-43.33	2.69	7.44	-38.58	-13.00	-25.58	٧
462.6375	1850.55	-44.48	3.22	9.94	-37.76	-13.00	-24.76	V
	2313.75	-45.96	3.81	10.19	-39.58	-13.00	-26.58	V
	936.00	-41.59	2.41	4.98	-39.02	-13.00	-26.02	V
	1403.55	-41.52	2.69	7.55	-36.66	-13.00	-23.66	V
467.6375	1871.75	-46.00	3.17	9.95	-39.22	-13.00	-26.22	٧
	2338.90	-45.73	3.83	10.24	-39.32	-13.00	-26.32	V
								-
	926.35	-40.24	2.41	4.95	-37.70	-13.00	-24.70	V
462.6500	1388.00	-40.29	2.69	7.45	-35.53	-13.00	-22.53	V
	1850.45	-45.69	3.22	9.94	-38.97	-13.00	-25.97	V
	2314.55	-42.66	3.82	10.19	-36.29	-13.00	-23.29	V

Remark:

- 1. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+G_a(dBi)$
- 2. -- Means other points for values lower than limits and not recorded.
- 3. Margin = Limit EIRP

4 Test Setup Photographs of EUT

Page 14 of 15

Page 15 of 15

5 External Photographs of EUT

Please refer to separated files for External Photos of the EUT.

6	Internal	Photogra	phs of	EUT
---	----------	-----------------	--------	------------

Please refer to separated files for Internal Photos of the EU	Please I	refer to	separated	files for	Internal	Photos	of the	EU ⁻
---	----------	----------	-----------	-----------	----------	--------	--------	-----------------