

RF TEST REPORT

Applicant Nokia ShangHai Bell Co., Ltd.

FCC ID 2ADZRG1425GB

Product Nokia ONT

Brand NOKIA

Model G-1425G-B

Report No. R2111A0997-R1V1

Issue Date June 6, 2022

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 15C (2021)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Peng Tao

Approved by: Kai Xu

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

1. Tes	st Laboratory	5
1.1.	Notes of the test report	5
1.2.	Test facility	5
1.3.	Testing Location	5
2. Ger	neral Description of Equipment under Test	6
2.1.	Applicant and Manufacturer Information	6
2.2.	General information	6
3. App	olied Standards	11
4. Tes	st Configuration	12
5. Tes	st Case Results	13
5.1.	Maximum output power	13
5.2.	99% Bandwidth and 6dB Bandwidth	15
5.3.	Band Edge	21
5.4.	Power Spectral Density	25
5.5.	Spurious RF Conducted Emissions	32
5.6.	Unwanted Emission	38
5.7.	Conducted Emission	71
6. Mai	n Test Instruments	74
ANNEX	A: The EUT Appearance	75
ΔΝΝΕΧ	R: Test Setup Photos	76

Version	Revision description Issue	
Rev.0	Initial issue of report.	April 27, 2022
Rev.1	Update information.	June 6, 2022

Note: This revised report (Report No. R2111A0997-R1V1) supersedes and replaces the previously issued report (Report No. R2111A0997-R1). Please discard or destroy the previously issued report and dispose of it accordingly.

Test Report Report No.: R2111A0997-R1V1

Summary of measurement results

Number	Test Case	ase Clause in FCC rules	
1	Maximum output power	15.247(b)(3)	PASS
2	6 dB bandwidth	15.247(a)(2)	PASS
3	Power spectral density	15.247(e)	PASS
4	Band Edge	15.247(d)	PASS
5	Spurious RF Conducted Emissions	15.247(d)	PASS
6	Unwanted Emissions	15.247(d),15.205,15.209	PASS
7	Conducted Emissions	15.207	PASS

Date of Testing: January 20, 2022 ~ April 15, 2022

Date of Sample Received: December 11, 2021

Note: All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

1. Test Laboratory

1.1. Notes of the test report

This report shall not be reproduced in full or partial, without the written approval of TA technology

Report No.: R2111A0997-R1V1

(shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under

the conditions and modes of operation as described herein . Measurement Uncertainties were not

taken into account and are published for informational purposes only. This report is written to support

regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications

Commission list of test facilities recognized to perform measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory

Accreditation to perform measurement.

1.3. Testing Location

Company:

TA Technology (Shanghai) Co., Ltd.

Address:

No.145, Jintang Rd, Tangzhen Industry Park, Pudong

City:

Shanghai

Post code:

201201

Country:

P. R. China

Contact:

Xu Kai

Telephone:

+86-021-50791141/2/3

Fax:

+86-021-50791141/2/3-8000

Website:

http://www.ta-shanghai.com

E-mail:

xukai@ta-shanghai.com

2. General Description of Equipment under Test

2.1. Applicant and Manufacturer Information

Applicant	Nokia ShangHai Bell Co., Ltd.
Applicant address	No. 388, Ningqiao Rd. Pilot Free Trade Zone, Shanghai, China
Manufacturer 1	TAICANG T&W ELECTRONICS CO., LTD
Manufacturer address 1	89# Jiang Nan RD, Lu Du TownTaicang, Jiangsu, China
Manufacturer 2	Shenzhen Twowing Technologies CO., LTD
Manufacturer address 2	Nangang industrial building, No.3 Industrial Zone, Tangtou village, Shiyan Town, Bao'an District,Shenzhen City,Guangdong Province,China

2.2. General information

EUT Description				
Model	G-1425G-B			
Lab internal SN	R2111A0997/S01			
Hardware Version	PEM1			
Software Version	3FE49568HJJI31			
Power Supply	AC Adapter			
Antenna Type	External Antenna			
Antenna Connector	A permanently attached 15.203 requirement)	ed antenna (meet with	the standard FCC Part	
	Antenna	Frequency(MHz)	Gain (dBi)	
		2400	4.6	
	MIMO (For Power)	2450	4.7	
Directional Gain	(1 of 1 ower)	2500	4.6	
		2400	5.3	
	MIMO (For PSD)	2450	5.4	
	(101102)	2500	5.4	
Operating Frequency	802.11b/g/n(HT20): 2412 ~ 2462 MHz			
Range(s)	802.11n(HT40): 2422 ~ 2452 MHz			
Modulation Type	802.11b: DSSS			
wodulation Type	802.11g/n(HT20/HT40): OFDM			
Max. Conducted	23.52dBm			

TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R

Page 6 of 76

This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

Kr lest kep	ort Report No.: RZ111A0997-R1V1				
Power					
	EUT Accessory				
Adaptor 1	Manufacturer: Dongguan Shilong Fuhua Electronics Co.,Ltd				
Adapter 1	Model: UES24WU-120200SPA				
Adaptor 2	Manufacturer: MOSO Power Supply Technology Co.,Ltd				
Adapter 2	Model: MSA-C1500CS12.0-18J-US				
	Manufacturer: SHENZHEN RUIDE ELECTRONICAL INDUSTRIAL				
Adapter 3	Co.,Ltd				
	Model: RD1201500-C55-153YG				
Adapter 4	Manufacturer: Dongguan Shilong Fuhua Electronics Co.,Ltd				
Adapter 4	Model: UES18LB-120150SPA				
Adapter F	Manufacturer: Dongguan Shilong Fuhua Electronics Co.,Ltd				
Adapter 5	Model: UES18LU-120150SPA				
	Manufacturer: SHENZHEN RUIDE ELECTRONICAL INDUSTRIAL				
Adapter 6	Co.,Ltd				
	Model: RD1201500-C55-153MG				
Adapter 7	Manufacturer: ShenZhen SOY Technology Co.,Ltd				
Adapter 7	Model: SOY-1200300-3014-II				
Adapter 0	Manufacturer: ShenZhen Mass Power Electronic Limited				
Adapter 8	Model: NBS40C120300M2				
	Manufacturer: Manufacturer: SHENZHEN RUIDE ELECTRONICAL				
Adapter 9	INDUSTRIAL Co.,Ltd Model: RD1201500-C55-198MG				
	Manufacturer: SHENZHEN RUIDE ELECTRONICAL INDUSTRIAL				
Adapter 10	Co.,Ltd				
	Model: RD1201500-C55-198OG				
Adapter 11	Manufacturer: SHENZHEN RUIDE ELECTRONICAL INDUSTRIAL Co.,Ltd				
Adapter	Model: RD1201500-C55-198YG				
Adapter 12	Manufacturer: ShenZhen SOY Technology Co.,Ltd				
Adaptor 12	Model: SOY-1200150AR				

Note: 1. The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant.

Configure		Configure 1	Configure 2
Item		G-1425G-B	G-1425G-B 2 nd
DDR	MPN	NT5CC256M16ER-EK	K4B4G1646E-BYMA
אטט	Vendor	Nanya	Samsung
Flash	MPN	MT29F2G01ABAGDWB-IT: G	TC58CVG1S3HRAIJ
	Vendor	Micron	Kioxia
РСВ	Vendor	JIANGMEN BENLIDA PRINTED CIRCUIT CO.,LTD	Mei Zhou Dingtai Circait Board Co,.Ltd
schematic		The	e same

The difference between the two configures is only the DDR, Flash and PCB. Configure 2 v erifies power only. The power of configure 2 are varied due to measurement uncertainty, a nd sample tolerance of the acceptance range and the report only records data for configur ation 1.

The detailed product change description please refers to the Difference Declaration Letter.

Information of Configuration:

ONT Mnemonic	Kit Code	EMA Code	Part Description
G-1425G-B	3FE49881XXXX (X can be A-Z or blank)	3FE49937XXXX (X can be A-Z or blank)	GPON ONT,1xPOTS,4xGE UNI, WIFI 5, 2x2 11n + 2x2 11ac

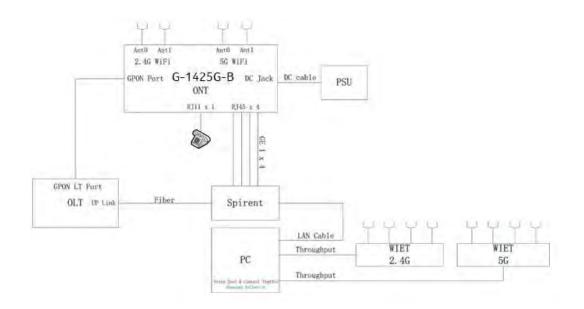
Report No.: R2111A0997-R1V1

No.	Name	Model/Code No.	Edition	Serial No. or Quantity
1.1	EMA-G-1425G-B	3FE49937XXXX (X can be A-Z or blank)	PEM2	-
2.1	Power adapter	MSA-C1500CS12.0-18J-US	/	PEM
2.2	Power adapter	UES24WU-120200SPA	/	PEM
2.3	Power adapter	UES18LU-120150SPA	/	PEM
2.4	Power adapter	RD1201500-C55-153MG	/	PEM
2.5	Power adapter	RD1201500-C55-153YG	/	PEM
2.6	Power adapter	UES18LB-120150SPA	/	PEM
2.7	Power adapter	SOY-1200300-3014-II	/	PEM
2.8	Power adapter	NBS40C120300M2	/	PEM
2.9	Power adapter	RD1201500-C55-198MG	/	PEM
2.10	Power adapter	RD1201500-C55-198OG	/	PEM
2.11	Power adapter	RD1201500-C55-198YG	/	PEM
2.12	Power adapter	SOY-1200150AR	/	PEM

Auxiliary equipment details

No.	Name	Brand name	Model	NSB code	Valid Until
1	Test Center	Spirent DE48E0 DC2228		2012.12.20	
2	PC	Lenovo	T61	7661MC4L3KW965	No Cal.
	FO	Lenovo	101	700 HVIC4L3RVV903	Required
3	OLT	Nokia	N.A		No Cal.
٦	3 OLI NOKIA	N.A		Required	
4	Dhono	Dia a a a a a a a a a a a a a a a a a a	NI A		No Cal.
4	Phone	N.A	N.A	-	Required

TA Technology (Shanghai) Co., Ltd.


TA-MB-04-005R

Pag
This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd. Page 9 of 76

Information of Ports

No.	Port name	Number	Shielded or unshielded	Cable type (optic, twisted pair, etc.)	Max. Cable length
1	LAN1	/	Unshielded	CAT5E	1
2	LAN2	/	Unshielded	CAT5E	1
3	LAN3	/	Unshielded	CAT5E	1
4	LAN4	/	Unshielded	CAT5E	1
5	TEL1	/	Unshielded	twisted pair	1

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR47 Part 15C (2021) Radio Frequency Devices

ANSI C63.10 (2013)

Reference standard:

KDB 558074 D01 15.247 Meas Guidance v05r02

KDB 662911 D01 Multiple Transmitter Output v02r01

4. Test Configuration

Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the loop antenna is vertical, the others are vertical and horizontal. and the worst case was recorded.

In order to find the worst case condition, Pre-tests are needed at the presence of different data rate. Preliminary tests have been done on all the configuration for confirming worst case. Data rate below means worst-case rate of each test item.

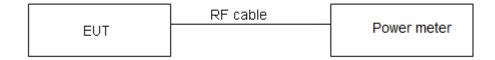
Worst-case data rates are shown as following table.

Took Made	Data Rate
Test Mode	МІМО
802.11b	1 Mbps
802.11g	6 Mbps
802.11n HT20	MCS8
802.11n HT40	MCS8

5. Test Case Results

5.1. Maximum output power

Ambient condition


Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Methods of Measurement

During the process of the testing, The EUT was connected to Power meter with a known loss. The EUT is max power transmission with proper modulation.

The conducted Power is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically.

Test Setup

Limits

Rule Part 15.247 (b) (3) specifies that "For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz: 1 Watt."

Average Output Power	≤ 1W (30dBm)
	· · · · ·

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.44 dB.

Test Results

Test Mode	T _{on} (ms)	T _(on+off) (ms)	Duty cycle	Duty cycle correction Factor(dB)				
802.11b	4.30	4.44	0.97	0.14				
802.11g 0.19 0.34 0.56 2.53								
802.11n HT20 0.66 0.78 0.85 0.73								
802.11n HT40 0.33 0.48 0.69 1.63								
Note: when Duty cycle ≥0.98, Duty cycle correction Factor not required.								

MIMO

		MI	MO	MI	MO			
	Carrier	Antenna 1		Antenna 2		Total		
Test Mode	frequency	Average	Average	Average	Average	Total Power	Limit	Concl
	(MHz)	Power Measured	Power with duty factor	Power Measured	Power with duty factor	(dBm)	(dBm)	usion
		(dBm)	(dBm)	(dBm)	(dBm)			
902 11b	2412	18.08	18.22	18.53	18.67	21.46	30	PASS
802.11b HT20	2437	20.46	20.60	20.28	20.42	23.52	30	PASS
піг	2462	19.18	19.32	18.91	19.05	22.20	30	PASS
802.11g HT20	2412	7.80	10.33	8.31	10.83	13.60	30	PASS
	2437	12.33	14.86	12.40	14.93	17.90	30	PASS
	2462	12.10	14.62	11.86	14.38	17.51	30	PASS
902 11p	2412	11.56	12.28	12.25	12.98	15.66	30	PASS
802.11n HT20 802.11n HT40	2437	16.06	16.78	16.38	17.11	19.96	30	PASS
	2462	15.71	16.43	15.69	16.42	19.43	30	PASS
	2422	7.96	9.59	8.55	10.18	12.90	30	PASS
	2437	13.47	15.10	13.65	15.28	18.20	30	PASS
	2452	11.61	13.24	11.44	13.07	16.16	30	PASS

Note: 1.Average Power with duty factor = Average Power Measured +Duty cycle correction factor

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10))

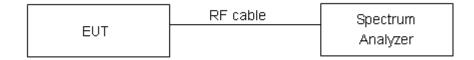
TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 14 of 76

^{2.} For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1),

^{3.} For 2400MHz, the manufacturer declared that the directional gain = 4.6dBi<6dBi. So the power limt is 30dBm. For 2450MHz, the manufacturer declared that the directional gain = 4.7dBi<6dBi. So the power limt is 30dBm. For 2500MHz, the manufacturer declared that the directional gain = 4.6dBi<6dBi. So the power limt is 30dBm.

5.2. 99% Bandwidth and 6dB Bandwidth

Ambient condition


Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable. RBW is set to 100 kHz; VBW is set to 300 kHz on spectrum analyzer. Dector=Peak, Trace mode=max hold.

The EUT was connected to the spectrum analyzer through a known loss cable. The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value.

Test Setup

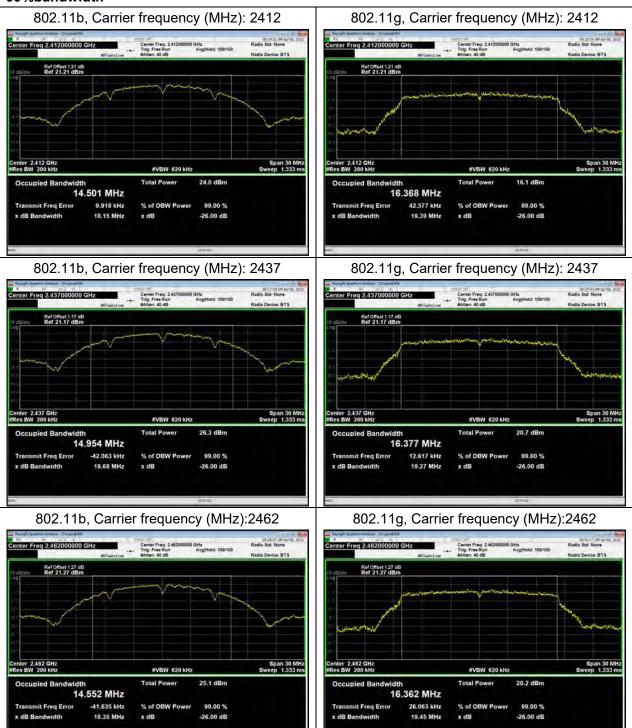
Limits

Rule Part 15.247 (a) (2) specifies that "Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz."

|--|

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz.

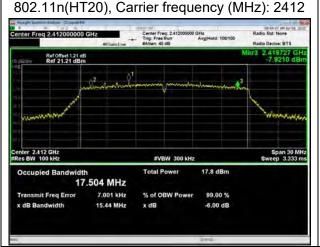


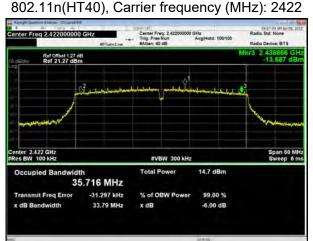
Test Results:

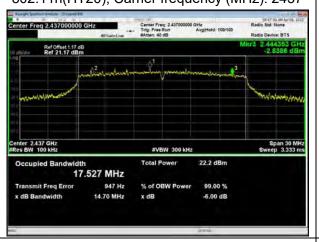
Test Mode	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 6 dB bandwidth (MHz)	Limit (kHz)	Conclusion
	2412	14.501	9.06	500	PASS
802.11b	2437	14.954	9.82	500	PASS
	2462	14.552	9.06	500	PASS
802.11g	2412	16.368	15.10	500	PASS
	2437	16.377	15.11	500	PASS
	2462	16.362	15.11	500	PASS
	2412	17.514	15.44	500	PASS
802.11n HT20	2437	17.571	14.70	500	PASS
	2462	17.502	12.57	500	PASS
802.11n HT40	2422	35.813	33.79	500	PASS
	2437	35.838	35.04	500	PASS
	2452	35.875	35.03	500	PASS

99%bandwidth

802.11n(HT20), Carrier frequency (MHz): 2412 802.11n(HT40), Carrier frequency (MHz): 2422 Ref Offset 1.21 dB Ref 21.21 dBm Ref Offset 1.27 dB Ref 21.27 dBm Span 30 MH eep 1.333 m Total Power 14.2 dBm 17.514 MHz 35.813 MHz 26.698 kHz % of OBW Power 99.00 % 10.939 kHz % of OBW Power 99.00 % 39.73 MHz 19.75 MHz x dB -26.00 dB x dB -26.00 dB 802.11n(HT20), Carrier frequency (MHz): 2437 802.11n(HT40), Carrier frequency (MHz): 2437 ter Freq 2.437000000 GHz Center Freq 2.437000000 GHz Ref Offset 1.17 dB Ref 21.17 dBm Ref Offset 1.17 dB Ref 21.17 dBm Span 30 MHz Sweep 1.333 ms Span 60 MH Sweep 1.333 m 22.0 dBm 19.9 dBm 17.571 MHz 35.838 MHz Transmit Freg Error 5.195 kHz % of OBW Power 99.00 % Transmit Freg Error 814 Hz % of OBW Power 99.00 % 20.24 MHz -26.00 dB 39.86 MHz -26.00 dB 802.11n(HT20), Carrier frequency (MHz):2462 802.11n(HT40), Carrier frequency (MHz):2452 enter Freq 2.452000000 GHz Center Freq 2.462000000 GHz Ref Offset 1.27 dB Ref 21.27 dBm Ref Offset 1.18 dB Ref 21.18 dBm Span 30 MHz Sweep 1.333 ms Span 60 MH: eep 1.333 m #VBW 1.2 MHz 17.502 MHz 35.875 MHz 17.072 kHz % of OBW Power 99.00 % 13,059 kHz % of OBW Power 99.00 % x dB -26.00 dB x dB -26.00 dB




6 dB bandwidth



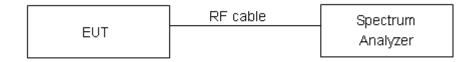

802.11n(HT20), Carrier frequency (MHz): 2437

802.11n(HT40), Carrier frequency (MHz): 2437

802.11n(HT20), Carrier frequency (MHz):2462

802.11n(HT40), Carrier frequency (MHz):2452

5.3. Band Edge


Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

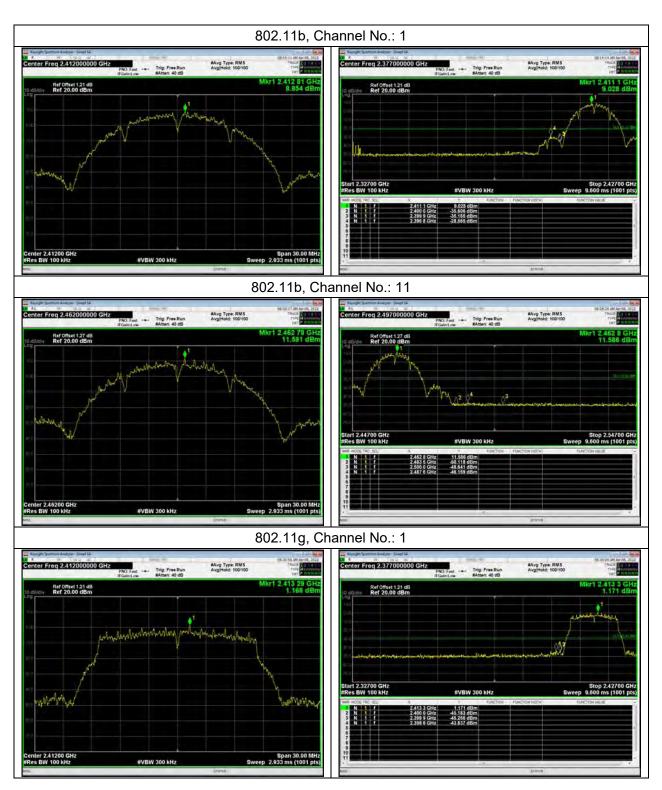
Method of Measurement

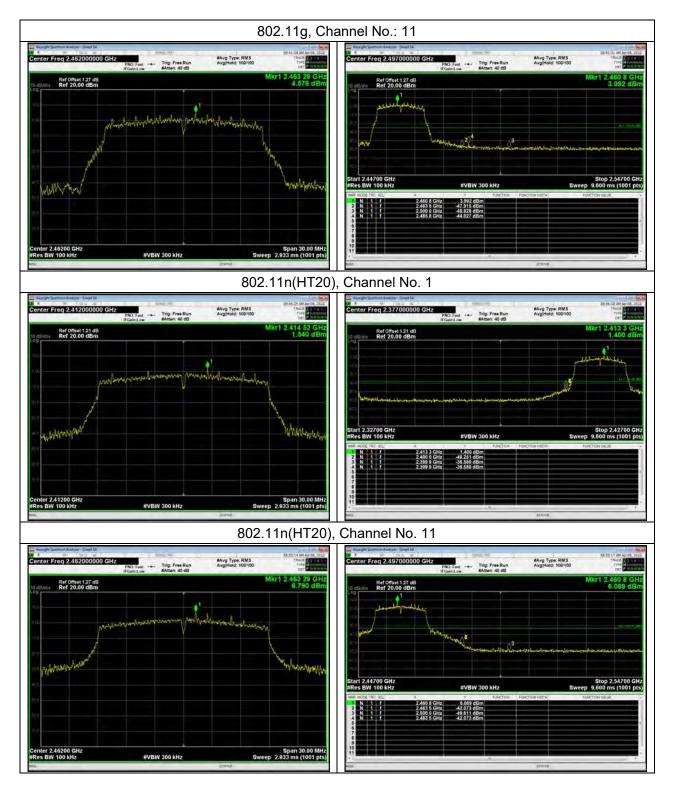
The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable the band edge of the lowest and highest channels were measured. The peak detector is used and RBW is set to 100 kHz and VBW is set to 300 kHz on spectrum analyzer. Spectrum analyzer plots are included on the following pages.

Test Setup

Limits

Rule Part 15.247(d) specifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits." If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB."


Measurement Uncertainty


The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.


Frequency	Uncertainty
2GHz-3GHz	1.407 dB

TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R

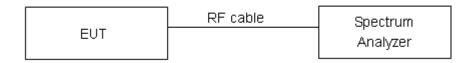
Test Results: PASS

5.4. Power Spectral Density

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement


During the process of the testing, The EUT was connected to Spectrum Analyzer with a known loss. The EUT is max power transmission with proper modulation.

Method AVGPSD-2 was used for this test.

- a) Measure the duty cycle (D)of the transmitter output signal as described in 11.6
- b) Set instrument center frequency to DTS channel center frequency
- c) Set span to at least 1.5 times the OBW
- d) Set RBW to:3kHz≤RBW≤100Kh
- e) Set VBW ≥ [3x RBW]
- f) Detector= power averaging (rms) or sample detector (when rms not available)
- g) Ensure that the number of measurement points in the sweep 2[2 X span/RBW]
- h) Sweep time =auto couple
- i) Do not use sweep triggering; allow sweep to "free run"
- j) Employ trace averaging (rms) mode over a minimum of 100 traces
- k) Use the peak marker function to determine the maximum amplitude level
- I) Add [10 log(1/ D)], where D is the duty cycle measured in step a), to the measured PSD to compute the average PSD during the actual transmission time
- m) If measured value exceeds requirement specified by regulatory agency then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced)

The conducted Power is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically.

Test setup

TA-MB-04-005R TA Technology (Shanghai) Co., Ltd. Page 25 of 76

Limits

Rule Part 15.247(e) specifies that" For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. "

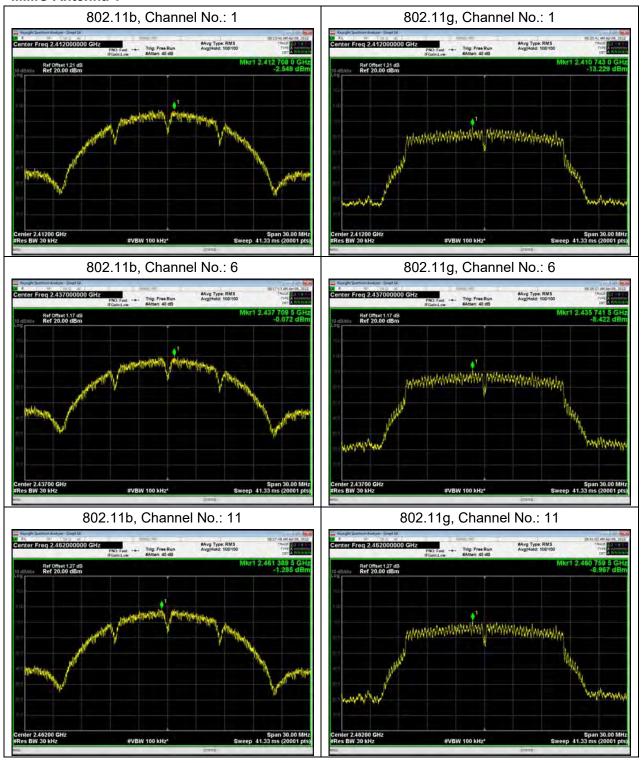
Limits ≤ 8 dBm / 3kHz

Measurement Uncertainty

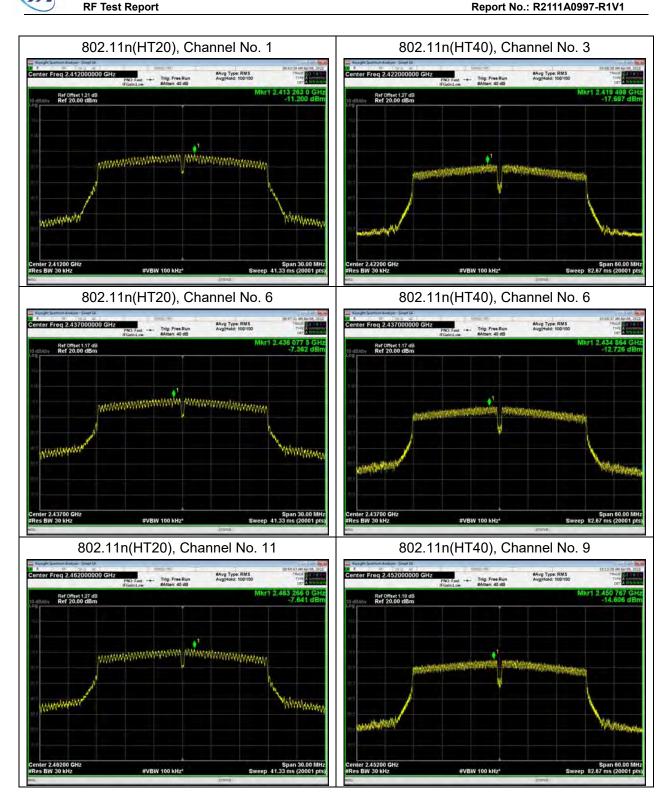
The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.75dB.

Test Results:

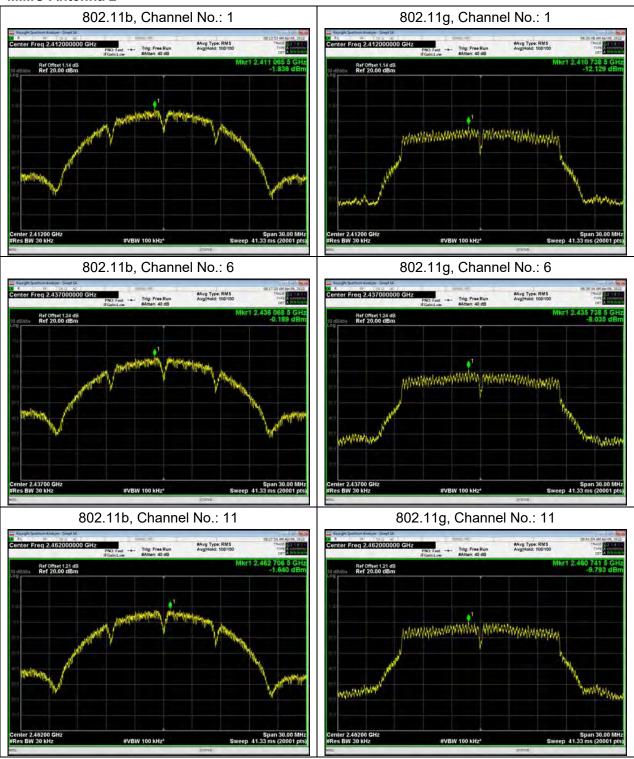
MIMO

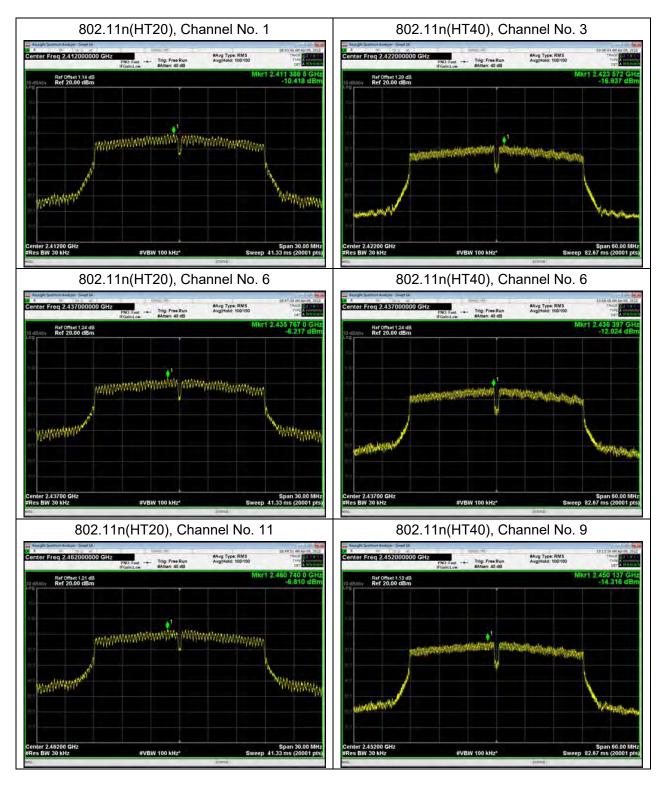

		Power Spectral Density				Total PSD		
Chan		Antenna 1		Antenna 2		Total PSD	Limit	
	Channel		Power	Read	Power		(dBm /	Conclusion
1001 111000	Number	Value	Spectral	Value	Spectral	(dBm /	3kHz)	
		(dBm /	Density	(dBm /	Density	3kHz)	,	
		30kHz)	(dBm / 3kHz)	30kHz)	(dBm / 3kHz)			
	1	-2.55	-12.41	-1.84	-11.70	-9.03	8.00	PASS
802.11b	6	-0.07	-9.93	-0.19	-10.05	-6.98	8.00	PASS
	11	-1.29	-11.15	-1.64	-11.50	-8.31	8.00	PASS
	1	-13.23	-20.70	-12.13	-19.60	-17.11	8.00	PASS
802.11g	6	-8.42	-15.89	-8.04	-15.51	-12.69	8.00	PASS
	11	-8.97	-16.44	- 9.79	-17.26	-13.82	8.00	PASS
000 11n	1	-11.20	-20.47	-10.42	-19.69	-17.06	8.00	PASS
802.11n HT20 802.11n HT40	6	-7.36	-16.63	-6.22	-15.49	-13.02	8.00	PASS
	11	-7.64	-16.91	-6.81	-16.08	-13.47	8.00	PASS
	3	-17.69	-26.06	-16.94	-25.31	-22.66	8.00	PASS
	6	-12.73	-21.10	-12.02	-20.39	-17.72	8.00	PASS
11140	9	-14.61	-22.98	-14.32	-22.69	-19.83	8.00	PASS

Note: 1.Power Spectral Density =Read Value+Duty cycle correction factor + 10*log10(3/30)


^{2.} For Total PSD, according to KDB 662911 D01 Multiple Transmitter Output v02r01 2)a),the power spectral density=10log(10^(PSD antenna1 in dBm/10)+10^(PSD antenna2 in dBm/10))

^{3.} For 2400MHz, the manufacturer declared that the directional gain = 5.3dBi<6dBi. So the PSD limt is 8dBm. For 2400MHz, the manufacturer declared that the directional gain = 5.4dBi<6dBi. So the PSD limt is 8dBm. For 2400MHz, the manufacturer declared that the directional gain = 5.4dBi<6dBi. So the PSD limt is 8dBm.


MIMO Antenna 1



MIMO Antenna 2

5.5. Spurious RF Conducted Emissions

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to the spectrum analyzer with a known loss. The spectrum analyzer scans from 30MHz to the 10th harmonic of the carrier. The peak detector is used. Set RBW to 100 kHz and VBW to 300 kHz, Sweep is set to ATUO.

The test is in transmitting mode.

Test setup

Limits

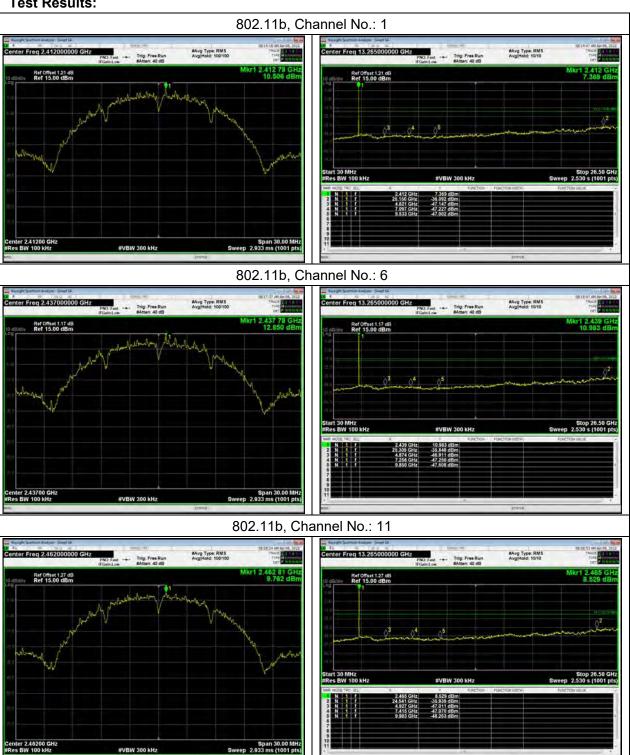
Rule Part 15.247(d) pacifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB."

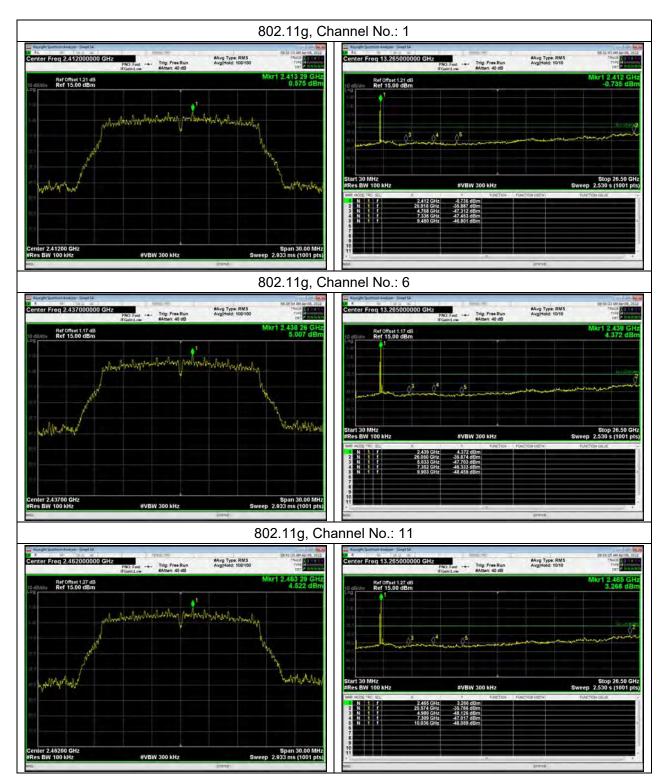
Test Mode	Carrier frequency (MHz)	Reference value (dBm)	Limit
802.11b	2412	10.51	-19.49
	2437	12.85	-17.15
	2462	9.76	-20.24
802.11g	2412	0.57	-29.43
	2437	5.01	-24.99
	2462	4.52	-25.48
802.11n HT20	2412	1.42	-28.58
	2437	6.29	-23.71
	2462	6.20	-23.80
802.11n HT40	2422	-3.68	-33.68
	2437	1.81	-28.19
	2452	-0.17	-30.17

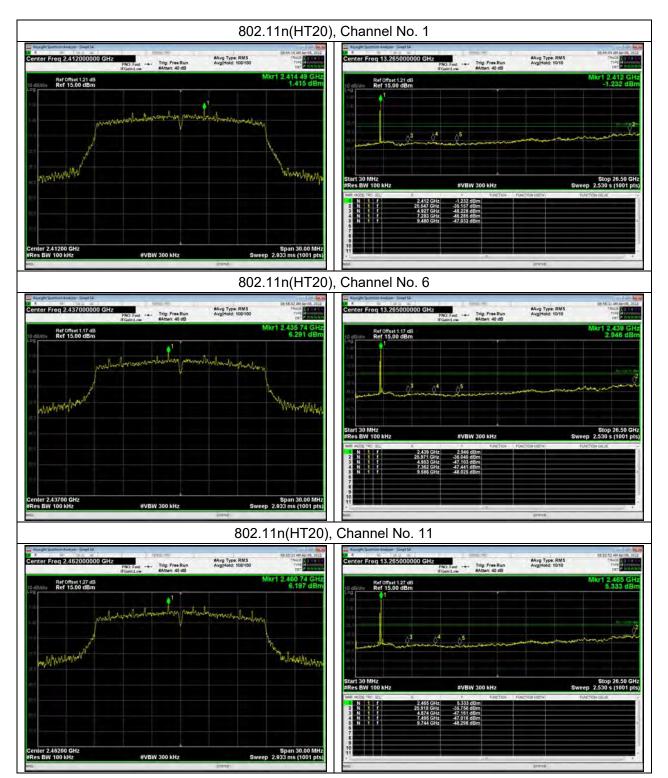
TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R

Page 32 of 76




Measurement Uncertainty


The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty	
100kHz-2GHz	0.684 dB	
2GHz-26GHz	1.407 dB	

Test Results:

5.6. Unwanted Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	102.5kPa

Method of Measurement

The test set-up was made in accordance to the general provisions of ANSI C63.10.

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna.

The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. Sweep the Restricted Band and the emissions less than 20 dB below the permissible value are reported.

The radiated emissions measurements were made in a typical installation configuration.

Sweep the whole frequency band through the range from 9 kHz to the 10th harmonic of the carrier, and the emissions less than 20 dB below the permissible value are reported.

This method refer to ANSI C63.10.

The procedure for peak unwanted emissions measurements above 1000 MHz is as follows:

Set the spectrum analyzer in the following:

9kHz~150 kHz

RBW=200Hz, VBW=1kHz/ Sweep=AUTO

150 kHz~30MHz

RBW=9KHz, VBW=30KHz,/ Sweep=AUTO

Below 1GHz

RBW=100kHz / VBW=300kHz / Sweep=AUTO

a) Peak emission levels are measured by setting the instrument as follows:

Above 1GHz

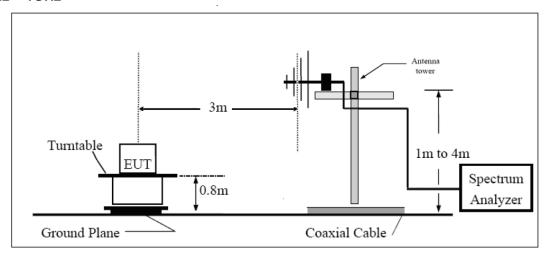
PEAK: RBW=1MHz VBW=3MHz/ Sweep=AUTO

b) Average emission levels are measured by setting the instrument as follows:

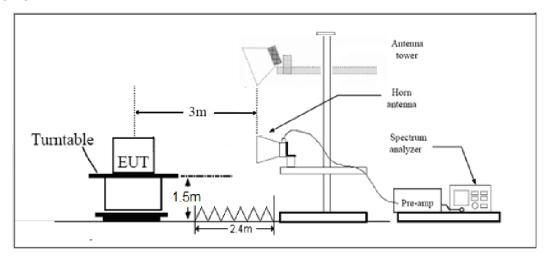
Above 1GHz

AVERAGE: RBW=1MHz / VBW=3MHz / Sweep=AUTO

- c) Detector: The measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage


averaging. Log or dB averaging shall not be used.)

- e) Sweep time = auto.
- f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)
- g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
- 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.
- 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.
- 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.


The test is in transmitting mode.

Test setup

30MHz ~ 1GHz

Above 1GHz

Note: Area side:2.4mX3.6m

Limits

Rule Part 15.247(d) specifies that "In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c))."

Limit in restricted band

Frequency of emission (MHz)	Field strength(uV/m)	Field strength(dBuV/m)
0.009–0.490	2400/F(kHz)	1
0.490–1.705	24000/F(kHz)	1
1.705–30.0	30	1
30-88	100	40
88-216	150	43.5
216-960	200	46
Above960	500	54

§15.35(b)

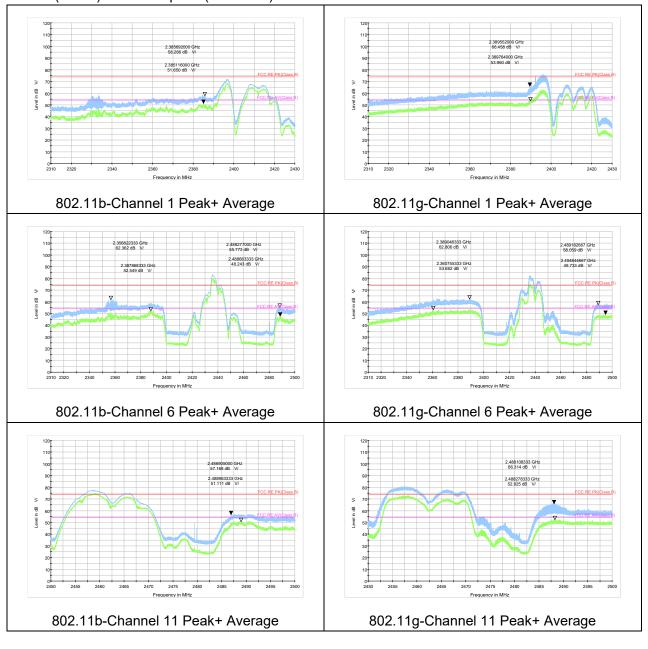
There is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit. Peak Limit=74 dBuV/m

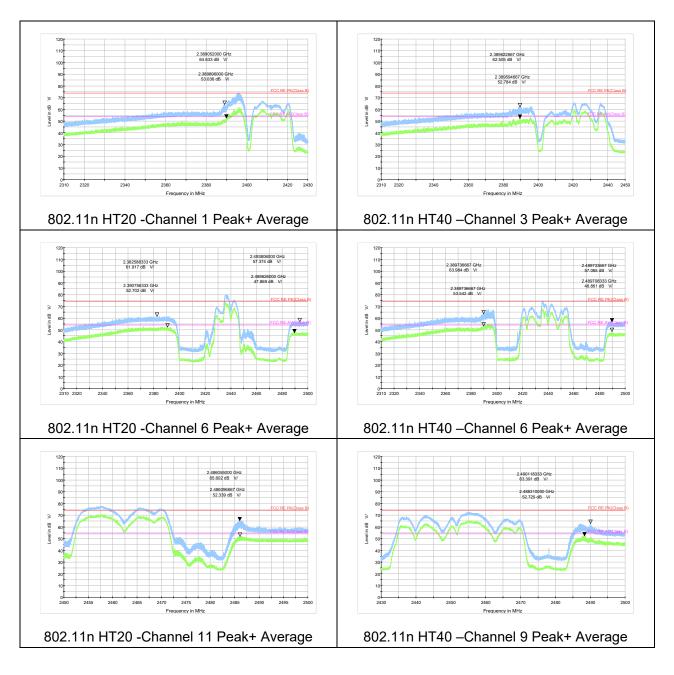
Average Limit=54 dBuV/m

Spurious Radiated Emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
1 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

Measurement Uncertainty


The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

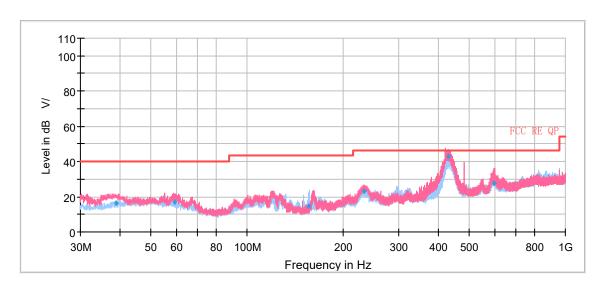

Frequency	Uncertainty
9KHz-30MHz	3.55 dB
30MHz-200MHz	4.17 dB
200MHz-1GHz	4.84 dB
1-18GHz	4.35 dB
18-26.5GHz	5.90 dB
26.5GHz~40GHz	5.92 dB

Test Results:

A font (dB V/) in the test plot =(dB $^{\mu}$ V/m)

Result of RE

Test result

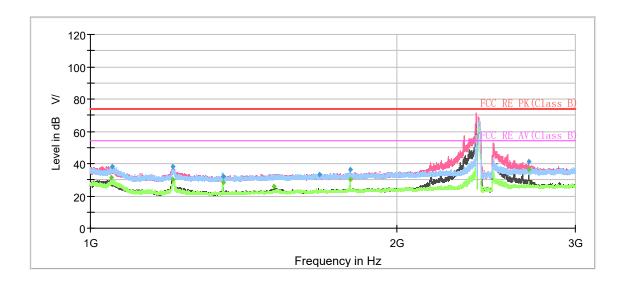

Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the Emissions in the frequency band 9kHz-30MHz and 18GHz-26.5GHz are more than 20dB below the limit are not reported.

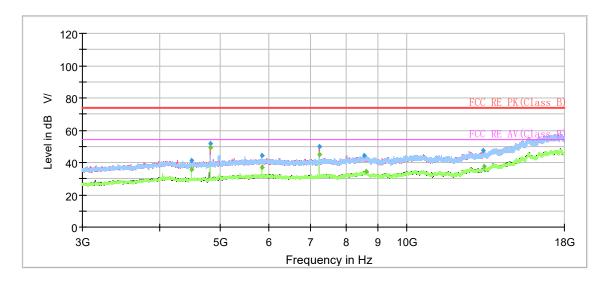
The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection.

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes with all channels, 802.11b, Channel 6 are selected as the worst condition. The test data of the worst-case condition was recorded in this report.

A font (dB V/) in the test plot =(dB $^{\mu}$ V/m)

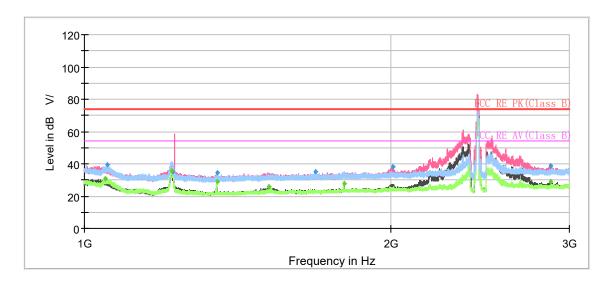
Continuous TX mode:

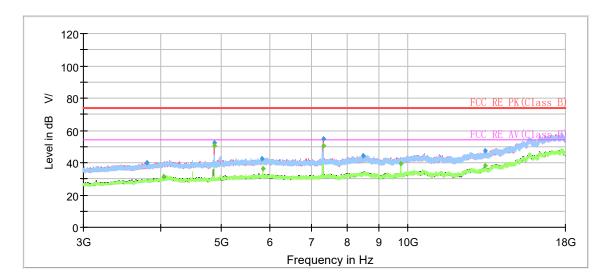

Radiates Emission from 30MHz to 1GHz


Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
38.88	16.61	100.0	V	138.00	19	23.39	40.00
59.44	17.20	100.0	V	22.00	19	22.80	40.00
156.53	14.44	110.0	Н	21.00	15	29.06	43.50
233.41	23.23	100.0	V	16.00	19	22.77	46.00
429.89	42.90	110.0	V	103.00	24	3.10	46.00
597.58	27.72	100.0	V	151.00	27	18.28	46.00

Remark: 1. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)

2. Margin = Limit - Quasi-Peak

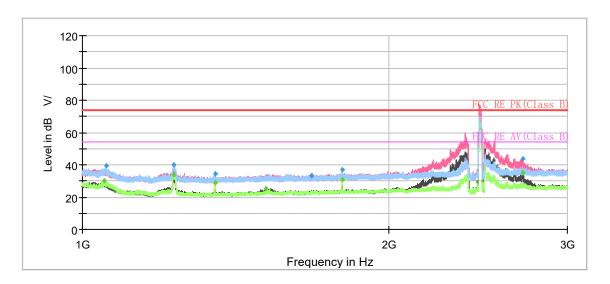


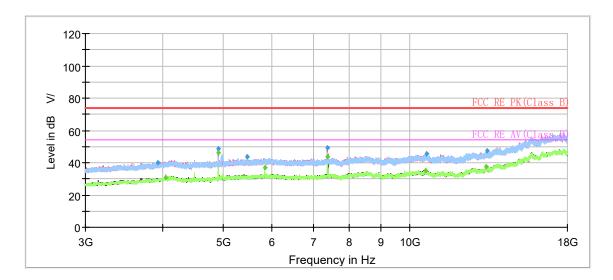

Radiates Emission from 3GHz to 18GHz

Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB μ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1047.78		31.39	54.00	22.61	200.0	V	139.00	-19
1050.78	38.13		74.00	35.87	100.0	Н	221.00	-19
1204.90	37.99		74.00	36.01	100.0	V	148.00	-18
1205.21		30.19	54.00	23.81	300.0	V	125.00	-18
1350.10		28.02	54.00	25.98	200.0	Н	296.00	-17
1350.91	32.12		74.00	41.88	100.0	Н	213.00	-17
1516.34		25.56	54.00	28.44	100.0	V	248.00	-15
1680.63	33.03		74.00	40.97	100.0	V	203.00	-15
1799.97	36.57		74.00	37.43	100.0	Н	213.00	-14
1800.01		29.88	54.00	24.12	200.0	Н	215.00	-14
2699.95		36.21	54.00	17.79	100.0	V	0.00	-9
2700.08	41.47		74.00	32.53	200.0	V	4.00	-9
4824.07		49.53	54.00	4.47	100.0	V	116.00	-2

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11b CH6

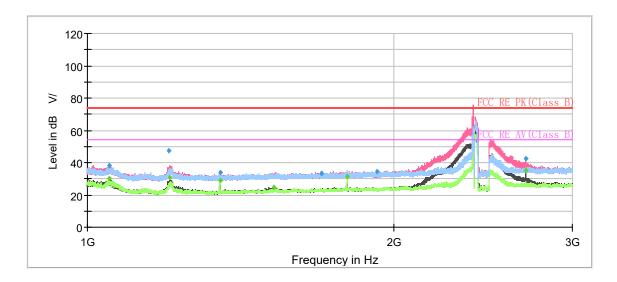

Radiates Emission from 3GHz to 18GHz

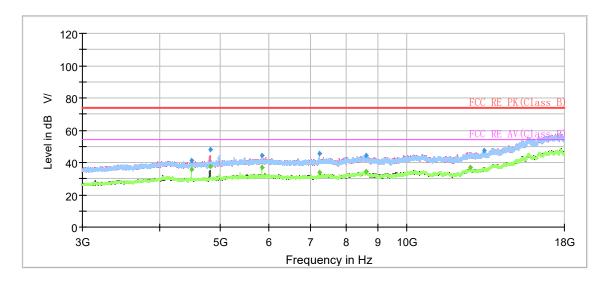


Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB μ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1048.22		30.88	54.00	23.12	100.0	Н	220.00	-19
1052.98	39.34		74.00	34.66	100.0	Н	220.00	-19
1217.82		35.94	54.00	18.06	100.0	Н	161.00	-18
1221.52	35.38		74.00	38.62	100.0	V	321.00	-17
1349.91	34.39		74.00	39.61	200.0	Н	43.00	-17
1349.95		28.98	54.00	25.02	200.0	Н	0.00	-17
1519.13		26.00	54.00	28.00	100.0	V	146.00	-15
1686.86	35.14		74.00	38.86	200.0	Н	213.00	-15
1799.86		27.83	54.00	26.17	200.0	Н	0.00	-14
2010.77	38.11		74.00	35.89	100.0	V	60.00	-13
2875.67	38.52		74.00	35.48	200.0	V	294.00	-9
2875.94		29.05	54.00	24.95	200.0	V	94.00	-9
4874.05		50.19	54.00	3.81	300.0	V	141.00	-2
7310.17		50.49	54.00	3.51	200.0	V	157.00	1

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11b CH11

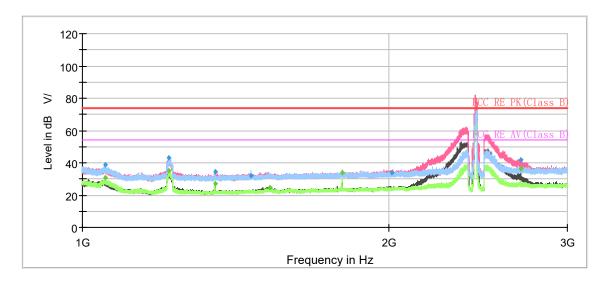

Radiates Emission from 3GHz to 18GHz

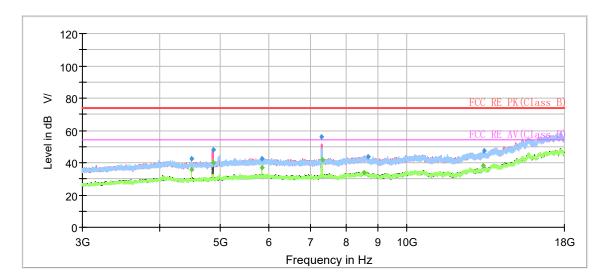


Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB μ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1051.75		30.21	54.00	23.79	100.0	Н	224.00	-19
1055.51	39.08		74.00	34.92	100.0	Н	224.00	-19
1230.18		33.88	54.00	20.12	200.0	Н	145.00	-17
1230.19	40.17		74.00	33.83	100.0	Н	162.00	-17
1349.92	34.64		74.00	39.36	200.0	Н	13.00	-17
1350.08		29.13	54.00	24.87	200.0	Н	0.00	-17
1515.78		25.38	54.00	28.62	100.0	V	145.00	-16
1679.13	32.96		74.00	41.04	300.0	V	209.00	-15
1799.90		30.63	54.00	23.37	200.0	Н	212.00	-14
1800.47	36.84		74.00	37.16	100.0	Н	208.00	-14
2711.04		34.78	54.00	19.22	200.0	V	162.00	-9
2713.29	43.78		74.00	30.22	200.0	V	15.00	-9

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11g CH1

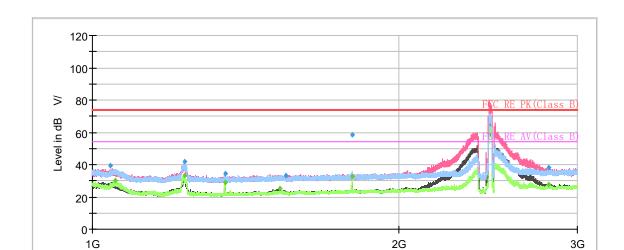



Radiates Emission from 3GHz to 18GHz

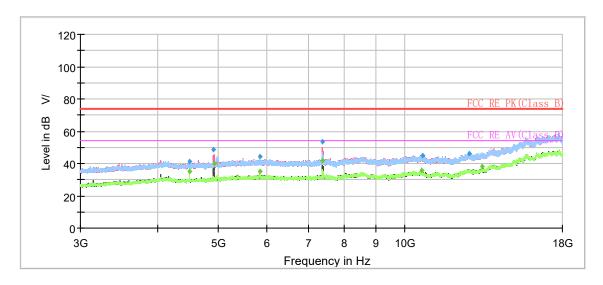
Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1049.67	38.22		74.00	35.78	200.0	V	142.00	-19
1050.79		29.87	54.00	24.13	100.0	Н	230.00	-19
1202.53	47.18		74.00	26.82	100.0	V	41.00	-18
1204.65		30.89	54.00	23.11	100.0	V	27.00	-18
1349.84	33.94		74.00	40.06	100.0	Н	354.00	-17
1350.18		29.00	54.00	25.00	200.0	Н	20.00	-17
1526.09		24.62	54.00	29.38	100.0	V	152.00	-15
1700.83	33.32		74.00	40.68	100.0	V	0.00	-15
1799.94		31.22	54.00	22.78	200.0	Н	210.00	-14
1925.12	34.41		74.00	39.60	100.0	V	71.00	-13
2700.06	42.45		74.00	31.55	200.0	V	351.00	-9
2700.14		34.97	54.00	19.03	100.0	V	312.00	-9

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11g CH6



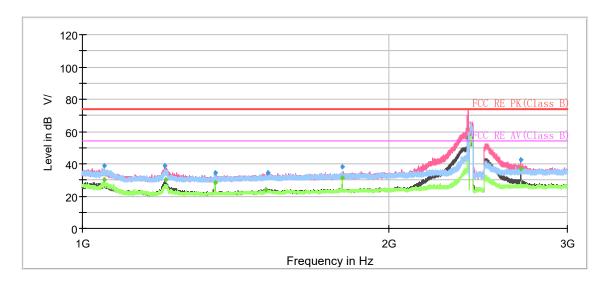
Radiates Emission from 3GHz to 18GHz

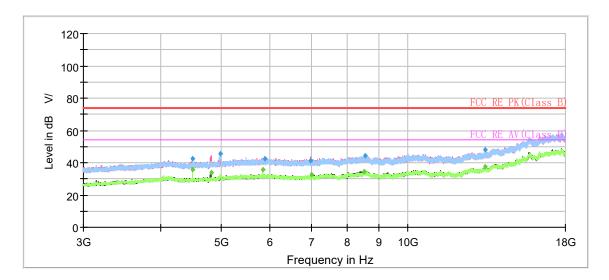

Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB μ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1054.00	38.79		74.00	35.21	100.0	Н	220.00	-19
1054.18		30.81	54.00	23.19	100.0	Н	220.00	-19
1216.10		35.36	54.00	18.64	100.0	V	36.00	-18
1217.12	43.16		74.00	30.84	100.0	V	45.00	-18
1349.80		26.93	54.00	27.07	200.0	Н	53.00	-17
1350.17	34.41		74.00	39.59	100.0	Н	0.00	-17
1464.56	32.20		74.00	41.80	400.0	Н	335.00	-16
1527.60		24.41	54.00	29.59	100.0	V	167.00	-15
1799.99		33.71	54.00	20.29	200.0	Н	207.00	-14
2014.82	33.86		74.00	40.14	300.0	V	338.00	-13
2699.95	41.69		74.00	32.31	200.0	V	1.00	-9
2700.03		36.19	54.00	17.81	200.0	V	351.00	-9

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

Note: The signal beyond the limit is carrier.
Radiates Emission from 1GHz to 3GHz

Frequency in Hz

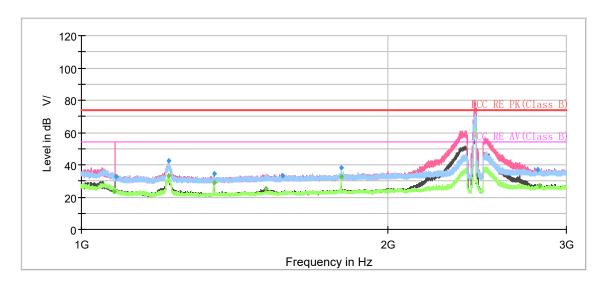

Radiates Emission from 3GHz to 18GHz

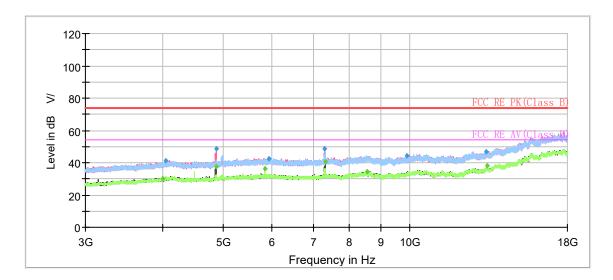


Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB μ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1041.46	39.37		74.00	34.63	200.0	V	136.00	-19
1053.22		29.98	54.00	24.02	100.0	Н	220.00	-19
1231.16	41.66		74.00	32.34	200.0	Н	149.00	-17
1231.25		33.28	54.00	20.72	200.0	Н	141.00	-17
1349.93	34.66		74.00	39.34	200.0	Н	47.00	-17
1349.99		28.85	54.00	25.15	200.0	Н	15.00	-17
1527.80		25.30	54.00	28.70	100.0	V	147.00	-15
1548.04	33.33		74.00	40.67	400.0	Н	152.00	-15
1799.70	58.40		74.00	15.60	100.0	Н	211.00	-14
1799.87		32.48	54.00	21.52	200.0	Н	211.00	-14
2809.30		27.74	54.00	26.26	200.0	V	57.00	-9
2813.46	37.92		74.00	36.08	200.0	V	20.00	-9

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11n (HT20) CH1

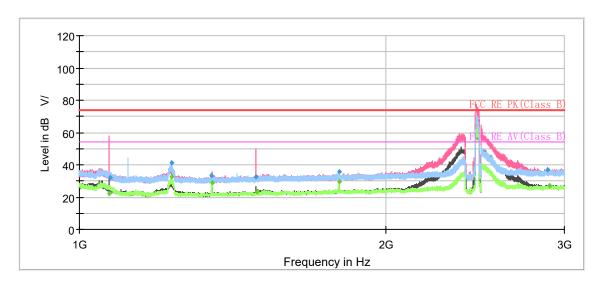


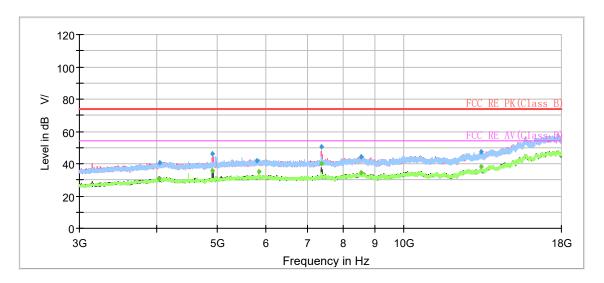

Radiates Emission from 3GHz to 18GHz

Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB μ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1050.30	38.80		74.00	35.20	200.0	V	141.00	-19
1050.44		30.30	54.00	23.70	100.0	Н	218.00	-19
1205.76	38.82		74.00	35.18	100.0	V	41.00	-18
1207.97		30.03	54.00	23.97	100.0	V	20.00	-18
1350.01		28.13	54.00	25.87	200.0	Н	33.00	-17
1350.31	34.56		74.00	39.44	200.0	Н	40.00	-17
1517.00		24.02	54.00	29.98	100.0	V	20.00	-15
1523.71	34.51		74.00	39.49	100.0	V	151.00	-15
1799.89	38.34		74.00	35.66	100.0	Н	211.00	-14
1800.06		31.61	54.00	22.39	200.0	Н	204.00	-14
2699.77	42.23		74.00	31.77	200.0	V	14.00	-9
2700.10		36.67	54.00	17.33	100.0	V	340.00	-9

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11n (HT20) CH6

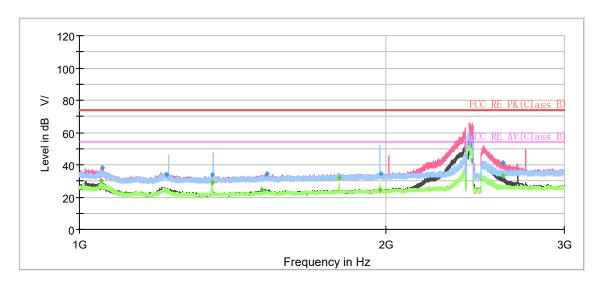



Radiates Emission from 3GHz to 18GHz

Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB μ V/m)	Pol I		Azimuth (deg)	Corr. (dB/m)		
1077.13		23.52	54.00	30.48	300.0	V	294.00	-18
1082.37	32.81		74.00	41.19	300.0	V	294.00	-18
1219.50		33.43	54.00	20.57	100.0	Н	40.00	-18
1219.60	42.65		74.00	31.35	100.0	Н	32.00	-18
1349.94		28.97	54.00	25.03	200.0	Н	37.00	-17
1350.61	34.32		74.00	39.68	200.0	Н	37.00	-17
1518.13		25.17	54.00	28.83	100.0	V	238.00	-16
1577.87	33.09		74.00	40.91	100.0	V	230.00	-15
1799.66	38.30		74.00	35.70	100.0	Н	212.00	-14
1800.05		32.75	54.00	21.25	100.0	Н	212.00	-14
2810.56	36.91		74.00	37.09	200.0	V	216.00	-9
2823.74		27.03	54.00	26.97	200.0	V	57.00	-9

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

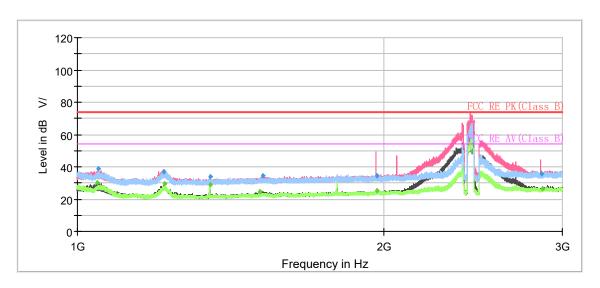
802.11n (HT20) CH11

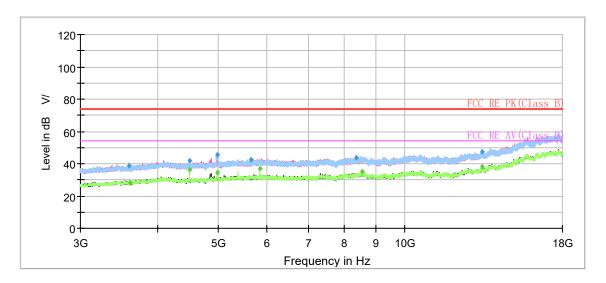

Radiates Emission from 3GHz to 18GHz

Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB μ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1068.66		22.14	54.00	31.86	200.0	V	8.00	-18
1072.14	31.83		74.00	42.17	200.0	V	8.00	-18
1231.07		32.60	54.00	21.40	100.0	Н	37.00	-17
1231.82	41.45		74.00	32.55	100.0	Н	37.00	-17
1349.39	33.40		74.00	40.60	200.0	V	8.00	-17
1350.12		29.05	54.00	24.96	200.0	Н	16.00	-17
1491.08	32.39		74.00	41.61	100.0	V	297.00	-16
1493.84		23.12	54.00	30.88	100.0	V	297.00	-16
1800.01		29.34	54.00	24.66	200.0	Н	239.00	-14
1800.18	35.96		74.00	38.04	200.0	Н	239.00	-14
2885.47	36.67		74.00	37.33	100.0	Н	265.00	-9
2901.43		26.98	54.00	27.02	200.0	V	0.00	-9

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11n (HT40) CH3

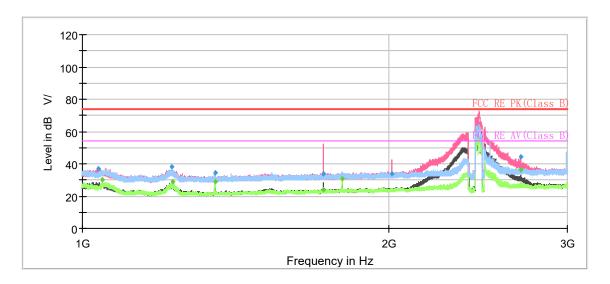

Radiates Emission from 3GHz to 18GHz

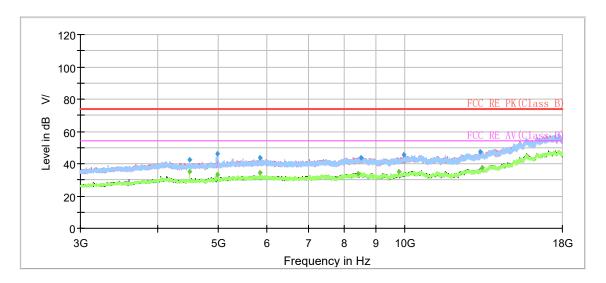


Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB μ V/m)	Limit Margii (dB µ V/m) (dB)				Azimuth (deg)	Corr. (dB/m)
1050.15		30.03	54.00	23.97	200.0	V	136.00	-19
1051.96	38.07		74.00	35.93	200.0	V	136.00	-19
1218.21	33.68		74.00	40.32	100.0	Н	39.00	-18
1350.01		28.81	54.00	25.19	200.0	Н	35.00	-17
1350.05	33.62		74.00	40.38	100.0	Н	290.00	-17
1510.60		24.76	54.00	29.24	100.0	V	143.00	-16
1530.61	34.55		74.00	39.45	100.0	V	180.00	-15
1800.18		32.14	54.00	21.86	200.0	Н	214.00	-14
1976.52		24.61	54.00	29.39	300.0	Н	247.00	-13
1978.52	34.45		74.00	39.55	300.0	Н	247.00	-13
2607.01	41.19		74.00	32.81	200.0	V	308.00	-10
2611.70		33.31	54.00	20.69	200.0	V	128.00	-10

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11n (HT40) CH6



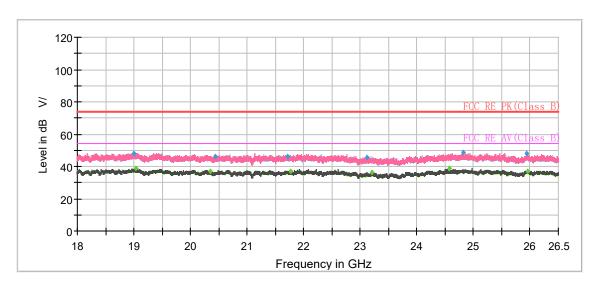

Radiates Emission from 3GHz to 18GHz

Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB μ V/m)	Limit Margin Height (dB μ V/m) (dB) (cm)		Pol	Azimuth (deg)	Corr. (dB/m)	
1045.60		30.26	54.00	23.74	200.0	V	139.00	-19
1048.17	38.93		74.00	35.07	200.0	V	139.00	-19
1214.61	37.18		74.00	36.82	200.0	Н	33.00	-18
1219.03		29.45	54.00	24.55	200.0	Н	142.00	-18
1350.10		28.97	54.00	25.03	200.0	Н	24.00	-17
1350.16	34.07		74.00	39.93	200.0	Н	0.00	-17
1512.55		24.67	54.00	29.33	100.0	V	227.00	-15
1522.12	34.31		74.00	39.69	100.0	V	274.00	-15
1969.21	34.22		74.00	39.78	400.0	Н	208.00	-13
1970.71		25.47	54.00	28.53	100.0	V	354.00	-13
2858.97	35.99		74.00	38.01	100.0	V	333.00	-9
2868.75		26.70	54.00	27.30	200.0	V	240.00	-9

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

802.11n (HT40) CH9

Radiates Emission from 3GHz to 18GHz



Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB μ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1037.66	37.02		74.00	36.98	200.0	V	141.00	-19
1047.02		29.92	54.00	24.08	100.0	Н	218.00	-19
1222.97	37.90		74.00	36.10	200.0	Н	139.00	-18
1226.12		29.19	54.00	24.81	200.0	Н	139.00	-17
1349.96	34.48		74.00	39.52	200.0	Н	10.00	-17
1350.01		28.93	54.00	25.07	200.0	Н	10.00	-17
1724.91		23.87	54.00	30.13	300.0	V	250.00	-14
1726.39	33.57		74.00	40.43	300.0	V	250.00	-14
1799.89		30.75	54.00	23.25	200.0	Н	207.00	-14
2015.65	33.96		74.00	40.04	300.0	V	234.00	-13
2699.89	44.02		74.00	29.98	200.0	V	345.00	-9
2700.03		36.05	54.00	17.95	200.0	V	29.00	-9

Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain)

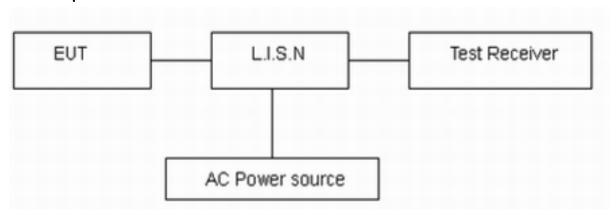
During the test, the Radiates Emission from 18GHz to 26.5GHz was performed in all modes with all channels, 802.11b, Channel 6 are selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Radiates Emission from 18GHz to 26.5GHz

5.7. Conducted Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa


Methods of Measurement

The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.10. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz.

The measurement result should include both L line and N line.

The test is in transmitting mode.

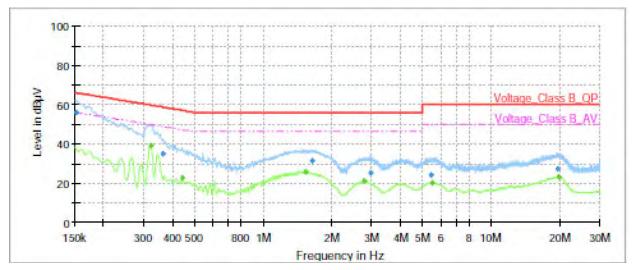
Test Setup

Note: AC Power source is used to change the voltage 110V/60Hz.

Limits

Frequency	Conducted L	Conducted Limits(dBμV)							
(MHz)	Quasi-peak	Average							
0.15 - 0.5	66 to 56 *	56 to 46 [*]							
0.5 - 5	56	46							
5 - 30	60	50							
*: Decreases wit	* Decreases with the logarithm of the frequency.								

Measurement Uncertainty

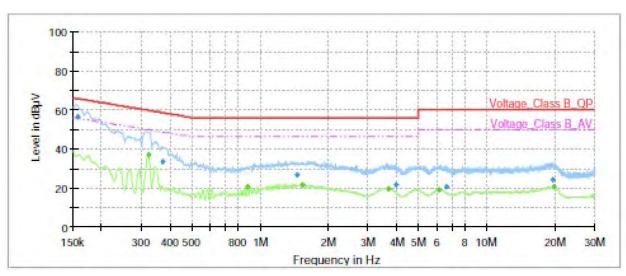

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 2.69 dB.

Test Results:

Following plots, Blue trace uses the peak detection and Green trace uses the average detection. During the test, the Conducted Emission was performed in all modes with all channels, 802.11b, Channel 6 are selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Report No.: R2111A0997-R1V1

Frequency (MHz)	QuasiPeak (dΒμV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.15	56.01	I	65.88	9.87	70.00	9.000	L1	ON	21
0.32		38.93	49.68	10.75	70.00	9.000	L1	ON	21
0.36	34.80		58.64	23.84	70.00	9.000	L1	ON	21
0.44		22.32	47.06	24.74	70.00	9.000	L1	ON	20
1.54		25.58	46.00	20.42	70.00	9.000	L1	ON	20
1.64	31.05		56.00	24.95	70.00	9.000	L1	ON	20
2.78		20.93	46.00	25.07	70.00	9.000	L1	ON	19
2.96	24.91		56.00	31.09	70.00	9.000	L1	ON	19
5.45	24.14	-	60.00	35.86	70.00	9.000	L1	ON	19
5.52		20.22	50.00	29.78	70.00	9.000	L1	ON	19
19.52	27.40		60.00	32.60	70.00	9.000	L1	ON	20
19.76		23.28	50.00	26.72	70.00	9.000	L1	ON	20


Remark: Correct factor=cable loss + LISN factor

L line Conducted Emission from 150 KHz to 30 MHz

TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R

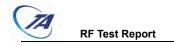
Page 72 of 76

Frequency (MHz)	QuasiPeak (dΒμV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.16	56.19		65.63	9.44	70.00	9.000	N	ON	21
0.32		36.74	49.68	12.94	70.00	9.000	N	ON	21
0.37	33.21		58.49	25.28	70.00	9.000	N	ON	21
0.88		20.50	46.00	25.50	70.00	9.000	N	ON	20
1.46	26.45		56.00	29.55	70.00	9.000	N	ON	20
1.54		21.73	46.00	24.27	70.00	9.000	N	ON	20
3.67		19.34	46.00	26.66	70.00	9.000	N	ON	19
3.98	21.38		56.00	34.62	70.00	9.000	N	ON	19
6.14		19.06	50.00	30.94	70.00	9.000	N	ON	20
6.63	20.31		60.00	39.69	70.00	9.000	N	ON	20
19.63	24.11		60.00	35.89	70.00	9.000	N	ON	20
19.71		20.54	50.00	29.46	70.00	9.000	N	ON	20

Remark: Correct factor=cable loss + LISN factor

N line Conducted Emission from 150 KHz to 30 MHz

6. Main Test Instruments


Name	Manufacturer	Type	Serial Number	Calibration	Expiration
				Date	Date
Power sensor	R&S	NRP18S	101954	2021-05-15	2022-05-14
Spectrum Analyzer	KEYSIGHT	N9020A	MY52330084	2021-05-15	2022-05-14
		Radiated Emiss	sion		
EMI Test Receiver	R&S	ESR	102389	2021-06-04	2022-06-03
Signal Analyzer	R&S	FSV30	103591	2021-05-15	2022-05-14
TRILOG Broadband Antenna	SCHWARZBECK	VULB 9163	391	2019-12-16	2022-12-15
Horn Antenna	R&S	HF907	102723	2020-08-11	2023-08-10
Horn Antenna	ETS-Lindgren	3160-09	00102643	2021-10-10	2024-10-09
Software	R&S	EMC32	9.26.01	/	1
		Conducted Emis	ssion		
Artificial main network	R&S	ENV216	102191	2020-12-13	2022-12-12
EMI Test Receiver	R&S	ESR	101667	2021-05-15	2022-05-14
Software	R&S	EMC32	10.35.10	1	1

*****END OF REPORT *****

ANNEX A: The EUT Appearance

The EUT Appearance are submitted separately.

ANNEX B: Test Setup Photos

The Test Setup Photos are submitted separately.