

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 1 of 118

FCC SAR Test Report

Client Name : Shenzhen Qiyue Intelligent Co., LTD

Room 2202, COFCO Ziyun Building, Area 22,

Client Address : Lingzhi Community, Xin 'an Street, Bao 'an

District, Shenzhen, China

Product Name : MINI SMARTPHONE

Report Date: Nov. 23, 2022

Report No.:18220WC20259501

FCC ID: 2A9AU-A29

Page 2 of 118

Contents

1.,		ement of Compliance	6
2.	Gen	neral Information	7
	2.1.	Client Information	Mapoyee Arres
	2.2.	Description of EquipmentUnder Test (EUT)	
	2.3.	Device Category and SAR Limits	
	2.4.	Applied Standard	8
	2.5.	Environment of Test Site	8
	2.6.	Test Configuration	
3.	Spec	cific Absorption Rate (SAR)	atek
	3.1,0		9
	3.2.	SAR Definition	
4.	SAR	R Measurement System	10
	4.1.	E-Field Probe	1
	4.2.	Data Acquisition Electronics (DAE)	
	4.3.	Robot	
	4.4.	Measurement Server	13
	4.5.	Phantom Device Holder	13
	4.6.	Device Holder	12
	4.7.	Data Storage and Evaluation	15
5.	Test	t Equipment List	18
6.	Tissi	sue Simulating Liquids	19
7.	Syst	tem verification Procedures	, bote 21
8.	EUT	Γ Testing Position	23
	8.1.	Head Position	23
	8.2.	Body Position	
	8.3.	Hotspot Mode Exposure conditions	25
9.	Mea		26
	9.1.	Spatial Peak SAR Evaluation	20
	9.2.	Power Reference Measurement	2
	9.3.	Area Scan Procedures	27
	9.4.	Zoom Scan Procedures	28
	9.5.	Volume Scan Procedures	29
	9.6.	Volume Scan Procedures	29
10	. Cond	ducted Power	30
11	.Ante	enna Location	36
12	.SAR	R Test Results Summary	37
	12.1.	Head SAR Results	38
	12.2.	Head SAR Results Body-worn and Hotspot SAR Results ultaneous Transmission Analysis	41
13	.Simu	ultaneous Transmission Analysis	44
nen	zhen A	Anbotek Compliance Laboratory Limited Code:AB-RF-	05-b बा ट्साक

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500

www.anbotek.com.cn

Report No.:182	20WC20259501 FCC ID: 2A9AU-A29 Page 3 o	f 118
Simultaneous	TX SAR Considerations	44
Evaluation of	Simultaneous SAR	45
14. Measurem	nent Uncertainty	49
Appendix A.	EUT Photos and Test Setup Photos	51
Appendix B.	Plots of SAR System Check	53
Appendix C.	Plots of SAR Test Data	57
Appendix D.	DASY System Calibration Certificate	··· 69

Code: AB-RF-05-b

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 4 of 118

TEST REPORT

Applicant : Shenzhen Qiyue Intelligent Co., LTD

Manufacturer : Shenzhen Qiyue Intelligent Co., LTD

Product Name : MINI SMARTPHONE

Model No. : i14, 4PRO MAX, i15, i17, i18, i19, i88, i98

Trade Mark : N.A.

Rating(s) : With DC 3.8V battery inside

Test Standard(s) : IEC/IEEE 62209-1528:2020; FCC 47 CFR Part 2.1093;

ANSI/IEEE C95.1:2005; Reference FCC KDB 447498; KDB 248227;

KDB 616217; KDB 941225; KDB 865664

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the IEC/IEEE 62209-1528:2020, FCC 47 CFR Part 2.1093, ANSI/IEEE C95.1:2005 and Reference KDB 447498, KDB 248227, KDB 616217, KDB 941225, KDB 865664 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt		Nov. 07, 2022	
Date of Test		Nov. 08 - 14, 2022	
Prepared By	ek Anbotek Anbotek	Ella Liang	Anbotek A
	potek Anbotek Anbotek Anbote	(Ella Liang)	ibotek Anbotek
		King Kong Jin	
Approved & Authorized Signer	Anbotek Anbotek	Anborek Anboro	Anbotek A
		(Kingkong Jin)	

www.anbotek.com.cn

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 5 of 118

Version

Version No.	Date	Description
R00	Nov. 23, 2022	Original
Anbo botek	Anbotek Anbote	Anbotek Anbotek Anbotek Anbotek
ore. Andorek	Anbotek Anbe	k Anbotek Anbotek Anbotek Anbotek
inbotek Anbotek	Anbore And	otek Anbotek Anbotek Anbotek Anbotek
anbotek Anbo	te Anbotek	Inbotek Anbotek Anbotek Anbotek Anbotek
Anbotek Ar	ipo, William Williams	Anbotek Anbotek Anbotek Anbotek

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 6 of 118

1. Statement of Compliance

<Highest SAR Summary>

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

<Highest SAR Summary>

	Highest Reporte	CAD Toot I imit			
FrequencyBand	Head	Body-worn and Hotspot(10mm)	SAR Test Limit (W/Kg)		
GSM 850	0.481	0.401	otek Anbotek Anb		
GSM1900	0.397	0.283	lov tek upotek p		
WCDMA Band II	0.453	0.366	Aupo, tek upotek		
WCDMA Band IV	0.421	0.375	Aupor Al.		
WCDMA Band V	0.465	0.310	Anbore 1.6		
WLAN2.4G	0.321	0.248	ek Anbores And		
Simultaneous Reported SAR (W/Kg)	Mborek 0.778 Anborek	0.649	Pupotek Vipotek Vipotek		
Test Result	anbotek Anbo	PASS	Aupores. Pun		

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 7 of 118

2. General Information

2.1. Client Information

Applicant	: Shenzhen Qiyue Intelligent Co., LTD
Address	Room 2202, COFCO Ziyun Building, Area 22, Lingzhi Community, Xin 'an Street, Bao 'an District, Shenzhen, China
Manufacturer	: Shenzhen Qiyue Intelligent Co., LTD
Address	Room 2202, COFCO Ziyun Building, Area 22, Lingzhi Community, Xin 'an Street, Bao 'an District, Shenzhen, China
Factory	: Shenzhen Qiyue Intelligent Co., LTD
Address	Room 2202, COFCO Ziyun Building, Area 22, Lingzhi Community, Xin 'an Street, Bao 'an District, Shenzhen, China

2.2. Description of EquipmentUnder Test (EUT)

Product Name	:	MINI SMARTPHONE
Model No.	:	i14, 4PRO MAX, i15, i17, i18, i19, i88, i98 (Note: All samples are the same except the model number, so we prepare "i14" for test only.)
Trade Mark	:	N.A. Anboret And tek sportek Anbor t horek An
Test Power Supply	:	DC 3.8V
Test Sample No.	:	1-2-1(Engineering Sample)
Tx Frequency	:	BT BDR+EDR/BT BLE: 2402-2480MHz 2.4G WIFI: 2412-2462MHz GSM 850: TX: 824.2~848.8 MHz PCS 1900: TX:1850.2~1909.8 MHz UMTS Band 2: TX:1852.4~1907.6 MHz UMTS Band 4: TX: 1712.4 ~ 1752.6 MHz UMTS Band 5: TX: 826.4 ~ 846.6 MHz
Type of Modulation	:	GSM:GMSK WCDMA:QPSK,16QAM LTE:QPSK,16QAM BT: GFSK, π/4-DQPSK, 8DPSK 2.4G WIFI:BPSK,QPSK,16QAM,64QAM
Category of device	:	Portable device

Remark:

The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 8 of 118

2.3. Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2.4. Applied Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2.1093
- ANSI/IEEE C95.1:2005
- IEC/IEEE 62209-1528:2020
- KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- KDB 865664 D02 RF Exposure Reporting v01r02
- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 248227 D01 802 11 Wi-Fi SAR v02r02
- KDB 941225 D01 3G SAR Procedures v03r01
- KDB 648474 D04 Handset SAR v01r03

2.5. Environment of Test Site

Items	Required	Actual
Temperature (°C)	18-25	22~23
Humidity (%RH)	30-70	55~65

2.6. Test Configuration

The device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during all tests. For WLAN SAR testing, WLAN engineering testing software installed on the EUT can provide continuous transmitting RF signal.

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 9 of 118

3. Specific Absorption Rate (SAR)

3.1. Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

3.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ) . The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

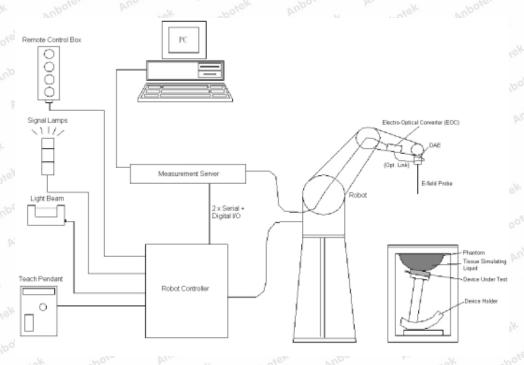
SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C \left(\frac{\delta T}{\delta t} \right)$$

Where: C is the specific head capacity, δT is the temperature rise and δt isthe exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.


However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

Report No.:18220WC20259501 Page 10 of 11

4. SAR Measurement System

DASY System Configurations

The DASYsystem for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

components are described in details in the following sub-sections.

Code: AB-RF-05-b

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 11 of 118

4.1. E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

E-Field Probe Specification

<EX3DV4 Probe>

Construction	Symmetrical design with triangular			
	core			
	Built-in shielding against static charges			
	PEEK enclosure material (resistant to			
	organic solvents, e.g., DGBE)			
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB			
Directivity	± 0.3 dB in HSL (rotation around probe			
	axis)			
	± 0.5 dB in tissue material (rotation			
	normal to probe axis)			
Dynamic Range	10 μW/g to 100 W/kg; Linearity: ± 0.2			
	dB (noise: typically< 1 μW/g)			
Dimensions	Overall length: 330 mm (Tip: 20 mm)			
	Tip diameter: 2.5 mm (Body: 12 mm)			
	Typical distance from probe tip to			
	dipole centers: 1 mm			

E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than ± 10%. The spherical isotropy shall be evaluated and within ± 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

4.2. Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Code: AB-RF-05-b 400-003-0500 www.anbotek.com.cn

Report No.:18220WC20259501 FCC ID: 2A9AU-A29

Photo of DAE

4.3. Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controllersystem, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäublirobot series have many features that are important for our application:

- ➤ High precision (repeatability ±0.035 mm)
- ➤ High reliability (industrial design)
- > Jerk-free straight movements
- > Low ELF interference (the closed metallic construction shields against motor control fields)

Photo of DASY5

Page 12 of 118

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 13 of 118

4.4. Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Photo of Server for DASY5

4.5. Phantom

<SAM Twin Phantom>

2 ± 0.2 mm;	upute. our
Center ear point: 6 ± 0.2 mm	
Approx. 25 liters	rok nok
Length: 1000 mm; Width: 500 mm;	
Height: adjustable feet	The state of the s
Left Hand, Right Hand, Flat	ACC.
Phantom	100 O
nbotek Anbotek Anbotek	Al
Anbotek Anbotek Anbotek	Photo of SAM Phantom
	Center ear point: 6 ± 0.2 mm Approx. 25 liters Length: 1000 mm; Width: 500 mm; Height: adjustable feet Left Hand, Right Hand, Flat

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 14 of 118

<ELI4 Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)
Filling Volume	Approx. 30 liters
Dimensions	Major ellipse axis: 600 mm
	Minor axis:400 mm
	Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek
	Photo of ELI4 Phantom

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

4.6. Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 15 of 118

Device Holder

4.7. Data Storage and Evaluation

Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [W/kg]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 16 of 118

parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}

Conversion factor ConvF_i

Diode compression point dcpi

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity σ

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field Probes:
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H-field Probes:
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with V_i = compensated signal of channel i,(i= x, y, z)

Norm_i= sensor sensitivity of channel i, (i= x, y, z), $\mu V/(V/m)^2$ for E-field Probes

ConvF= sensitivity enhancement in solution

a_{ii}= sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i= electric field strength of channel iin V/m

Shenzhen Anbotek Compliance Laboratory Limited

Code: AB-RF-05-b

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.
Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 17 of 118

H_i= magnetic field strength of channel iin A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in W/kg

E_{tot}= total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 18 of 118

5. Test Equipment List

Manufacture	Name of Equipment	Tour of Billion along	Carial Number	Calibration		
r	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date	
SPEAG	835MHz System Validation Kit	D835V2	4d154	Jun. 16,2021	Jun. 15,2024	
SPEAG	1750MHz System Validation Kit	D1750V2	1021	Jul. 01,2021	Jun. 30,2024	
SPEAG	1900MHz System Validation Kit	D1900V2	5d175	Jun. 15,2022	Jun. 14,2025	
SPEAG	2450MHz System Validation Kit	D2450V2	910	Jun. 15,2021	Jun. 14,2024	
Rohde & Schwarz	UNIVERSAL RADIO COMMUNICATION TESTER	CMW500	167336	Oct.13, 2022	Oct.12, 2023	
SPEAG	Data Acquisition Electronics	DAE4	387	Sept.06,2022	Sept.05,2023	
SPEAG	Dosimetric E-Field Probe	EX3DV4	7396	May 06,2022	May 05,2023	
Agilent	ENA Series Network Analyzer	E5071C	MY46317418	Oct.26, 2022	Oct.25, 2023	
SPEAG	DAK	DAK-3.5	1226	NCR	NCR	
SPEAG	SAM Twin Phantom	QD000P40CD	1802	NCR	NCR	
SPEAG	ELI Phantom	QDOVA004A A	2058	NCR	NCR	
AR	Amplifier	ZHL-42W	QA1118004	NCR	NCR	
Agilent	Power Meter	N1914A	MY50001102	Oct.26, 2022	Oct.25, 2023	
Agilent	Power Sensor	N8481H	MY51240001	Oct.26, 2022	Oct.25, 2023	
R&S	Spectrum Analyzer	N9020A	MY51170037	Oct.26, 2022	Oct.25, 2023	
Agilent	Signal Generation	N5182A	MY48180656	Oct.26, 2022	Oct.25, 2023	
Worken	Directional Coupler	0110A05601O -10	COM5BNW1A2	Oct.26, 2022	Oct.25, 2023	

Note:

- 1. The calibration certificate of DASY can be referred to appendix C of this report.
- 2. The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.
- 4. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.
- 5. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400–003–0500 www.anbotek.com.cr

Report No.:18220WC20259501

required for correct measurement; the power meter is critical and we do have calibration for it

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed:

Photo of Liquid Height for Head SAR

Photo of Liquid Height for Body SAR

The following table gives the recipes for tissue simulating liquid.

Frequency (MHz)	Wat er (%)	Sugar (%)	Cellulose (%)	Salt (%)	Prevento I (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)
				For Hea	ad			
835	40.3	57.9	0.2	1.4	ore* 0.2 pm	0	0.90	41.5
1750	55.2	0,000	ek O Yupo,	0.3	,botel0	44.5	1.37	40.1
1800,1900,2000	55.2	× 0	potek O An	0.3	0.1	44.5	1.40	40.0
2450	55.0	otek-0	Anbote0	Anboro	Opotek	45.0	1.80	39.2
				For Boo	dy			
835	50.8	48.2	Obotek	0.9	0.1	otek 0	0.97	55.2
1750	70.2	0"4	k O wpote	0.4	0	29.4	1.49	53.4
1800,1900,2000	70.2	0,000	otek 0 ant	0.4	upo, 0	29.4	1.52	53.3
2450	68.6	0 100	0	unbot 0	Aupon Polk	31.4	1.95	52.7

The following table shows the measuring results for simulating liquid.

www.anbotek.com.cr

Code: AB-RF-05-b

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 20 of 118

Measured	Target	Tissue		Measure	ed Tissue	•		
Frequenc y (MHz)	٤r	σ	٤r	Dev. (%)	σ	Dev. (%)	Liquid Temp.	Test Data
835	41.5	0.90	41.38	-0.29	0.87	-3.33	22.2℃	11/08/2022
1750	40.1	1.37	40.26	0.40	1.32	-3.65	22.1℃	11/10/2022
1900	40.0	1.40	40.12	0.30	1.42	1.43	22.2°C	11/11/2022
2450	39.2	1.80	39.38	0.46	1.76	-2.22	22.3°C	11/14/2022

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 21 of 118

7. System Verification Procedures

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

System Setup for System Evaluation

Code: AB-RF-05-b

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 22 of 118

Photo of Dipole Setup

Validation Results

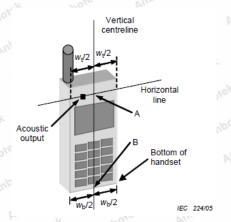
Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

	Date	Frequenc y (MHz)	Power fed onto reference dipole (mW)	Targeted SAR (W/kg)	Measured SAR (W/kg)	Normalized SAR (W/kg)	Deviatio n (%)
109	1/08/2022	835	250	9.57	2.36	9.44	-1.36
1	1/10/2022	1750	250	36.7	9.67	38.68	5.40
1	1/11/2022	1900	250	40.1	10.16	40.64	1.35
1	1/14/2022	2450	250	51.8	12.91	51.64	-0.31

Target and Measurement SAR after Normalized

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 23 of 118

8. EUT Testing Position


8.1. Head Position

The wireless device define two imaginary lines on the handset, the vertical centreline and the horizontal line, for the handset in vertical orientation as shown in Figures 5a and 5b.

The vertical centreline passes through two points on the front side of the handset: the midpoint of the width W_t of the handset at the level of the acoustic output (point A in Figures 5a and 5b), and the midpoint of the width W_b of the bottom of the handset (point B).

The horizontal line is perpendicular to the vertical centreline and passes through the centre of the acoustic output (see Figures 5a and 5b). The two lines intersect at point A.

Note that for many handsets, point A coincides with the centre of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centreline is not necessarily parallel to the front face of the handset (see Figure 5b), especially for clam-shell handsets, handsets with flip cover pieces, and other irregularly shaped handsets.

Vertical centreline

Horizontal line

A Acoustic output

Bottom of handset

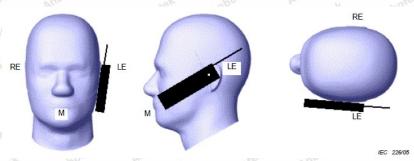
Wb/2 Wb/2

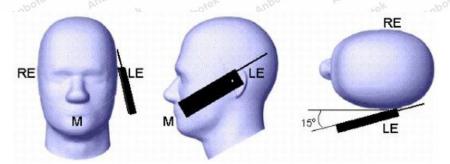
Wb/2 Wb/2

Figures 5a

Figures 5b

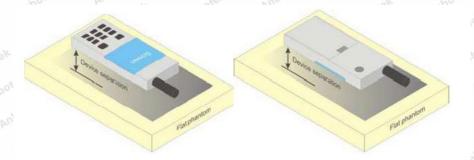
- W_t Width of the handset at the level of the acoustic
- W_b Width of the bottom of the handset
- A Midpoint of the widthwt of the handset at the level of the acoustic output
- B Midpoint of the width wb of the bottom of the handset




Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 24 of 118

Cheek position

Picture 2 Cheek position of the wireless device on the left side of SAM

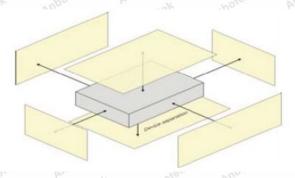

Tilt position

Picture 3 Tilt position of the wireless device on the left side of SAM

8.2. Body Position

Devices that support transmission while used with body-worn accessories must be tested for body-worn accessory SAR compliance, typically according to the smallest test separation distance required for the group of body-worn accessories with similar operating and exposure characteristics. Devices that are designed to operate on the body of users using lanyards and straps or without requiring additional body-worn accessories must be tested for SAR compliance using a conservative minimum test separation distance ≤ 5mm to support compliance.

Picture 4 Test positions for body-worn devices



Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 25 of 118

8.3. Hotspot Mode Exposure conditions

The hotspot mode and body-worn accessory SAR test configurations may overlap for handsets. When the same wireless mode transmission configurations for voice and data are required for SAR measurements, the more conservative configuration with a smaller separation distance should be tested for the overlapping SAR configurations. This typically applies to the back and front surfaces of a handset when SAR is required for both hotspot mode and body-worn accessory exposure conditions. Depending on the form factor and dimensions of a device, the test separation distance used for hotspot mode SAR measurement is either

10 mm or that used in the body-worn accessory configuration, whichever is less for devices with dimension > 9 cm x 5 cm. For smaller devices with dimensions \leq 9 cm x 5 cm because of a greater potential for next to body use a test separation of \leq 5 mm must be used.

Picture 5 Test positions for Hotspot Mode

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 26 of 118

9. Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the middle channel.
- (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as setup photos demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- (f) Measure SAR transmitting at the middle channel for all applicable exposure positions.
- (g) Identify the exposure position and device configuration resulting the highest SAR
- (h) Measure SAR at the lowest and highest channels attheworst exposure position and device configuration if applicable.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9.1. Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

Code:AB-RF-05-b

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 27 of 118

9.2. Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

9.3. Area Scan Procedures

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

		VIII.
	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution in x or y dimension of the test dimeasurement point on the test.	on, is smaller than the above, must be \leq the corresponding levice with at least one

Report No.:18220WC20259501 Page 28 of 11 CC ID: 2A9AU-A29

9.4. Zoom Scan Procedures

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			≤ 3 GHz	> 3 GHz
-k moter	VUD	-telk	- upo, bi.	noter And
Maximum zoom scan s	spatial reso	lution: Δx _{700m} , Δv _{700m}	≤ 2 GHz: ≤ 8 mm	$3-4 \text{ GHz: } \leq 5 \text{ mm}^*$
	•	200117 7 20011	2 – 3 GHz: ≤ 5 mm	4 – 6 GHz: ≤ 4 mm*
				$3-4$ GHz: ≤ 4 mm
4	uniform	grid: $\Delta z_{Zoom}(n)$	≤ 5 mm	$4-5$ GHz: ≤ 3 mm
				5 – 6 GHz: ≤ 2 mm
Maximum zoom scan		$\Delta z_{Zoom}(1)$: between		3 – 4 GHz: ≤ 3 mm
spatial resolution,		1 st two points closest	≤ 4 mm	$4-5$ GHz: ≤ 2.5 mm
normal to phantom surface	graded	to phantom surface		5 – 6 GHz: ≤ 2 mm
7	grid $\Delta z_{Z_{0om}}(n>1)$: between subsequent points		≤ 1.5 ⋅ ∠	$\Delta z_{Zoom}(n-1)$
Minimum zoom scan				$3-4$ GHz: ≥ 28 mm
volume	x, y, z		≥ 30 mm	$4-5$ GHz: ≥ 25 mm
3				5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 29 of 118

9.5. Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregateSAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.6. Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 30 of 118

10. Conducted Power

<GSM Conducted power>

Band GSM850	Burs	t Average	Power (d	Bm)	Fram	ne-Averag	e Power (dBm)
TX Channel	Tune-up	128	190	251	128	190	251	Tune-up
Frequency (MHz)	power	824.2	836.6	848.8	824.2	836.6	848.8	power
GSM (GMSK, 1 Tx slot)	33.00	32.16	32.33	32.30	23.13	23.30	23.27	24.00
GPRS (GMSK, 1 Tx slot)	33.00	32.30	32.21	32.43	23.27	23.18	23.40	24.00
GPRS (GMSK, 2 Tx slots)	31.00	30.64	30.54	30.69	24.62	24.52	24.67	25.00
GPRS (GMSK, 3 Tx slots)	29.00	28.79	28.69	28.87	24.53	24.43	24.61	25.00
GPRS (GMSK, 4 Tx slots)	29.00	27.86	27.86	28.09	24.85	24.85	25.08	25.50
Band PCS1900	Rurs	t Average	Power (d	Rm)	Fram	ne-Averag	e Power (dRm)
Dalla P CO 1900	Dais	n Avoluge	, i OWC: (a	- ,		.0 / 110.49	0 1 0 11 Ci (ubili)
TX Channel	Tune-up	512	661	810	512	661	810	Tune-up
			1	•			ī	1
TX Channel	Tune-up	512	661	810	512	661	810	Tune-up
TX Channel Frequency (MHz)	Tune-up power	512 1850.2	661 1880.0	810 1909.8	512 1850.2	661 1880.0	810 1909.8	Tune-up power
TX Channel Frequency (MHz) GSM (GMSK, 1 Tx slot)	Tune-up power 31.00	512 1850.2 30.23	661 1880.0 30.35	810 1909.8 30.14	512 1850.2 21.20	661 1880.0 21.32	810 1909.8 21.11	Tune-up power 22.00
TX Channel Frequency (MHz) GSM (GMSK, 1 Tx slot) GPRS (GMSK, 1 Tx slot)	Tune-up power 31.00 31.00	512 1850.2 30.23 30.29	661 1880.0 30.35 30.13	810 1909.8 30.14 30.31	512 1850.2 21.20 21.26	661 1880.0 21.32 21.10	810 1909.8 21.11 21.28	Tune-up power 22.00 22.00
TX Channel Frequency (MHz) GSM (GMSK, 1 Tx slot) GPRS (GMSK, 1 Tx slot) GPRS (GMSK, 2 Tx slots)	Tune-up power 31.00 31.00 28.00	512 1850.2 30.23 30.29 27.63	661 1880.0 30.35 30.13 27.56	810 1909.8 30.14 30.31 27.58	512 1850.2 21.20 21.26 21.61	661 1880.0 21.32 21.10 21.54	810 1909.8 21.11 21.28 21.56	22 22 22

Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots.

The calculated method are shown as below:

Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9.03 dB

Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6.02 dB

Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB

Frame-averaged power = Maximum burst averaged power (4 Tx Slots) – 3.01 dB

Note:

- 1. Per KDB 447498 D01, the maximum output power channel is used for SAR testing and for further SAR test reduction
- 2. For Hotspot mode SAR testing, GPRS should be evaluated, therefore the EUT was set inGPRS 4 Tx slots for GSM850and PCS1900 due to its highest frame-average power.

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 31 of 118

<WCDMA Conducted Power>

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. A summary of these settings are illustrated below:

HSDPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting:
 - i. Set Gain Factors (β_c and β_d) and parameters were set according to each
 - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
 - iii. Set RMC 12.2Kbps + HSDPA mode.
 - iv. Set Cell Power = -86 dBm
 - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - x. Set CQI Repetition Factor to 2
 - xi. Power Ctrl Mode = All Up bits
- d. The transmitted maximum output power was recorded.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

	Sub-test	βε	βd	βd (SF)	βс/βа	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
Γ	1	2/15	15/15	64	2/15	4/15	0.0	0.0
Γ	2	12/15	15/15	64	12/15	24/15	1.0	0.0
L		(Note 4)	(Note 4)		(Note 4)			
	3	15/15	8/15	64	15/8	30/15	1.5	0.5
Γ	4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$.

Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle ACK and \triangle NACK = 30/15 with β_{hs} = 30/15 * β_c , and \triangle CQI = 24/15 with β_{hs} = 24/15 * β_c .

Note 3: CM = 1 for β_o/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4: For subtest 2 the $\beta_{\text{o}}/\beta_{\text{d}}$ ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_{c} = 11/15 and β_{d} = 15/15.

Setup Configuration

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 32 of 118

HSUPA Setup Configuration:

- a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting *:
 - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121
 - iii. Set Cell Power = -86 dBm
 - iv. Set Channel Type = 12.2k + HSPA
 - v. Set UE Target Power
 - vi. Power Ctrl Mode= Alternating bits
 - vii. Set and observe the E-TFCI
 - viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

	Sub- test	βς	βα	β _d (SF)	βc/βd	βнs (Note1)	βес	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI	ř
	1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75	5
ì	2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67	
	3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4	2	2.0	1.0	15	92	
Ç	4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71	ŀ
	5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81	- 27

Note 1: $\Delta_{\rm ACK}$, $\Delta_{\rm NACK}$ and $\Delta_{\rm CQI}$ = 30/15 with β_{hs} = 30/15 * β_c .

Note 2: CM = 1 for β_c/β_d =12/15, β_{ns}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15.

Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.

Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value.

Setup Configuration

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 33 of 118

<WCDMA Conducted Power>

WCDMA		Band II (dBm) Band V (dBm)						
TX Channel	Tune-up	9262	9400	9538	Tune-up	4132	4183	4233
Frequency (MHz)	power	1852.4	1880.0	1907.6	power	826.4	836.6	846.6
RMC 12.2Kbps	24.00	23.63	23.38	23.26	24.00	23.18	23.77	22.60
HSDPA Subtest-1	23.00	23.50	23.51	23.06	24.00	23.47	23.35	22.97
HSDPA Subtest-2	23.00	22.65	22.43	21.69	22.50	22.25	22.05	22.13
HSDPA Subtest-3	21.50	20.84	21.31	20.57	22.00	20.58	21.50	21.56
HSDPA Subtest-4	21.50	21.07	20.47	20.83	22.00	21.87	21.32	21.76
HSUPA Subtest-1	21.00	20.14	20.46	19.82	21.00	19.83	20.60	20.24
HSUPA Subtest-2	22.50	22.49	22.11	21.65	22.50	21.66	22.28	22.66
HSUPA Subtest-3	21.50	20.49	21.23	20.86	22.00	21.03	21.92	21.75
HSUPA Subtest-4	21.50	20.40	21.42	20.76	22.00	21.84	21.36	21.96
HSUPA Subtest-5	20.50	19.54	19.85	20.49	21.00	20.16	20.57	20.46

WCDMA		Band I	V (dBm)	
TX Channel	Tune-up	1312	1412	1513
Frequency (MHz)	power	1712.4	1732.4	1752.6
RMC 12.2Kbps	24.00	23.62	23.42	23.19
HSDPA Subtest-1	24.00	23.27	23.75	23.12
HSDPA Subtest-2	23.00	22.58	22.33	22.01
HSDPA Subtest-3	21.50	21.00	21.12	20.89
HSDPA Subtest-4	21.00	20.77	20.36	20.76
HSUPA Subtest-1	21.00	20.20	20.56	19.81
HSUPA Subtest-2	22.50	22.29	22.08	21.86
HSUPA Subtest-3	21.50	20.39	21.27	21.06
HSUPA Subtest-4	21.50	20.15	21.47	20.99
HSUPA Subtest-5	21.00	19.82	19.84	20.50
16, 70	- V	1401	Dr.	

General Note

- Per KDB 941225 D01 v02, RMC 12.2kbps setting is used to evaluate SAR. If AMR 12.2kbps power is < 0.25dB higher than RMC 12.2kbps, SAR tests with AMR 12.2kbps can be excluded.
- 2. By design, AMR and HSDPA/HSUPA RF power will not be larger than RMC 12.2kbps, detailed information is included in Tune-up Procure exhibit.
- 3. It is expected by the manufacturer that MPR for some HSDPA/HSUPA subtests may differ from the specification of 3GPP, according to the chipset implementation in this model. The implementation and expected deviation are detailed in tune-up procedure exhibit.

Code:AB-RF-05-b

Hotline
400-003-0500

www.anbotek.com.cn

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 34 of 118

<WLAN 2.4GHz Conducted Power>

Mode	Channel	Frequency (MHz)	Conducted Peak Output Power(dBm)	Conducted Average Output Power(dBm)	Tune-up power(dBm)
	Arboten	2412	14.47	12.71	14.00
802.11b	6 3504	2437	15.08	13.15	14.00
	11	2462	15.80	13.87	14.00
	1 2	2412	13.60	11.14	12.50
802.11g	10 ⁰¹⁰ 6	2437	14.34	11.92	12.50
	b.11	2462	14.79	12.15	12.50
	1 _{orek}	2412	13.74	11.37	12.50
802.11n(HT20)	6	2437	14.73	12.09	12.50
	11	2462	15.16	12.47	12.50

Note:

1. Per KDB 447498 D01, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where

f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation

The result is rounded to one decimal place for comparison

- 2. Base on the result of note1, RF exposure evaluation of 2.4G/5.2G/5.3G /5.8G WIFI mode is required.
- 3. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion.
- 4. Per KDB 248227 D01, In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. SAR is not required for the following 2.4 GHz OFDM conditions:
 - 1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
 - 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 35 of 118

<Bluetooth Conducted Power>

Mode Channel		Frequency (MHz)	Conducted Peak Output Power(dBm)	Conducted Average Output Power(dBm)	Tune-up power(dBm)
DT DDD	et 00 mbote	2402	-0.21	-1.11	-1.00 And
BT BDR	39	2441	-0.73	-1.62	-1.00
(GFSK)	78	2480	-1.30	-2.02	-1.00
DT EDD	00	2402	0.63	-0.31	0.00
BT EDR	39	2441	0.22	-0.66	0.00
(Π/4DQPSK)	78	2480	-0.38	-1.15	0.00
DT 500	4 00 pore	2402	0.61	-0.29	0.00
BT EDR	39	2441	0.19	-0.71	0.00
(8DPSK)	78	2480	-0.35	-1.19	0.00
DT DI E 414	100 D	2402	-0.23	-1.12	-1.00
BT BLE_1M	19	2440	-0.34	-1.21	-1.00
(GFSK)	39	2480	-0.98	-1.68	-1.00

Note:

Per KDB 447498 D01v05r02, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

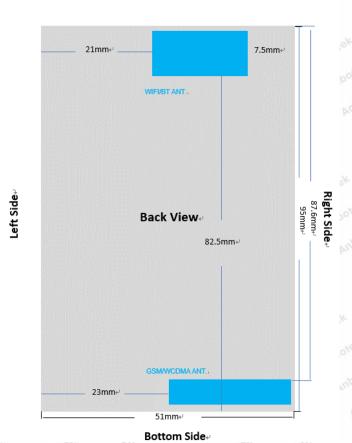
f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation

The result is rounded to one decimal place for comparison

Bluetooth Max Power (dBm)	Separation Distance (mm)	Frequency (GHz)	exclusion thresholds	
Anborrek 0.00 Anborrek	both Amboren Anboren	2.48	0.31	

Per KDB 447498 D01, when the minimum test separation distance is <10 mm, a distance of 10 mm is applied to determine SAR test exclusion. The test exclusion threshold is 0.31 which is<= 3, SAR testing is not required.



Report No.:18220WC20259501 Page 36 of

Antenna Location

Top Side

EUT BACK VIEW

Distance of The Antenna to the EUT surface and edge							
Antennas	Front	Back	Top Side	Bottom Side	Left Side	Right Side	
BT&WiFi	<25mm	<25mm	<25mm	>25mm	<25mm	<25mm	
GSM/WCDMA	<25mm	<25mm	>25mm	<25mm	<25mm	<25mm	

Positions for SAR tests; Body and Hotspot mode								
Antennas	Front	Back	Top Side	Bottom Side	Left Side	Right Side		
BT&WiFi	Yes	work Yes Ambo	Yes	No or ex	Yes	Yes		
GSM/WCDMA	Yes	Yes	botel No Anbo	Yes	Yes	Yes		

General Note: According with FCC KDB 447498 D01, appendix A, <SAR test exclusion thresholds for 100MHz~6GHz and≤50mm>table, this device SAR test configurations considerations are shown in the table above.

Per KDB 447498 D01, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.

Shenzhen Anbotek Compliance Laboratory Limited

Code: AB-RF-05-b

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 37 of 118

12. SAR Test Results Summary

General Note:

1.Per KDB 447498 D01v05r01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

Scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Reported SAR(W/kg)= Measured SAR(W/kg)* Scaling Factor

2.Per KDB 447498 D01v05r01, for each exposure position, if the highest output channel reported SAR≤0.8W/kg, other channels SAR testing are not necessary

3.Per KDB 941225 D05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.

4.Per KDB 941225 D05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.

5.Per KDB 941225 D05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

6.Per KDB 941225 D05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05, 16QAM SAR testing is not required.

7.Per KDB 941225 D05, Smaller bandwidth output power for each RB allocation configuration is > not $\frac{1}{2}$ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is \leq 1.45 W/kg; Per KDB 941225 D05, smaller bandwidth SAR testing is not required.

8.Per KDB865664 D01, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/Kg; if the deviation among the repeated measurement is ≤20%,and the measured SAR <1.45W/Kg, only one repeated measurement is required.

9.When the user enables the personal Wireless router functions for the handsets, actual operations include simultaneous transmission of both the Wi-Fi transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. The "Portable Hotspot" feature on the handset was

NOT activated, to ensure the SAR measurements were evaluated for a single transmissionfrequency RF signal.

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 38 of 118

12.1. Head SAR Results

<GSM>

Plot No.	Band	Mode	Test Position	Ch.	Freq. (MHz)	Averag e Power (dBm)	Tune-Up Limit (dBm)	Scalin g Factor	Drift	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
#1	GSM850	GPRS(4 Tx slots)	Left Cheek	251	848.6	25.08	25.50	1.102	0.07	0.437	0.481
ak atek	GSM850	GPRS(4 Tx slots)	Left Tilt	251	848.6	25.08	25.50	1.102	0.14	0.243	0.268
Anbot	GSM850	GPRS(4 Tx slots)	Right Cheek	251	848.6	25.08	25.50	1.102	0.08	0.404	0.445
Ant	GSM850	GPRS(4 Tx slots)	Right Tilt	251	848.6	25.08	25.50	1.102	-0.11	0.211	0.232
#2	PCS1900	GPRS(4 Tx slots)	Left Cheek	810	1909.8	22.88	23.00	1.028	0.03	0.386	0.397
nbote	PCS1900	GPRS(4 Tx slots)	Left Tilt	810	1909.8	22.88	23.00	1.028	-0.13	0.168	0.173
Anb	PCS1900	GPRS(4 Tx slots)	Right Cheek	810	1909.8	22.88	23.00	1.028	0.11	0.337	0.346
F	PCS1900	GPRS(4 Tx slots)	Right Tilt	810	1909.8	22.88	23.00	1.028	-0.08	0.159	0.163

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 39 of 118

<WCDMA>

Plot No.	Band	Mode	Test Position	Ch.	Freq. (MHz)	Averag e Power (dBm)	Tune-U p Limit (dBm)	Scalin g Factor	Drift	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
#3	WCDMA Band II	RMC 12.2K	Left Cheek	9262	1852.4	23.63	24.00	1.089	0.15	0.416	0.453
2	WCDMA Band II	RMC 12.2K	Left Tilt	9262	1852.4	23.63	24.00	1.089	0.11	0.249	0.271
otek	WCDMA Band II	RMC 12.2K	Right Cheek	9262	1852.4	23.63	24.00	1.089	0.10	0.407	0.443
Anbote	WCDMA Band II	RMC 12.2K	Right Tilt	9262	1852.4	23.63	24.00	1.089	0.08	0.238	0.259
#4	WCDMA Band V	RMC 12.2K	Left Cheek	4183	836.6	23.77	24.00	1.054	-0.03	0.441	0.465
otek K	WCDMA Band V	RMC 12.2K	Left Tilt	4183	836.6	23.77	24.00	1.054	-0.09	0.307	0.324
inbote	WCDMA Band V	RMC 12.2K	Right Cheek	4183	836.6	23.77	24.00	1.054	-0.07	0.429	0.452
Pup.	WCDMA Band V	RMC 12.2K	Right Tilt	4183	836.6	23.77	24.00	1.054	0.01	0.283	0.298
#5	WCDMA Band IV	HSDPA Subtest-1	Left Cheek	1412	1732.4	23.75	24.00	1.059	0.13	0.397	0.421
nbotek	WCDMA Band IV	HSDPA Subtest-1	Left Tilt	1412	1732.4	23.75	24.00	1.059	0.14	0.225	0.238
Anbo	WCDMA Band IV	HSDPA Subtest-1	Right Cheek	1412	1732.4	23.75	24.00	1.059	0.05	0.358	0.379
, A	WCDMA Band IV	HSDPA Subtest-1	Right Tilt	1412	1732.4	23.75	24.00	1.059	-0.13	0.199	0.211

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 40 of 118

<WIFI>

Plot No.	Band	Mode	Test Position	Ch.	Freq. (MHz)	Averag e Power (dBm)	p Limit	Scalin g Factor	Drift	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
Anbor	WIFI2.4GHz	802.11b	Left Cheek	11	2462	13.87	14.00	1.030	-0.07	0.288	0.297
An	WIFI2.4GHz	802.11b	Left Tilt	11	2462	13.87	14.00	1.030	-0.13	0.169	0.174
#6	WIFI2.4GHz	802.11b	Right Cheek	11	2462	13.87	14.00	1.030	-0.09	0.312	0.321
wotek.	WIFI2.4GHz	802.11b	Right Tilt	11	2462	13.87	14.00	1.030	-0.12	0.183	0.189

Note:

- 1. Per KDB 865664 D01V01,for each frequency band ,repeated SAR measurement is required only when the measured SAR is≥0.8W/Kg.
- 2. Per KDB 865664 D01V01,if the ratio of largest to smallest SAR for the original and first repeated measurement is≤1.2and the measured SAR <1.45W/Kg, only one repeated measurement is required.
- 3. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥ 1.45W/Kg
- 4. The ratio is the difference in percentage between original and repeated measured SAR.

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 41 of 118

12.2. Body-worn and Hotspot SAR Results

<GSM>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Averag e Power (dBm)	Tune-U p Limit (dBm)	Scalin g Factor	Powe r Drift (dB)	Measure d SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
40.	GSM850	GPRS(4 Tx slots)	Front	10	251	848.6	25.08	25.50	1.102	0.07	0.276	0.304
#7	GSM850	GPRS(4 Tx slots)	Back	_{mb} 10 ^k	251	848.6	25.08	25.50	1.102	0.11	0.364	0.401
Ant	GSM850	GPRS(4 Tx slots)	Left Side	10	251	848.6	25.08	25.50	1.102	0.12	0.127	0.140
4	GSM850	GPRS(4 Tx slots)	Right Side	10	251	848.6	25.08	25.50	1.102	0.05	0.321	0.354
otek	GSM850	GPRS(4 Tx slots)	Top Side	10	251	848.6	25.08	25.50	1.102	N/A	N/A	N/A
Anb	GSM850	GPRS(4 Tx slots)	Bottom Side	10	251	848.6	25.08	25.50	1.102	0.15	0.344	0.379
P	PCS1900	GPRS(4 Tx slots)	Front	10	810	1909.8	22.88	23.00	1.028	-0.08	0.183	0.188
#8	PCS1900	GPRS(4 Tx slots)	Back	10	810	1909.8	22.88	23.00	1.028	0.08	0.275	0.283
Anbo	PCS1900	GPRS(4 Tx slots)	Left Side	Ar 10 ek	810	1909.8	22.88	23.00	1.028	-0.12	0.093	0.096
P.	PCS1900	GPRS(4 Tx slots)	Right Side	10	810	1909.8	22.88	23.00	1.028	-0.18	0.217	0.223
iek iek	PCS1900	GPRS(4 Tx slots)	Top Side	10	810	1909.8	22.88	23.00	1.028	N/A	N/A	N/A
Anbo	PCS1900	GPRS(4 Tx slots)	Bottom Side	And 10°K	810	1909.8	22.88	23.00	1.028	-0.07	0.262	0.269

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 42 of 118

<WCDMA>

20	WCDMA>	- dek	2000	Je.	400		010	Hum	14	- ofer	anbo	100
Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Averag e Power (dBm)	Tune-U p Limit (dBm)	Scalin g Factor	Powe r Drift (dB)	Measure d SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
Anbor	WCDMA Band II	RMC 12.2K	Front	Anboi 10	9262	1852.4	23.63	24.00	1.089	-0.15	0.208	0.226
#9	WCDMA Band II	RMC 12.2K	Back	10	9262	1852.4	23.63	24.00	1.089	-0.05	0.336	0.366
otek	WCDMA Band II	RMC 12.2K	Left Side	10	9262	1852.4	23.63	24.00	1.089	0.17	0.112	0.122
Anbote	WCDMA Band II	RMC 12.2K	Right Side	10	9262	1852.4	23.63	24.00	1.089	0.01	0.291	0.317
bu	WCDMA Band II	RMC 12.2K	Top Side	10	9262	1852.4	23.63	24.00	1.089	N/A	N/A	N/A
e otek	WCDMA Band II	RMC 12.2K	Bottom Side	10	9262	1852.4	23.63	24.00	1.089	0.12	0.319	0.347
nbote	WCDMA Band V	RMC 12.2K	Front	10	4183	836.6	23.77	24.00	1.054	-0.13	0.182	0.192
#10	WCDMA Band V	RMC 12.2K	Back	10	4183	836.6	23.77	24.00	1.054	-0.06	0.294	0.310
.eV	WCDMA Band V	RMC 12.2K	Left Side	10	4183	836.6	23.77	24.00	1.054	0.13	0.083	0.088
nbotek	WCDMA Band V	RMC 12.2K	Right Side	10°°	4183	836.6	23.77	24.00	1.054	0.15	0.277	0.292
Anbo	WCDMA Band V	RMC 12.2K	Top Side	10	4183	836.6	23.77	24.00	1.054	N/A	N/A	N/A
V	WCDMA Band V	RMC 12.2K	Bottom Side	10	4183	836.6	23.77	24.00	1.054	-0.12	0.271	0.286
botek	WCDMA Band IV	HSDPA Subtest-1	Front	10 k	1412	1732.4	23.75	24.00	1.059	0.08	0.288	0.305
#11	WCDMA Band IV	HSDPA Subtest-1	Back	10	1412	1732.4	23.75	24.00	1.059	0.08	0.354	0.375
br.	WCDMA Band IV	HSDPA Subtest-1	Left Side	10	1412	1732.4	23.75	24.00	1.059	-0.18	0.117	0.124
ek otek	WCDMA Band IV	HSDPA Subtest-1	Right Side	10	1412	1732.4	23.75	24.00	1.059	-0.12	0.332	0.352
Anbot	WCDMA Band IV	HSDPA Subtest-1	Top Side	10	1412	1732.4	23.75	24.00	1.059	N/A	N/A	N/A

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500 www.anbotek.com.cn

Code:AB-RF-05-b

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 43 of 118

WCDMA HSDPA	Bottom	10	1/112	1732.4	23.75	24.00	1.050	0.08	0.342	0.362
Band IV Subtest-1	Side	I O P.C	N 12	1702.4	25.75	24.00	1.000	0.00	0.042	0.302 _A

<WIFI 2.4GHz>

						Eroa	Averag	Tune-U	Scalin	Powe	Measure	Reporte
Plot	Band	Mode	Test	Gap		Freq.	е	р		r	d	d
No.	Ballu	Mode	Position	(mm)		(1411-12	Power	Limit	g Factor	Drift	SAR _{1g}	SAR _{1g}
						,	(dBm)	(dBm)	ractor	(dB)	(W/kg)	(W/kg)
V.	WIFI2.4GHz	802.11b	Front	10	,511 ^k	2462	13.87	14.00	1.030	0.07	0.115	0.118
#12	WIFI2.4GHz	802.11b	Back	10	11	2462	13.87	14.00	1.030	-0.12	0.241	0.248
DOJEN	WIFI2.4GHz	802.11b	Left Side	10	11	2462	13.87	14.00	1.030	0.16	0.187	0.193
nbote	WIFI2.4GHz	802.11b	Right Side	10	11	2462	13.87	14.00	1.030	0.05	0.212	0.218
-/0	WIFI2.4GHz	802.11b	Top Side	10	11	2462	13.87	14.00	1.030	0.15	0.224	0.231
bee	WIFI2.4GHz	802.11b	Bottom Side	10	11 otek	2462	13.87	14.00	1.030	N/A	N/A	N/A

Note:

- 1. Per KDB 865664 D01V01,for each frequency band ,repeated SAR measurement is required only when the measured SAR is≥0.8W/Kg.
- 2. Per KDB 865664 D01V01,if the ratio of largest to smallest SAR for the original and first repeated measurement is≤1.2and the measured SAR <1.45W/Kg, only one repeated measurement is required.
- 3. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥ 1.45W/Kg
- 4. The ratio is the difference in percentage between original and repeated measured SAR

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 44 of 118

13. Simultaneous Transmission Analysis

Simultaneous TX SAR Considerations

No. Applicable Simultaneous Transmission

- GSM+WIFI 2.4G
- WCDMA+WIFI 2.4G
- 3. GSM+BT
- 4. WCDMA+ BT

Note:

- 1. WIFI 2.4GHz and Bluetooth share the same antenna, and can not transmit simultaneously.
- EUT will choose either GSM/WCDMA/ LTE according to the network signal condition; therefore, GSM/WCDMA / LTE cannot transmit simultaneously.

Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05r02, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤ 1.6 W/kg. When standalone SAR is not required to be measured, per FCC KDB 447498 D01v05r02 4.3.2.2), the following equation must be used to estimate the standalone 1g SAR and 10g extremity SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR =
$$\frac{\sqrt{f(GHz)}}{7.5(18.75)} \cdot \frac{\text{Max. power of channel, mW}}{\text{Min. Separation Distance, mm}}$$

	Location	Mada	Max. tune-up	Test Distance (sees)	Estimated SAR
		Mode	Power (dBm)	Test Distance (mm)	(W/kg)
18H	Head	BT	botek 0.0 Anbo	Anbores	0.042
rek	Body	BT	0.0 and	10	0.021

Note:

- 1. When the minimum *test separation distance* is < 5 mm, a distance of 5 mm according is applied to determine estimated SAR.
- 2. (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

Next to the mouth exposure requires 1-g SAR, and the wrist-worn condition requires 10-g extremity SAR.

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 45 of 118

Evaluation of Simultaneous SAR Simultaneous-Head <GSM+2.4GWiFi>

Test Position	WiFi SAR _{1-g} (W/Kg)	GSM 850 _{1-g} (W/Kg)	PCS 1900 _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Simut. Meas. Required
Left Cheek	0.297	0.481	0.397	0.778	1.6	N/A
Left Tilt	0.174	0.268	0.173	0.442	1.6	otel N/Ashbote
Right Cheek	0.321	0.445	0.346	0.766	1.6	N/A
Right Tilt	0.189	0.232	0.163	0.421	1.6	N/A

<WCDMA+2.4GWiFi >

Test Position	WiFi SAR ₁ . g (W/K g)	WCDMA Band 2 1-g (W/Kg)	WCDMA Band 4 1-g (W/Kg)	WCDMA Band 5 1-g (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Simut. Meas. Require d
Left Cheek	0.297	0.453	0.421	0.465	0.762	1.6	N/A
Left Tilt	0.174	0.271	0.238	0.324	0.498	1.6	N/A
Right Cheek	0.321	0.443	0.379	0.452	0.773	1.6	N/A
Right Tilt	0.189	0.259	0.211	0.298	0.487	1.6 mbo	N/A

Code: AB-RF-05-b

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 46 of 118

<GSM+BT>

Test Position	BT SAR _{1-g} (W/Kg)	GSM 850 _{1-g} (W/Kg)	PCS 1900 _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Simut. Meas. Required
Left Cheek	0.042	0.481	0.397	0.523	1.6	N/A
Left Tilt	0.042	0.268	0.173	0.310	1.6	N/A
Right Cheek	0.042	0.445	0.346	0.487	1.6	N/A
Right Tilt	0.042	0.232	0.163	0.274	1.6	N/A

<WCDMA+BT >

Test Position	BT SAR ₁ . g (W/K g)	WCDMA Band 2 1-g (W/Kg)	WCDMA Band 4 1-g (W/Kg)	WCDMA Band 5 1-g (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Simut. Meas. Require d
Left Cheek	0.042	0.453	0.421	0.465	0.507	1.6	N/A
Left Tilt	0.042	0.271	0.238	0.324	0.366	1.6	N/A
Right Cheek	0.042	0.443	0.379	0.452	0.494	1.6	N/A
Right Tilt	0.042	0.259	0.211	0.298	0.340	1.6	N/A

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 47 of 118

Simultaneous- Body <GSM+2.4GWiFi>

Test Position	WiFi SAR _{1-g} (W/Kg)	GSM 850 _{1-g} (W/Kg)	PCS 1900 _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Simut. Meas. Required
Front	0.118	0.304	0.188	0.422	1.6	N/A
Back	0.248	0.401	0.283	0.649	1.6	N/A
Left Side	0.193	0.140	0.096	0.333	1.6	N/A
Right Side	0.218	0.354	0.223	0.572	1.6	N/A
Top side	0.231	N/A	N/A	0.231	1.6	N/A
Bottom Side	N/A	0.379	0.269	0.379	1.6	N/A

<WCDMA+2.4GWiFi >

Test Position	WiFi SAR ₁ . g (W/K g)	WCDMA Band 2 1-g (W/Kg)	WCDMA Band 4 1-g (W/Kg)	WCDMA Band 5 1-g (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Simut. Meas. Require d
Front	0.118	0.226	0.192	0.305	0.423	1.6	N/A
Back	0.248	0.366	0.310	0.375	0.623	1.6	N/A
Left Side	0.193	0.122	0.088	0.124	0.317	1.6	N/A
Right Side	0.218	0.317	0.292	0.352	0.570	1.6	N/A
Top side	0.231	N/A	N/A	N/A	0.231	o ^{tel*} 1.6	N/A
Bottom Side	N/A	0.347	0.286	0.362	0.362	1.6	N/A

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 48 of 118

<GSM+BT>

Test Position	BT SAR _{1-g} (W/Kg)	GSM 850 _{1-g} (W/Kg)	PCS 1900 _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Simut. Meas. Required
Front	0.021	0.304	0.188	0.325	1.6	N/A
Back	0.021	0.401	0.283	0.422	1.6	N/A
Left Side	0.021	0.140	0.096	0.161	1.6	N/A
Right Side	0.021	0.354	0.223	0.375	1.6	orek N/A
Top side	0.021	N/A	N/A	0.021	1.6	N/A
Bottom Side	0.021	0.379	0.269	0.400	1.6	N/A

<WCDMA+BT >

Test Position	BT SAR ₁ . g (W/K g)	WCDMA Band 2 1-g (W/Kg)	WCDMA Band 4 1-g (W/Kg)	WCDMA Band 5 1-g (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Simut. Meas. Require d
Front	0.021	0.226	0.192	0.305	0.326	1.6	N/A
Back	0.021	0.366	0.310	0.375	0.396	1.6	N/A
Left Side	0.021	0.122	0.088	0.124	0.145	1.6	N/A
Right Side	0.021	0.317	0.292	0.352	0.373	1.6	→ N/A
Top side	0.021	N/A	N/A	N/A	0.021	1.6	N/A
Bottom Side	0.021	0.347	0.286	0.362	0.383	o ^{tel} 1.6	N/A

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 49 of 118

14. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is< 1.5 W/Kg, the extensive SAR measurement uncertainty analysis is not required in SAR reports submitted for equipment approval.

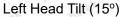
NO	Source	Uncert.	Prob. Dist.	Div. k	ci (1g)	ci (10g)	Stand.U ncert. ui (1g)	Stand.U ncert. ui (10g)	Veff
1 ^{nb°}	Repeat	0. 4	Anbotek N tek	An 1	oote obotek	1 A	0.4	0.4	Anbo
P	nbotek Ambotek	Anbotek	Instru	20	Anbo	ek -	Anbotek	Anbot	SK DI
2	Probe calibration	Anbore 7	Vek N VL	1002°K	1.0	ootek 1 _{ek}	3.5	3.5	o ^{tek} ∞
nbotek	Anbotek Anbote	lek bus	ipotek	Anbore	0.7	0.7	iek An	ootek otek	Anborek
3,00	Axial isotropy	4.7	Anbore R	$\sqrt{3}$	hotek	p.r	1.9	1.9	∞,
4	Hemispherical isotropy	9.4	R _{Anb} ol	_ √3	0.7	0.7	3.9	3.9	× × ×
rek 5	Boundary effect	1.0 M	R An	√3 -	• 1	Anb 1 ^{tek}	0.6	0.6	_{Inbot} ‰
A6pot	Linearity	4.7	Anborek Anborek	√3	otek obote Ť	Anbo	2.7	2.7.×	Anbore ∞oot
7	Detection limits	1.0 orek	Anbore Rinbore	_ √3	Anbore	e otev1	0.6	0.6	. An
8	Readout electronics	0.3	N Ant	1	1	-bo1ek	0.3	0.3	∞
ootek 9	Response time	0.8	R	√3	,e ^{)k} 1	Anbore 1	Anb	0.5	Anborek Anborek
10	Integration time	2.6	R	_ <u>_</u> √3	hotel	1	inbotek 1.5	1.5 otek	Anbor ∞ _{Ant}
* 11	Ambient noise	3.0 nbol	R Anb	√3	Anbi	hek holek	1.7 of 6	1.7 ⁴ mbo	lek Notel∞
12	Ambient reflections	3.0 Anh	otek sbot R	√3 	1	Anbote	Anbi	, of 1.7	Aupotek
13	Probe positioner mech. restrictions	0.4	Anbotek R Anbotek	√3	Anbo1ek	1 P	nbotek 0.2	0.2	Anbon ∞Anb

R	eport l	No.:18220WC20259501	ron	FCCI	D: 2A9A	AU-A29	vek -	thoten Pa	age 50 of 118	8
D.C.	botek	Probe positioning with	k Pul	lotek l	hotek	6 Ande	potek	Anbotek	Arborek	40
	14	respect to phantom shell	2.9	Anbotek	√3 √3	ote¥1	1 Andotek	7 1.7	7 ∞	ak lator
4	15	Max.SAR evaluation	1.0 Anbore	Ambore R Ambr	√3	Al P orek	1 0.	5 0.6	Supotek w	Anbr

abole	P.U.P.	otek p	100°	be	Yer	20/0	No. by	U	-orek
Anb	otek Anbotek And	nbotek	Test samp	le rela	ted	Pr.	nbotek	Anbote,	Anbor
P	abore And otek	anbotek	Vupo	45	, no	e.K	Anbore	V.U.	10 As
- 16	Device positioning	3.8	N _{Anbo}	1	Anboi 1	oo ^{te} 1	3.8	3.8	99
17 17	Device holder	5.1Ambs	nek Ar botelN	hoo,	1	Antorek	5.1	5.1	unbotek 5.ek
18	Drift of output power	10018 K	Anbotek R rek	√3	oter obdek	1 Ar	2.9	2.9	Mupo,
Þ.	hor Anbotek	Aupolei	Phantom a	and se	t-up ^{loot}	ek.	Aupo, stek	An abote	K Anb
	Anbo lek abotek	Aupore	h bus	otek	anl	otel	Pupo.	g/4	otek p
19	Phantom uncertainty	4.0	R An	√3	1	anb1iek	2.3	2.3	∞
20	Liquid conductivity (target)	5.0	Anbo Rik		0.64	0.43	1.8	anbotek	Anbotek Anbotel
21	Liquid conductivity (meas)	2.5	N N N	v ote 1	0.64	0.43	1.6	1.2	tek ∞ A
22	Liquid Permittivity (target)	5.0 An	potek R Ambotek	_ √3	0.6	0.49	1.7 And	1.5	Auposek Votek
23	Liquid Permittivity (meas)	2.5	Anbotek N Anbotek	F 1	0.6	0.49	1.5	1.2	∞\ ⁿ bo
ek ootek	Combined standard	Anborr Anborr	orek RSS	u'c =	$=\sqrt{\sum_{i=1}^{21}}$	$c_i^2 u_i^2$	11.4%	11.3%	236
unc	Expanded ertainty(P=95%)	otek nbotek	Anbotek U	J = k U	,k=2	Anb	22.8%	22.6%	Anbotek

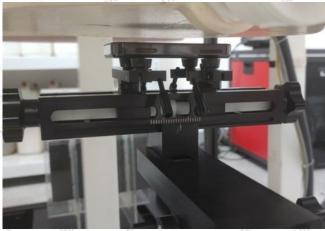
Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 51 of 118

Appendix A. EUT Photos and Test Setup Photos



Left Head Touch

Right Head Touch



Right Head Tilt (15°)

Front (10mm)

Back(10mm)

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.
Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Code:AB-RF-05-b

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 52 of 118

Left Side (10mm)

Right Side (10mm)

Top Side (10mm)

Bottom Side (10mm)

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 53 of 118

Appendix B. Plots of SAR System Check

835MHz Head System Check

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d154

Date:11/08/2022

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.87$ S/m; $\epsilon_r = 41.38$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

DASY5 Configuration:

•Probe: EX3DV4 - SN7396; ConvF(9.88, 9.88, 9.88); Calibrated: 05,06.2022;

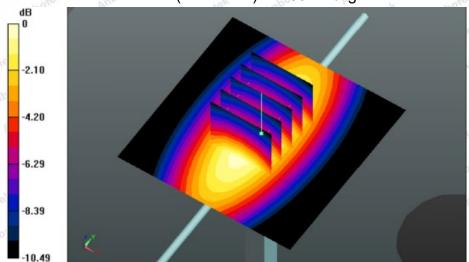
Sensor-Surface: 4mm (Mechanical Surface Detection)

•Electronics: DAE4 Sn387; Calibrated: Sep.06,2022;

Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (61x91x1):Measurement grid: dx=15.00 mm, dy=15.00 mm Maximum value of SAR (interpolated) = 2.907 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 50.475 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 3.257 W/kg

SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 2.894 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Code: AB-RF-05-b

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 54 of 118

1750MHz Head System Check

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2

Date:11/10/2022

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f =1750 MHz; σ =1.32 S/m; ϵ r =40.26; ρ =1000 kg/m3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

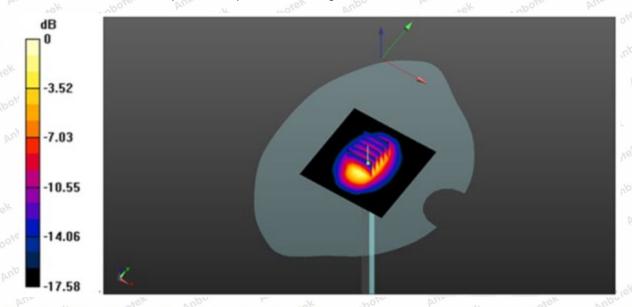
Probe: EX3DV4 - SN7396; ConvF(8.24, 8.24, 8.24); Calibrated: May,06.2022

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn387; Calibrated: Sep.06.2022;

Phantom: SAM 1; Type: QD 000 P40 CD; Serial: TP - 1802

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)


Configuration/Pin=250mW/Area Scan (71x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 12.112 W/kg

Configuration/Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 92.61 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 16.833 W/kg

SAR(1 g) =9.67 W/kg; SAR(10 g) = 5.02 W/kg Maximum value of SAR (measured) = 12.034 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.
Tel:(86) 0755-26066440 Fax:(86) 0755-26014772 Email:service@anbotek.com

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 55 of 118

1900MHz Head System Check

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d175

Date:11/11/2022

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.42$ S/m; $\epsilon r = 40.12$; $\rho = 1000$

kg/m3

Phantom section: Flat Section

DASY5 Configuration:

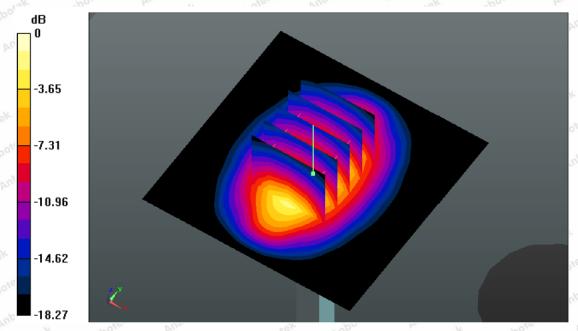
Probe: EX3DV4 - SN7396; ConvF(7.97, 7.97, 7.97); Calibrated: 05,06.2022;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep.06,2022;

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1):Measurement grid: dx=15.00 mm, dy=15.00 mm


Maximum value of SAR (interpolated) = 16.765 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 87.461 V/m; Power Drift = 0.07dB

Peak SAR (extrapolated) = 19.657 W/kg

SAR(1 g) = 10.16 W/kg; SAR(10 g) = 5.32 W/kg Maximum value of SAR (measured) = 15.132 W/kg

Code:AB-RF-05-b

Hotline
400-003-0500

www.anbotek.com.cn

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 56 of 118

2450MHz Head System Check

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 910

Date:11/14/2022

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 1.76$ S/m; $\epsilon r = 39.38$; $\rho = 1000$

kg/m3

Phantom section: Flat Section

DASY5 Configuration:

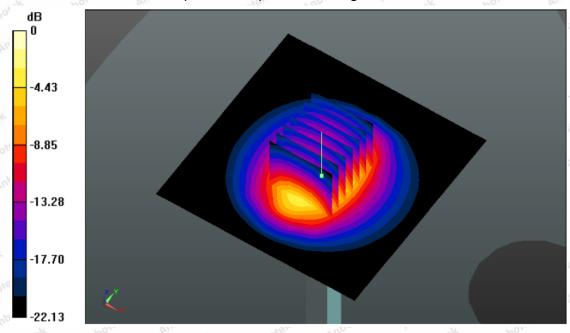
Probe: EX3DV4 - SN7396; ConvF(7.53, 7.53, 7.53); Calibrated: 05,06.2022;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep.06.2022

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1):Measurement grid: dx=10.00 mm, dy=10.00 mm


Maximum value of SAR (interpolated) = 19.231 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 84.176 V/m; Power Drift = 0.07dB

Peak SAR (extrapolated) = 26.125 W/kg

SAR(1 g) = 12.91 W/kg; SAR(10 g) = 5.91 W/kg Maximum value of SAR (measured) = 19.23W/kg

Code: AB-RF-05-b

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 57 of 11

Plots of SAR Test Data Appendix C.

Date: 11/08/2022

GSM850_GPRS_4TX_ Left Cheek Touch _Ch251

Communication System: UID 0, GPRS(4 Tx slots) (0); Frequency: 848.8MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 848.8 MHz; σ = 0.87 S/m; ε_r = 41.38; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

•Probe: EX3DV4 - SN7396; ConvF(9.88, 9.88, 9.88); Calibrated: May 06, 2022;

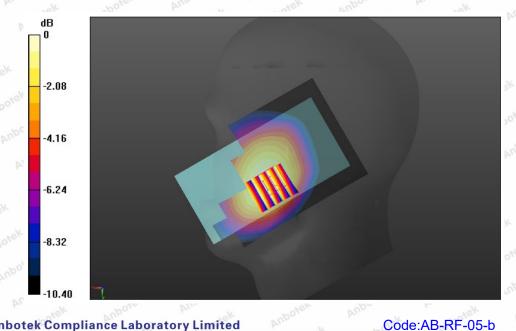
•Sensor-Surface: 4mm (Mechanical Surface Detection)

•Electronics: DAE4 Sn387; Calibrated: Sep.06,2022

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Left Cheek Touch/Area Scan (81x121x1): Measurement grid: dx=1.500mm, dy=1.500mm Maximum value of SAR (interpolated) = 0.937 W/kg


Left Cheek Touch /Zoom Scan (5x5x7)/Cube 0:Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.549 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.954 W/kg

SAR(1 g) = 0.437 W/kg; SAR(10 g) = 0.193 W/kg

Maximum value of SAR (measured) =0.958 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 58 of 118

#2

Date: 11/11/2021

GSM1900_GPRS_4TX_ Left Cheek Touch _Ch810

Communication System: UID 0, GPRS(4 Tx slots) (0); Frequency: 1909.8 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1909.8 MHz; σ = 1.42 S/m; ϵ_r = 40.12; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

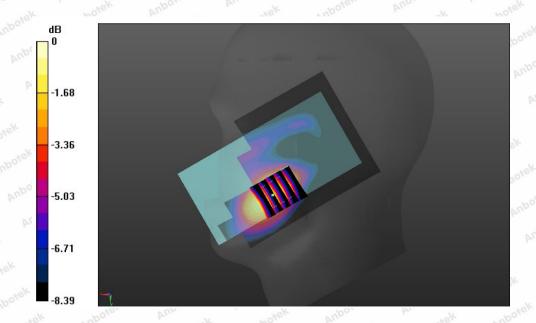
•Probe: EX3DV4 - SN7396; ConvF(7.97, 7.97, 7.97); Calibrated: 05,06.2022;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

•Electronics: DAE4 Sn387; Calibrated: Sep.06,2022

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)


Left Cheek Touch /Area Scan (81x121x1): Measurement grid: dx=1.500mm, dy=1.500mm Maximum value of SAR (measured) =0.825 W/kg

Left Cheek Touch /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.635 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.836 W/kg

SAR(1 g) = 0.386 W/kg; SAR(10 g) = 0.173 W/kg Maximum value of SAR (measured) = 0.862 W/kg

Report No.:18220WC20259501 Page 59 of 118 FCC ID: 2A9AU-A29

#3

Date: 11/11/2022

WCDMA 1900_RMC 12.2K_ Left Cheek Touch _Ch9262

Communication System: UID 0, Generic WCDMA (0); Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1852.4 MHz; $\sigma = 1.42$ S/m; $\epsilon_r = 40.12$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

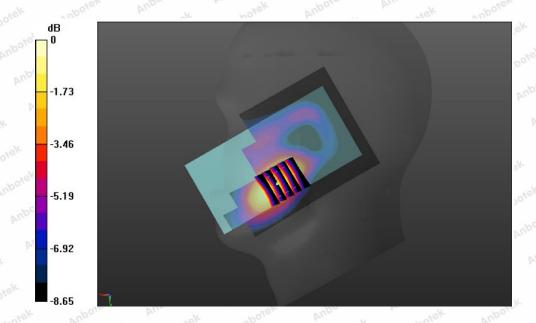
Probe: EX3DV4 - SN7396; ConvF(7.97, 7.97, 7.97); Calibrated: May,06.2022;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn387; Calibrated: Sep.06,2022

Phantom: SAM; Type: QD000P40CD; Serial: TP:1670

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)


Left Cheek Touch /Area Scan (81x121x1): Measurement grid: dx=1.500mm, dy=1.500mm Maximum value of SAR (measured) =0.978 W/kg

Left Cheek Touch /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.131V/m; Power Drift = 0.15dB

Peak SAR (extrapolated) = 0.967 W/kg

SAR(1 g) = 0.416 W/kg; SAR(10 g) = 0.203 W/kgMaximum value of SAR (measured) = 0.954 W/kg

Page 60 of 118 Report No.:18220WC20259501 FCC ID: 2A9AU-A29

#4

Date: 11/08/2022

WCDMA 850_RMC 12.2K_ Left Cheek Touch _Ch4183

Communication System: UID 0, Generic WCDMA (0); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.87 S/m; ϵ_r = 41.38; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7396; ConvF(9.88, 9.88, 9.88); Calibrated: May,06.2022;

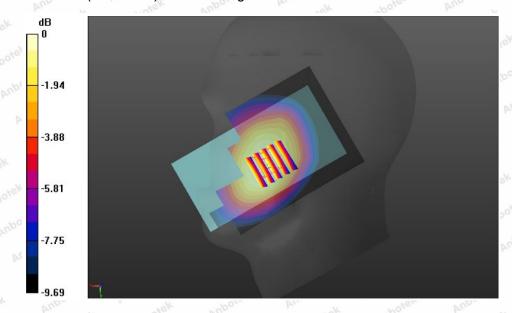
Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn387; Calibrated: Sep.06,2022

Phantom: SAM; Type: QD000P40CD; Serial: TP:1670

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Left Cheek Touch/Area Scan (81x121x1): Measurement grid: dx=1.500mm, dy=1.500mm Maximum value of SAR (measured) =1.353 W/kg


Left Cheek Touch /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.632 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.376 W/kg

SAR(1 g) = 0.441 W/kg; SAR(10 g) = 0.217 W/kg

Maximum value of SAR (measured) = 1.369 W/kg

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 61 of 118

#5

Date: 11/10/2022

WCDMA 1700_ HSDPA Subtest-1_ Left Cheek Touch _Ch1412

Communication System: UID 0, Generic WCDMA (0); Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1732.4 MHz; σ = 1.32 S/m; ϵ_r = 40.26; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

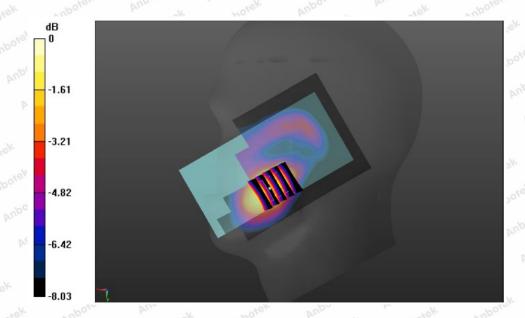
Probe: EX3DV4 – SN7396; ConvF(8.24, 8.24, 8.24); Calibrated: May,06.2022;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn387; Calibrated: Sep.06,2022

Phantom: SAM; Type: QD000P40CD; Serial: TP:1670

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)


Left Cheek Touch /Area Scan (81x121x1): Measurement grid: dx=1.500mm, dy=1.500mm Maximum value of SAR (measured) =0.972 W/kg

Left Cheek Touch /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.682 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.963 W/kg

SAR(1 g) = 0.397 W/kg; SAR(10 g) = 0.182 W/kg Maximum value of SAR (measured) = 0.978 W/kg

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 62 of 118

#6

Date: 11/14/2022

WIFI 2.4G_802.11b_ Right Cheek Touch _Ch11

Communication System: UID 0, wifi (fcc) (0); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; σ = 1.76 S/m; ϵ_r = 39.38; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

•Probe: EX3DV4 - SN7396; ConvF(7.53, 7.53, 7.53); Calibrated: 05,06.2022;

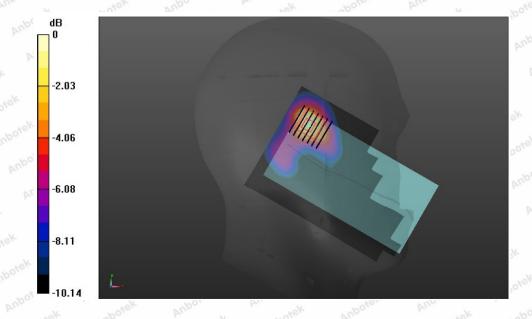
Sensor-Surface: 4mm (Mechanical Surface Detection)

•Electronics: DAE4 Sn387; Calibrated: Sep.06,2022

Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Right Cheek Touch /Area Scan (81x121x1):Measurement grid: dx=1.500mm, dy=1.500mm Maximum value of SAR (measured) = 0.715 W/kg


Right Cheek Touch /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.723 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.713 W/kg

SAR(1 g) = 0.312 W/kg; SAR(10 g) = 0.145 W/kg

Maximum value of SAR (measured) = 0.715 W/kg

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 63 of 118

#7

Date: 11/08/2022

GSM850_GPRS_4TX_Body Back_Ch251

Communication System: UID 0, GPRS(4 Tx slots) (0); Frequency: 848.8MHz;Duty Cycle: 1:1.99986 Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.87 \text{ S/m}$; $\epsilon_r = 41.38$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

•Probe: EX3DV4 - SN7396; ConvF(9.88, 9.88, 9.88); Calibrated: May 06, 2022;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

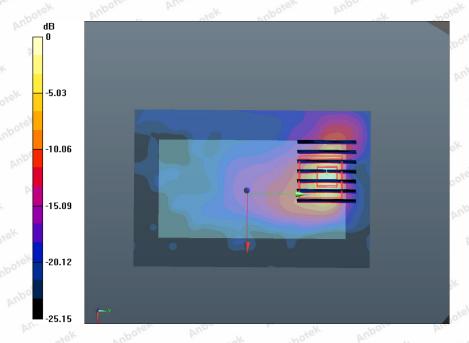
•Electronics: DAE4 Sn387; Calibrated: Sep.06,2022

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY/BACK /Area Scan (81x121x1):Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.732 W/kg


BODY/BACK /Zoom Scan (5x5x7)/Cube 0:Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.696 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.788 W/kg

SAR(1 g) = 0.364 W/kg; SAR(10 g) = 0.179 W/kg

Maximum value of SAR (measured) =0.765 W/kg

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 64 of 118

#8

Date: 11/11/2022

GSM1900_GPRS_4TX_Body Back_Ch810

Communication System: UID 0, GPRS(4 Tx slots) (0); Frequency: 1909.8MHz; Duty Cycle: 1:1.99986

Medium parameters used: f = 1909.8 MHz; σ = 1.42 S/m; ϵ_r = 40.12; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7396; ConvF(7.97, 7.97, 7.97); Calibrated: 05,06.2022;

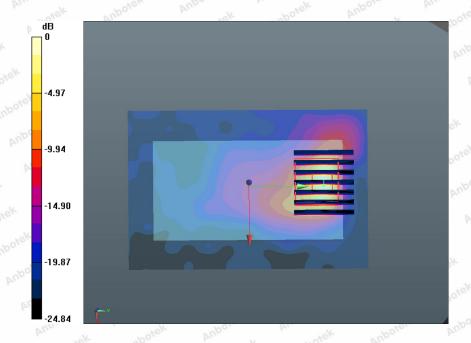
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn387; Calibrated: Sep.06,2022

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY/BACK /Area Scan (81x121x1):Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (measured) =0.523 W/kg


BODY/BACK/Zoom Scan (5x5x7)/Cube 0:Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.365 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.546 W/kg

SAR(1 g) = 0.275 W/kg; SAR(10 g) = 0.133 W/kg

Maximum value of SAR (measured) = 0.551 W/kg

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 65 of 118

#9

Date: 11/11/2022

WCDMA 1900_RMC 12.2K_Body Back_Ch9262

Communication System: UID 0, Generic WCDMA (0); Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1852.4 MHz; σ = 1.42 S/m; ϵ_r = 40.12; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7396; ConvF(7.97, 7.97, 7.97); Calibrated: May,06.2022;

Sensor-Surface: 2mm (Mechanical Surface Detection)

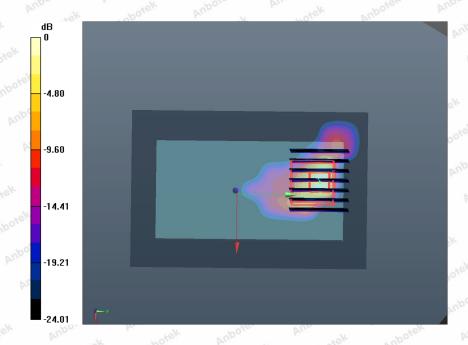
Electronics: DAE4 Sn387; Calibrated: Sep.06,2022

Phantom: SAM; Type: QD000P40CD; Serial: TP:1670

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY/BACK/Area Scan (81x121x1): Measurement grid: dx=1.500mm, dy=1.500mm

Maximum value of SAR (measured) =0.571 W/kg


BODY/BACK/Zoom Scan (5x5x7)/Cube 0:Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.151V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.567 W/kg

SAR(1 g) = 0.336 W/kg; SAR(10 g) = 0.154 W/kg

Maximum value of SAR (measured) = 0.554 W/kg

Code: AB-RF-05-b

Report No.:18220WC20259501 FCC ID: 2A9AU-A29 Page 66 of 118

#10

Date: 11/08/2022

WCDMA 850_RMC 12.2K_Body Back_Ch4183

Communication System: UID 0, Generic WCDMA (0); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.87 S/m; ϵ_r = 41.38; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7396; ConvF(9.88, 9.88, 9.88); Calibrated: May,06.2022;

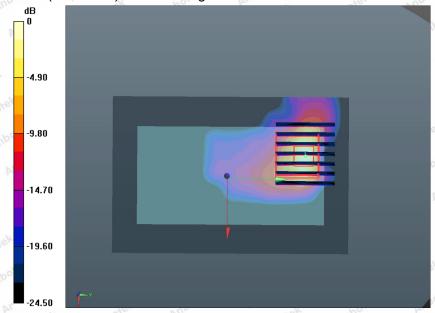
Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn387; Calibrated: Sep.06,2022

Phantom: SAM; Type: QD000P40CD; Serial: TP:1670

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY/BACK/Area Scan (81x121x1): Measurement grid: dx=1.500mm, dy=1.500mm Maximum value of SAR (measured) =0.488 W/kg


BODY/BACK/Zoom Scan (5x5x7)/Cube 0:Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.372 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.498 W/kg

SAR(1 g) = 0.294 W/kg; SAR(10 g) = 0.141 W/kg

Maximum value of SAR (measured) = 0.515 W/kg

Code: AB-RF-05-b

