RF EXPOSURE Test Report

Report No．：MTi220919009－09E2
Date of issue：2022－10－26
Applicant：Shenzhen Rihuida Electronics Co．，Ltd．
Product：LED Light
Model（s）：US1014B，CL68RGB
FCC ID：2A8R6－US1014CL68

Shenzhen Microtest Co．，Ltd．
 http：／／www．mtitest．com

Instructions

1．The report shall not be partially reproduced without the written consent of the laboratory；

2．The test results of this report are only responsible for the samples submitted；
3．This report is invalid without the seal and signature of the laboratory；
4．This report is invalid if transferred，altered or tampered with in any form without authorization；

5．Any objection to this report shall be submitted to the laboratory within 15 days from the date of receipt of the report．

TEST RESULT CERTIFICATION		
Applicant＇s name．．．．．．．	Shenzhen Rihuida Electronics Co．，Ltd．	
Address．	The fourth building\＆the 02， 03 and 04 floors of the third building of Fuzhong Industrial Park，Huaide Community，Fuyong Street，Bao＇an District，Shenzhen	
Manufacturer＇s Name ．．．	Shenzhen Rihuida Electronics Co．，Ltd．	
Address．．	The fourth building\＆the 02， 03 and 04 floors of the third building of Fuzhong Industrial Park，Huaide Community，Fuyong Street，Bao＇an District，Shenzhen	
Product description		
Product name ．．．．．．．．．．．．．．．．．．．．．．．．	LED Light	
Trademark	［pro］master	
Model Name	US1014B	
Series Model ．	CL68RGB	
Standards．．．．．．．．．．．．．．．．．．．．．．．．．．．．：	N／A	
Test procedure．	KDB 447498 D01 v06	
Date of Test		
Date（s）of performance of tests ．．．．．．．．．．．．：		2022－10－13～2022－10－20
Test Result．．：		Pass
This device described above has show that the equipment under applicable only to the tested sa	as been tes test（EUT） mple ident	ed by Shenzhen Microtest Co， is in compliance with the FC ied in the report．

Testing Engineer		Yanice Xie
		（Yanice Xie）
Technical Manager		Serr chen
		（Leon Chen）
Authorized Signatory	：	Tam lue
		（Tom Xue）

RF EXPOSURE EVALUATION

According to FCC 1．1310：The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency（RF）Radiation as specified in $\S 1.1307(\mathrm{~b})$

Limits for Maximum Permissible Exposure（MPE）

Frequency range （MHz）	Electric field strength （V／m）	Magnetic field strength （ A / m ）	Power density （ $\mathrm{mW} / \mathrm{cm}^{2}$ ）	Averaging time （minutes）
（A）Limits for Occupational／Controlled Exposure				
0．3－3．0	614	1.63	＊100	6
3．0－30	1842／f	4．89／f	＊900／4 ${ }^{2}$	6
30－300	61.4	0.163	1.0	6
300－1，500			f／300	6
1，500－100，000			5	6
（B）Limits for General Population／Uncontrolled Exposure				
0．3－1．34	614	1.63	＊100	30
1．34－30	824／f	2．19／f	＊180／4 ${ }^{2}$	30
30－300	27.5	0.073	0.2	30
300－1，500			f／1500	30
1，500－100，000			1.0	30

$\mathrm{f}=$ frequency in MHz ＊$=$ Plane－wave equivalent power density

MPE Calculation Method

Friis transmission formula： $\mathrm{Pd}=\left(\right.$ Pout $\left.{ }^{\star} \mathrm{G}\right) \backslash\left(4^{\star} \mathrm{pi} \mathrm{R}^{2}\right)$
Where
$\mathrm{Pd}=$ Power density in $\mathrm{mW} / \mathrm{cm}^{2}$
Pout＝output power to antenna in mW
G＝Numeric gain of the antenna relative to isotropic antenna

$\mathrm{Pi}=3.1415926$

$\mathrm{R}=$ distance between observation point and center of the radiator in $\mathrm{cm}(20 \mathrm{~cm})$
Pd the limit of MPE， $1 \mathrm{~mW} / \mathrm{cm} 2$ ．If we know the maximum gain of the antenna and total power input to the antenna，through the calculation，we will know the distance where the MPE limit is reached．

Measurement Result

BLE：

Operation Frequency： $2402-2480 \mathrm{MHz}$ ，
Power density limited： $1 \mathrm{~mW} / \mathrm{cm}^{2}$
Antenna Type：PCB Antenna；
WIFI antenna gain： 0.55 dBi
$\mathrm{R}=20 \mathrm{~cm}$
$\mathrm{mW}=10^{\wedge}(\mathrm{dBm} / 10)$
antenna gain Numeric $=10^{\wedge}(\mathrm{dBi} / 10)=10^{\wedge}(0.55 / 10)=1.14$
BLE：

Channe I Freq． （MHz）	modulation	conducted power	Tune－ up power （dBm）	Max		Antenna		Evaluation result （ $\mathrm{mW} / \mathrm{cm}^{2}$ ）	Power density Limits $\left(\mathrm{mW} / \mathrm{cm}^{2}\right.$ ）
		（dBm）		tune－up power		Gain			
				（dBm）	（mW）	（dBi）	Num eric		
2402	GFSK	0.87	0 ± 1	1	1.259	0.55	1.14	0.0003	1
2440		0.74	0 ± 1	1	1.259	0.55	1.14	0.0003	1
2480		－0．16	0 ± 1	1	1.259	0.55	1.14	0.0003	1

Conclusion：

For the max result： $0.0003 \leq 1.0$ SAR，No SAR is required．

