

TEST REPORT

Product Name:	Smart Projector
FCC ID:	2BNU2-HCS350PRO
Trademark:	N/A
Model Number:	HCS350PRO, HCS350MAX, HCS350PLUS, HCS350MINI, HCS350MAX-KTV, HCS350 ZOKU, HCS350 U1
Prepared For:	Shenzhen HC Smart Technology Co.,Ltd
Address:	202, Building C, Jinke Industrial Park, No.310, Wuhe Avenue, Luhu Community, Guanlan Street, Longhua District, Shenzhen
Manufacturer:	Shenzhen HC Smart Technology Co.,Ltd
Address:	202, Building C, Jinke Industrial Park, No.310, Wuhe Avenue, Luhu Community, Guanlan Street, Longhua District, Shenzhen
Prepared By:	Shenzhen CTB Testing Technology Co., Ltd.
Address:	1&2/F., Building A, No.26, Xinhe Road, Xinqiao, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	Dec. 16, 2024
Sample tested Date:	Dec. 16, 2024 to Jan. 20, 2025
Issue Date:	Jan. 20, 2025
Report No.:	CTB24121614101RF04
Test Standards	FCC CFR Title 47 Part 15 Subpart E Section 15.407 KDB 789033 D02 v02r01
Test Results	PASS
Remark:	This is WIFI-5GHz band radio test report.

Compiled by:

Zhou kui

Zhou Kui

Reviewed by:

Arron Liu

Arron Liu

Approved by:

Bin Mei / Director

Note: If there is any objection to the inspection results in this report, please submit a written report to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen CTB Testing Technology Co., Ltd. this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client. "*" indicates the testing items were fulfilled by subcontracted lab. "#" indicates the items are not in CNAS accreditation scope.

TABLE OF CONTENT

Test Report Declaration		Page
1. VERSION	3
2. TEST SUMMARY	4
3. MEASUREMENT UNCERTAINTY	5
4. PRODUCT INFORMATION AND TEST SETUP	6
4.1 Product Information	6
4.2 Test Setup Configuration.....	6
4.3 Support Equipment.....	6
4.5 Test Mode	7
4.6 Test Environment	7
5. TEST FACILITY AND TEST INSTRUMENT USED	8
5.1 Test Facility	8
5.2 Test Instrument Used	8
6. AC POWER LINE CONDUCTED EMISSION	11
6.1 Block Diagram Of Test Setup.....	11
6.2 Limit.....	11
6.3 Test procedure	11
6.4 Test Result.....	13
7. RADIATED SPURIOUS EMISSIONS	15
7.1 Block Diagram Of Test Setup.....	15
7.2 Limit.....	15
7.3 Test procedure	16
7.4 Test Result.....	17
8. BAND EDGE	20
8.1 Block Diagram Of Test Setup.....	20
8.2 Limit.....	20
8.3 Test procedure	20
8.4 Test Result.....	21
9. CONDUCTED OUTPUT POWER	24
9.1 Block Diagram Of Test Setup.....	24
9.2 Limit.....	24
9.3 Test procedure	25
9.4 Test Result.....	26
10. EMISSION BANDWIDTH& OCCUPIED BANDWIDTH	30
10.1 Block Diagram Of Test Setup.....	30
10.2 Limits.....	30
10.3 Test Procedure.....	30
10.4 Test Results	32
11. POWER SPECTRAL DENSITY	36
11.1 Block Diagram Of Test Setup.....	36
11.2 Limit.....	36
11.3 Test procedure	36
11.4 Test Result.....	38
12. FREQUENCY STABILITY	42
12.1 Block Diagram Of Test Setup.....	42
12.2 Limit.....	42
12.3 Test procedure	42
12.4 Test Result	43
13. OPERATION IN THE ABSENCE OF INFORMATION TO THE TRANSMIT	46
13.1 Requirement.....	46
13.2 Test Results	46
14. ANTENNA REQUIREMENT	47
15. EUT TEST SETUP PHOTOGRAPHS	48

(NOTE: N/A MEANS NOT APPLICABLE)

1. VERSION

Report No.	Issue Date	Description	Approved
CTB24121614101RF04	Jan. 20, 2025	Original	Valid

2. TEST SUMMARY

The Product has been tested according to the following specifications:

Test Item	Test Requirement	Test method	Result
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(9)	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15 Subpart E Section 15.205/15.407(b)	KDB789033v02r01	PASS
Band edge	47 CFR Part 15 Subpart E Section 15.205/15.407(b)	KDB789033v02r01	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart E Section 15.407 (a)	KDB789033v02r01	PASS
Emission Bandwidth & Occupied Bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)(e)	KDB789033v02r01	PASS
Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)	KDB789033v02r01	PASS
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	KDB789033v02r01	PASS
Operation in the absence of information to the transmit	47 CFR Part 15 Subpart E Section 15.407 (c)	47 CFR Part 15 Subpart E	PASS
Antenna Requirement	47 CFR Part 15 Subpart E Section 15.203	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.10-2013.

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$.

No.	Item	Uncertainty
1	Occupancy bandwidth	$U=\pm 54.3\text{Hz}$
2	Adjacent channel power	$U=\pm 1.3\text{dB}$
3	Conducted Adjacent channel power	$U=\pm 1.38\text{dB}$
4	Conducted output power Above 1G	$U=\pm 1.0\text{dB}$
5	Conducted output power below 1G	$U=\pm 0.9\text{dB}$
6	Power Spectral Density , Conduction	$U=\pm 1.0\text{dB}$
7	Conduction spurious emissions	$U=\pm 2.8\text{dB}$
8	Out of band emission	$U=\pm 54\text{Hz}$
9	3m chamber Radiated spurious emission(30MHz-1GHz)	$U=\pm 4.3\text{dB}$
10	3m chamber Radiated spurious emission(1GHz-18GHz)	$U=\pm 4.5\text{dB}$
11	humidity uncertainty	$U=\pm 5.3\%$
12	Temperature uncertainty	$U=\pm 0.59\text{ }^{\circ}\text{C}$
13	Supply voltages	$U=\pm 3\%$
14	Time	$U=\pm 5\%$
15	Conducted Emission (150KHz-30MHz)	3.2 dB
16	3m chamber Radiated spurious emission(9KHz-30MHz)	4.8dB
17	3m chamber Radiated spurious emission(18GHz-40GHz)	3.4dB

4. PRODUCT INFORMATION AND TEST SETUP

4.1 Product Information

Model(s):	HCS350PRO, HCS350MAX, HCS350PLUS, HCS350MINI, HCS350MAX-KTV, HCS350 ZOKU, HCS350 U1
Model Description:	All the model are the same circuit and RF module, only the model names are different. Test sample model: HCS350PRO
Wi-Fi Specification:	IEEE 802.11a/n/ac/ax
Hardware Version:	V1.0
Software Version:	V1.0
Operation Frequency:	IEEE 802.11a/n/ac/ax: 5150MHz ~5250MHz/ 6 channel
Max. RF output power:	WiFi (5G): 16.458dBm
Type of Modulation:	WiFi (5G): OFDM, OFDMA
Antenna installation:	WiFi (5G): FPC antenna
Antenna Gain:	WiFi (5.2G): 2.39dBi
Ratings:	AC 100-240V

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

4.3 Support Equipment

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
/	/	/	/	/	/

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

For 802.11a/n/ac/ax(20M) Operation in the 5180MHz ~5240 MHz band			
Channel	Frequency	Channel	Frequency
36	5180MHz	44	5220MHz
40	5200MHz	48	5240MHz
For 802.11n/ac/ax(40M) Operation in the 5190MHz ~5230 MHz band			
Channel	Frequency	Channel	Frequency
38	5190MHz	46	5230MHz

NOTE: Duty cycle>98%.

Test mode	Rate
802.11a	54M
802.11n	500M
802.11ac/ax	500M

4.5 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test Mode	Tx/Rx	RF Channel			
		Low(L)	Middle(M)	High(H)	
802.11a/n/ac/ax(20M)	5180MHz ~5240 MHz	Channel 36	Channel 40	Channel 48	
		5180MHz	5200MHz	5240MHz	
802.11n/ac/ax(40M)		Channel 38	N/A	Channel 46	
		5190MHz	N/A	5230MHz	

4.6 Test Environment

Humidity(%):	54
Atmospheric Pressure(kPa):	101
Normal Voltage(AC):	120V
Normal Temperature(°C):NT	23
Low Temperature(°C):LT	0
High Temperature(°C):HT	40

5. TEST FACILITY AND TEST INSTRUMENT USED

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at 1&2F., Building A, No. 26, Xinhe Road, Xinqiao, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

5.2 Test Instrument Used

No.	Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Calibrated until
1	Spectrum Analyzer	Agilent	N9020A	MY52090073	A.14.16	2025/6/28
2	Power Sensor	Agilent	U2021XA	MY56120032	/	2025/6/28
3	Power Sensor	Agilent	U2021XA	MY56120034	/	2025/6/28
4	Communication test set	R&S	CMW500	108058	V3.5.80	2025/6/28
5	Spectrum Analyzer	KEYSIGHT	N9020A	MY51289897	A.14.16	2025/6/28
6	Signal Generator	Agilent	N5181A	MY50140365	A.01.60	2025/6/28
7	Vector signal generator	Agilent	N5182A	MY47420195	A.01.87	2025/6/28
8	Communication test set	Agilent	E5515C	MY50102567	B.19.07 (E1962B)	2025/6/28
9	2.4 GHz Filter	Shenxiang	MSF2400-24 83.5MS-1154	20181015001	/	2025/6/30
10	5 GHz Filter	Shenxiang	MSF5150-58 50MS-1155	20181015001	/	2025/6/30
11	Filter	Xingbo	XBLBQ-DZA 120	190821-1-1	/	2025/6/30
12	Rohde & Schwarz SFU Broadcast Test System	R&S	SFU	101017	/	2025/6/28
13	Temperature humidity chamber	Hongjing	TH-80CH	DG-15174	/	2025/6/28
14	966 chamber	C.R.T.	966	/	/	2027/6/21
15	Receiver	R&S	ESPI	100362	RF_ATTEN_7 (104489/003)	2025/6/28
16	Amplifier	HP	8447E	2945A02747	/	2025/6/28
17	Amplifier	Agilent	8449B	3008A01838	/	2025/6/28
18	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	00869	/	2025/6/28
19	Double Ridged Broadband Horn Antenna	Schwarzbeck	BBHA9120D	01911	/	2025/6/28
20	EMI test software	Fala	EZ-EMC	FA-03A2 RE	/	/

21	Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-224	/	2025/6/28
22	loop antenna	ZHINAN	ZN30900A	GTS534	/	/
23	40G Horn antenna	A/H/System	SAS-574	588	/	2025/6/28
24	Amplifier	AEROFLEX	Aeroflex	097	/	2025/6/28
25	Power Meter	KEYSIGHT	N1912AP	N/A	A.05.00	2025/6/28

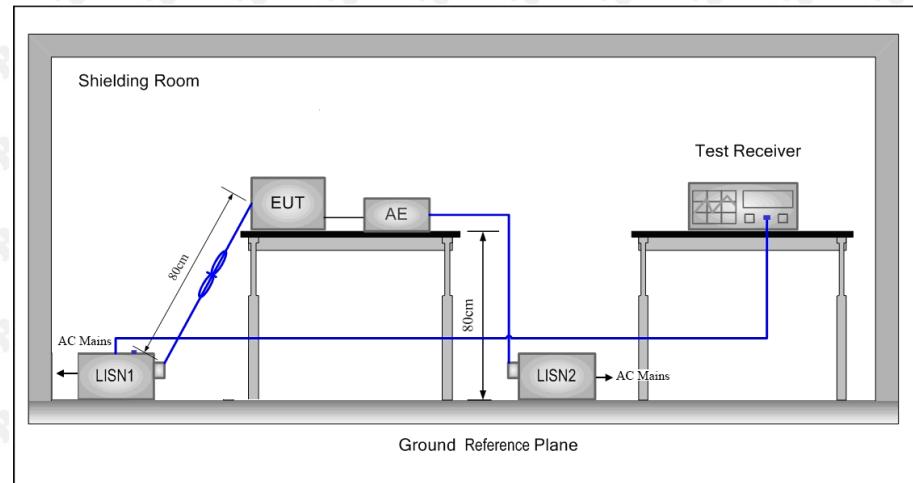
Continuous disturbance

No.	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Calibrated until
1	843 Shield Room	C/ R/ T	843	/	/	2027/6/21
2	AMN	ROHDE&SCHWARZ	ESH3-Z5	831551852	/	2025/6/30
3	Pulse limiter	ROHDE&SCHWARZ	ESH3Z2	357881052	/	2025/6/28
4	EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100428	V4.42.SP3	2025/6/30
5	Coaxial cable	ZDECL	Z302S	18091904	/	2025/6/30
6	ISN	Schwarzbeck	NTFM8158	183	/	2025/6/30
7	Voltage sensor	Schwarzbeck	TK 9420	01189	/	2025/10/25
8	Current Probe	FCC	F-52B	199453	/	2025/5/27
9	Communication test set	R&S	CMW500	108058	B.19.07 (E1962B)	2025/6/28
10	Communication test set	Agilent	E5515C	MY50102567	V3.5.80	2025/6/28

Radiated emission(No.1 Chamber)

No.	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Calibrated until
1	966 Chamber	C/ R/ T	966	/	/	2027/6/21
2	Double Ridged Broadband Horn Antenna	Schwarzbeck	BBHA 9120 D	01911	/	2025/7/06
3	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	00869	/	2025/6/29
4	Amplifier	Agilent	8449B	3008A01838	/	2025/6/30
5	Amplifier	HP	8447E	2945A02747	/	2025/6/28
6	loop antenna	Schwarzbeck	FMZB 1519B	1519B-224	/	2025/6/29
7	EMI TEST RECEIVER	ROHDE&SCHWARZ	ESPI	100362	RF_ATTEN_7 (104489/003)	2025/6/28
8	Spectrum Analyzer	KEYSIGHT	N9020A	MY51289897	A.14.16	2025/6/28
9	Coaxial cable	ETS	RFC-SNS-100-NMS-80	/	/	2025/6/28
10	Coaxial cable	ETS	RFC-SN-100-NMS-20	/	/	2025/6/28
11	Coaxial cable	ETS	RFC-SNS-100-SMS-20	/	/	2025/6/28

12	Coaxial cable	ETS	RFC-NNS-100-NMS-300	/	/	2025/6/28
13	Communication test set	R&S	CMW500	108058	B.19.07 (E1962B)	2025/6/28
14	Communication test set	Agilent	E5515C	MY50102567	V3.5.80	2025/6/28


Testing Software

No.	Equipment	Manufacturer	Model No.	Serial No.	Software version	Calibrated until
1	BT&WI-FI Automatic test software	Microwave	MTS8310	/	Ver. 2.0.0.0	/
2	234G Automatic test software	Microwave	MTS8200	/	Ver. 2.0.0.0	/
3	EZ-EMC	Frad	EMC-con3A1.1	/	/	/
4	EMI test software	Farad	EZ-EMC	/	Ver/ FA-03A2 RE	/

6. AC POWER LINE CONDUCTED EMISSION

6.1 Block Diagram Of Test Setup

6.2 Limit

Table 4 – AC power-line conducted emissions limits

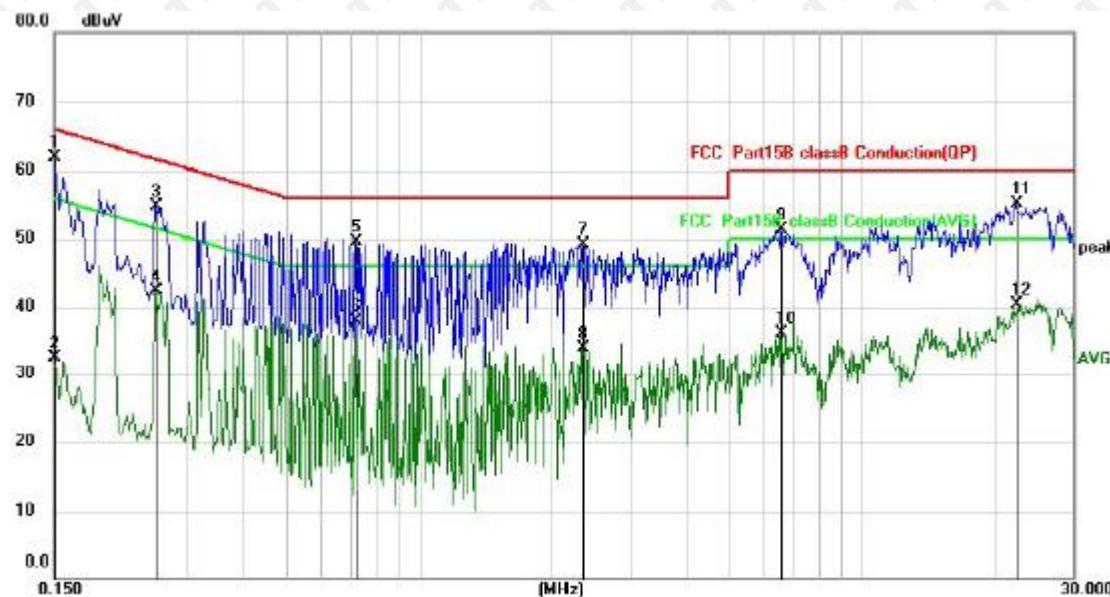
Frequency (MHz)	Conducted limit (dB μ V)	
	Quasi-peak	Average
0.15 - 0.5	66 to 56 ^{Note 1}	56 to 46 ^{Note 1}
0.5 - 5	56	46
5 - 30	60	50

Note 1: The level decreases linearly with the logarithm of the frequency.

* Decreasing linearly with the logarithm of the frequency

6.3 Test procedure

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0,4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane.

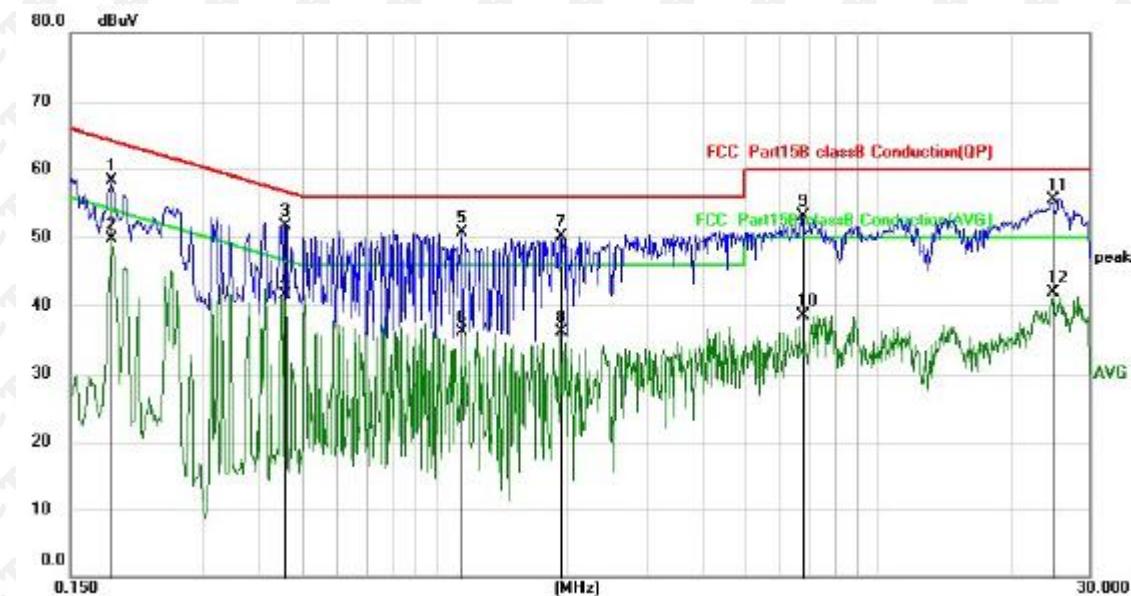

This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0,8 m from the LISN 2.

- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

6.4 Test Result

Modulation : 802.11a (the worst data)

L:



No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over
			Level				
		MHz	dBuV	dB	dBuV	dB	Detector
1	*	0.1500	50.92	10.89	61.81	66.00	-4.19
2		0.1500	21.60	10.89	32.49	56.00	-23.51
3		0.2540	43.98	10.67	54.65	61.63	-6.98
4		0.2540	31.73	10.67	42.40	51.63	-9.23
5		0.7177	38.81	10.73	49.54	56.00	-6.46
6		0.7177	27.11	10.73	37.84	46.00	-8.16
7		2.3380	37.48	11.65	49.13	56.00	-6.87
8		2.3380	22.27	11.65	33.92	46.00	-12.08
9		6.5700	38.56	12.79	51.35	60.00	-8.65
10		6.5700	23.24	12.79	36.03	50.00	-13.97
11		22.2700	41.25	13.79	55.04	60.00	-4.96
12		22.2700	26.49	13.79	40.28	50.00	-9.72

Remark:

Factor = Cable loss + LISN factor, Margin = Measurement – Limit

N:

No.	Mk.	Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV	Limit dBuV	Over dB	Detector
1		0.1859	47.50	10.76	58.26	64.22	-5.96	QP
2	*	0.1859	39.01	10.76	49.77	54.22	-4.45	AVG
3		0.4586	41.24	10.53	51.77	56.72	-4.95	QP
4		0.4586	30.96	10.53	41.49	46.72	-5.23	AVG
5		1.1500	39.70	11.04	50.74	56.00	-5.26	QP
6		1.1500	25.02	11.04	36.06	46.00	-9.94	AVG
7		1.9217	38.55	11.53	50.08	56.00	-5.92	QP
8		1.9217	24.62	11.53	36.15	46.00	-9.85	AVG
9		6.7339	40.17	12.85	53.02	60.00	-6.98	QP
10		6.7339	25.59	12.85	38.44	50.00	-11.56	AVG
11		24.8779	41.54	14.01	55.55	60.00	-4.45	QP
12		24.8779	27.86	14.01	41.87	50.00	-8.13	AVG

Remark:

1. Factor = Cable loss + LISN factor, Margin = Limit – Level
2. All modes were tested at AC 120V and 240V, only the worst result of AC 120V 60Hz was reported.
3. All the test modes completed for test. Only the worst result of was reported.

7. RADIATED SPURIOUS EMISSIONS

7.1 Block Diagram Of Test Setup

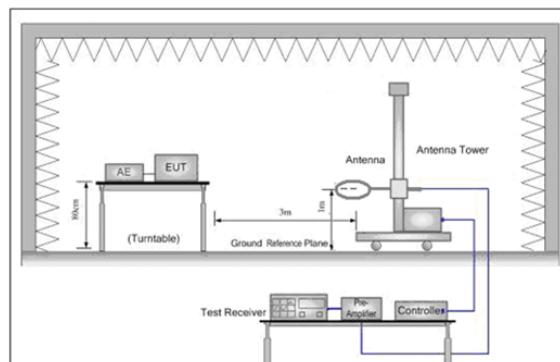


Figure 1. Below 30MHz

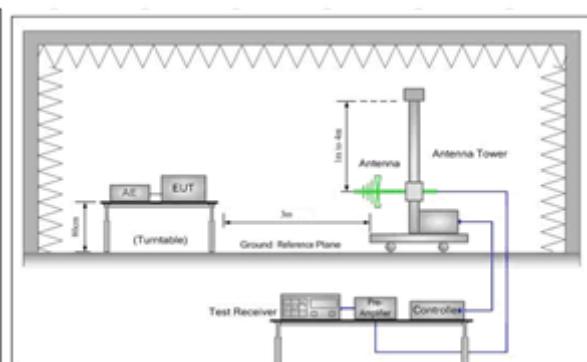


Figure 2. 30MHz to 1GHz

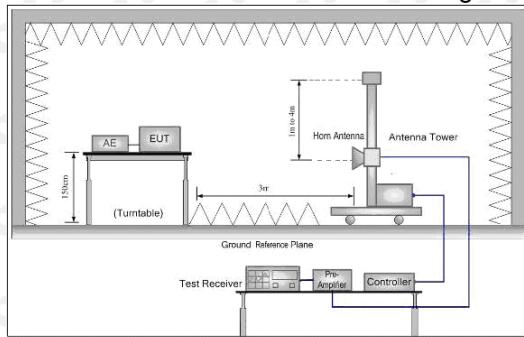


Figure 3, Above 1GHz

7.2 Limit

Spurious Emissions:

Frequency	Field strength (dB μ V/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	$20\log 2400/F$ (kHz) + 80	Quasi-peak	3
0.490MHz-1.705MHz	$20\log 24000/F$ (kHz) + 40	Quasi-peak	3
1.705MHz-30MHz	$20\log 30 + 40$	Quasi-peak	3
30MHz-88MHz	40.0	Quasi-peak	3
88MHz-216MHz	43.5	Quasi-peak	3
216MHz-960MHz	46.0	Quasi-peak	3
960MHz-1GHz	54.0	Quasi-peak	3
Above 1GHz	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

If radiated measurements are performed, field strength is then converted to EIRP as follows:

$$(i) \text{EIRP} = ((E^*d)^2) / 30$$

where:

- E is the field strength in V/m;
- d is the measurement distance in meters;
- EIRP is the equivalent isotropically radiated power in watts.

(ii) Working in dB units, the above equation is equivalent to:

$$\text{EIRP[dBm]} = E[\text{dB}\mu\text{V/m}] + 20 \log(d[\text{meters}]) - 104.77$$

(iii) Or, if d is 3 meters:

$$\text{EIRP[dBm]} = E[\text{dB}\mu\text{V/m}] - 95.2$$

7.3 Test procedure

Below 1GHz test procedure as below:

a.The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f.If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

g.Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).

h.Test the EUT in the lowest channel ,the middle channel ,the Highest channel

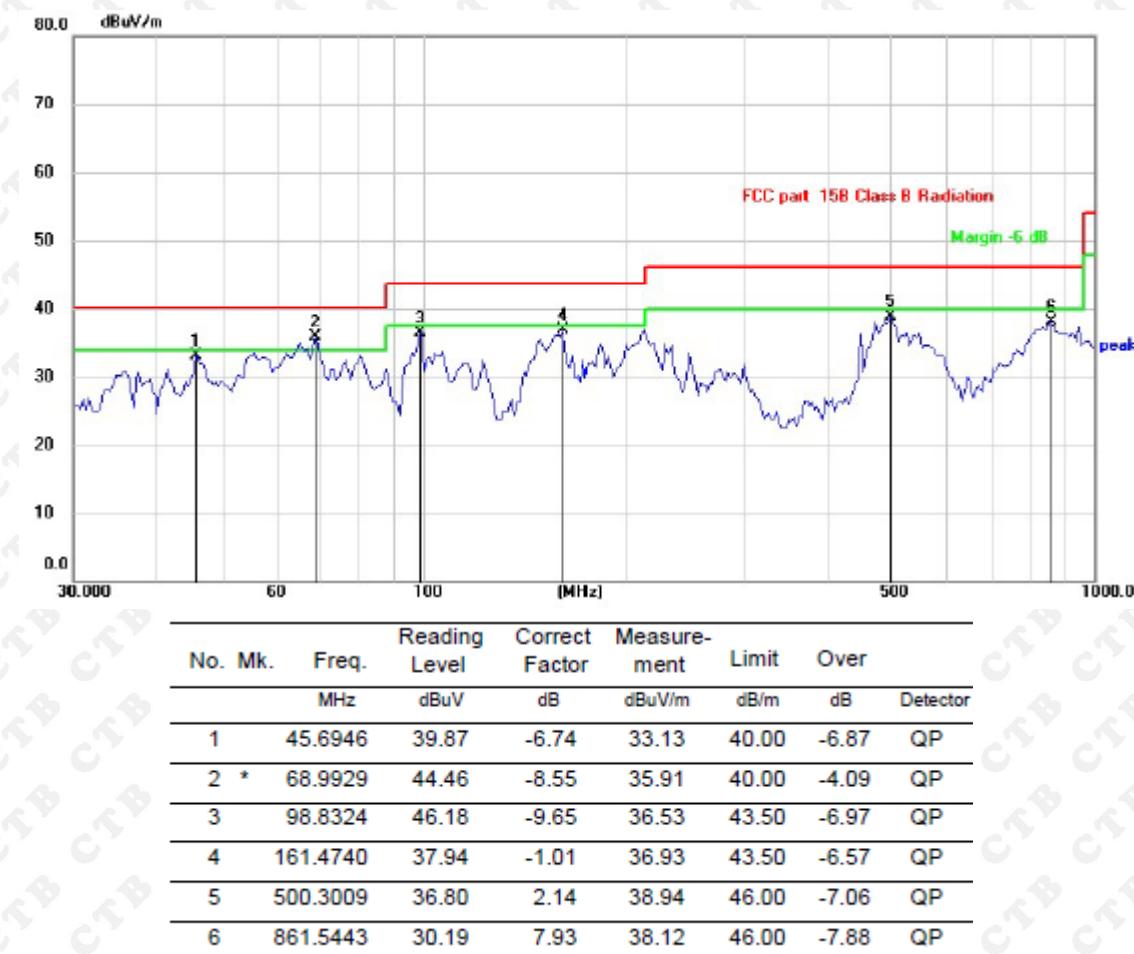
j.Repeat above procedures until all frequencies measured was complete.

Receiver set:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30KHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30KHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30KHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30KHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30KHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300KHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
	Peak	1MHz	10Hz	Average

1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement –X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

7.4 Test Result


30MHz-1GHz Test Results:

Modulation : 802.11a (the worst data)
Test Channel : 5180MHz
Antenna polarity: H

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure-ment	Limit	Over	Over
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	45.6946	41.22	-6.74	34.48	40.00	-5.52	QP
2		146.6303	40.01	-3.35	36.66	43.50	-6.84	QP
3		210.0481	38.64	-4.62	34.02	43.50	-9.48	QP
4		334.2722	40.57	-2.15	38.42	46.00	-7.58	QP
5		442.5176	38.27	0.50	38.77	46.00	-7.23	QP
6		789.2337	26.90	7.18	34.08	46.00	-11.92	QP

Antenna polarity: V

Remark: Factor = Cable loss + Antenna factor - Pre-amplifier; Margin = Measurement – Limit

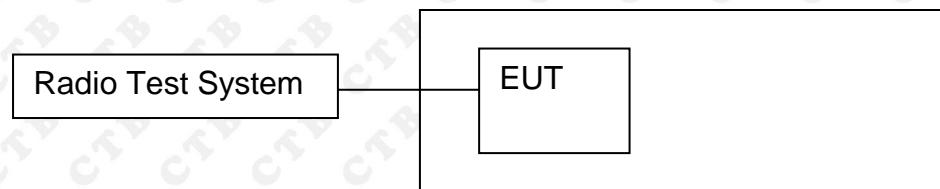
1. The margin of 9K-30MH measurement exceeds 20dB, so the test chart is not included. Test Mode: 802.11a20 (the worst)

Radiated Spurious Emission (Above 1GHz):

Modulation: 802.11(a) (the worst data)

Freq (MHz)	Rd_level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over (dB)	detector	Height	Degree	Antenna polarization
Channel:5180MHz									
10360	39.54	16.39	55.93	68.2	-12.27	PK	1.11	298	H
10360	27.33	16.39	43.72	48.2	-4.48	AV	1.41	332	H
10360	39.92	16.39	56.31	68.2	-11.89	PK	1.48	98	V
10360	25.20	16.39	41.59	48.2	-6.61	AV	1.35	217	V
Channel:5240MHz									
10480	39.54	16.11	55.65	68.2	-12.55	PK	1.55	312	H
10480	26.59	16.11	42.70	48.2	-5.5	AV	1.46	58	H
10480	40.29	16.11	56.40	68.2	-11.8	PK	1.48	11	V
10480	26.75	16.11	42.86	48.2	-5.34	AV	1.36	115	V

Modulation: 802.11(n40) (the worst data)


Freq (MHz)	Rd_level (dBuV/m)	Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over (dB)	detector	Height	Degree	Antenna polarization
Channel:5190MHz									
10380	41.31	16.34	57.65	68.2	-10.55	PK	1.25	142	H
10380	27.39	16.34	43.73	48.2	-4.47	AV	1.56	145	H
10380	40.76	16.34	57.10	68.2	-11.1	PK	1.60	144	V
10380	25.38	16.34	41.72	48.2	-6.48	AV	1.74	332	V
Channel:5230MHz									
10460	39.98	16.15	56.13	68.2	-12.07	PK	1.02	311	H
10460	26.73	16.15	42.88	48.2	-5.32	AV	1.07	201	H
10460	41.95	16.15	58.10	68.2	-10.1	PK	1.03	286	V
10460	25.51	16.15	41.66	48.2	-6.54	AV	1.77	116	V

Remark:

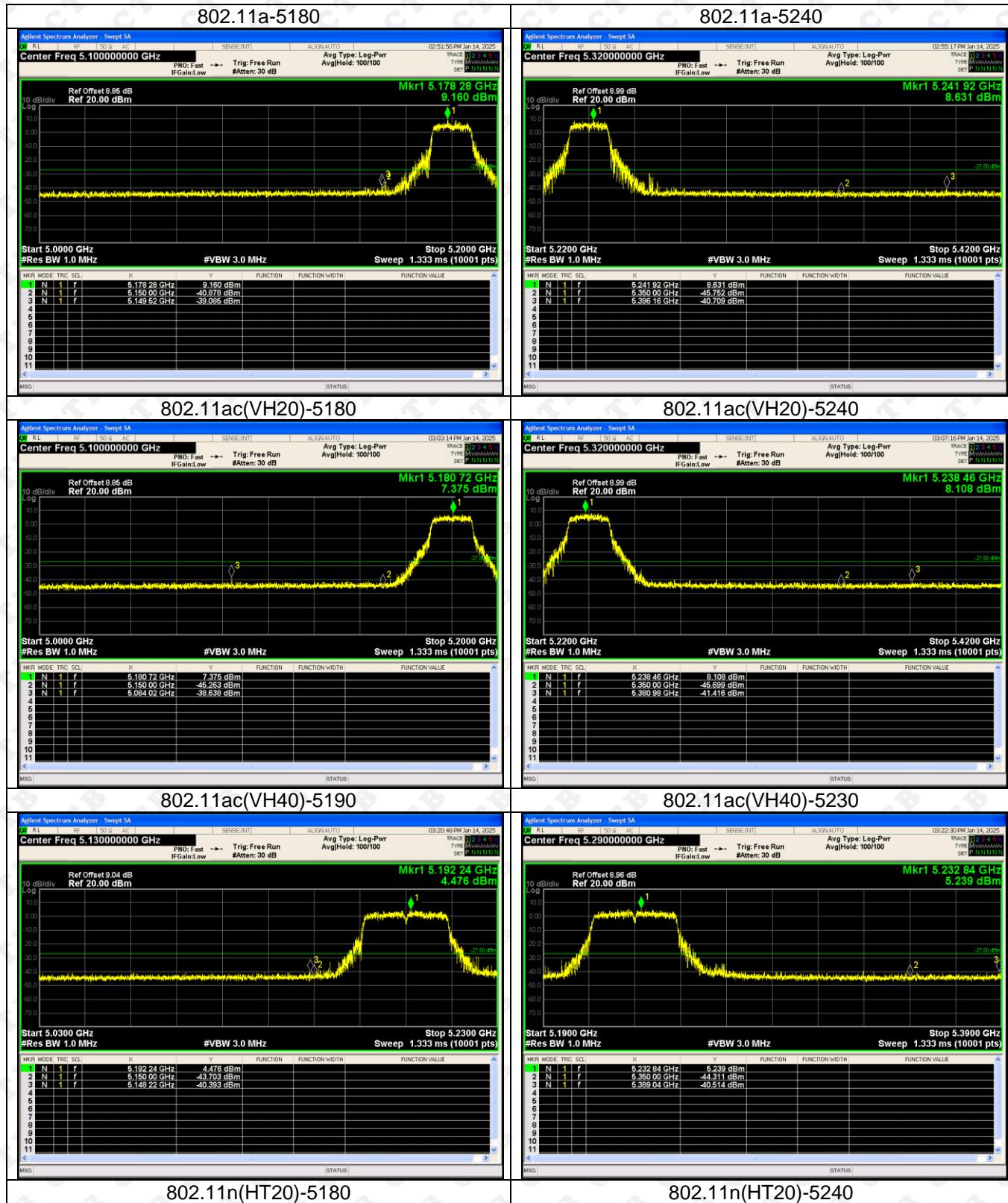
1. Factor = Antenna Factor + Cable Loss – Pre-amplifier. Emission level = Reading Result + Factor, Margin = Emission level - Limits
2. The EUT was tested in the low, high channel and the worst case position data was reported.
3. Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

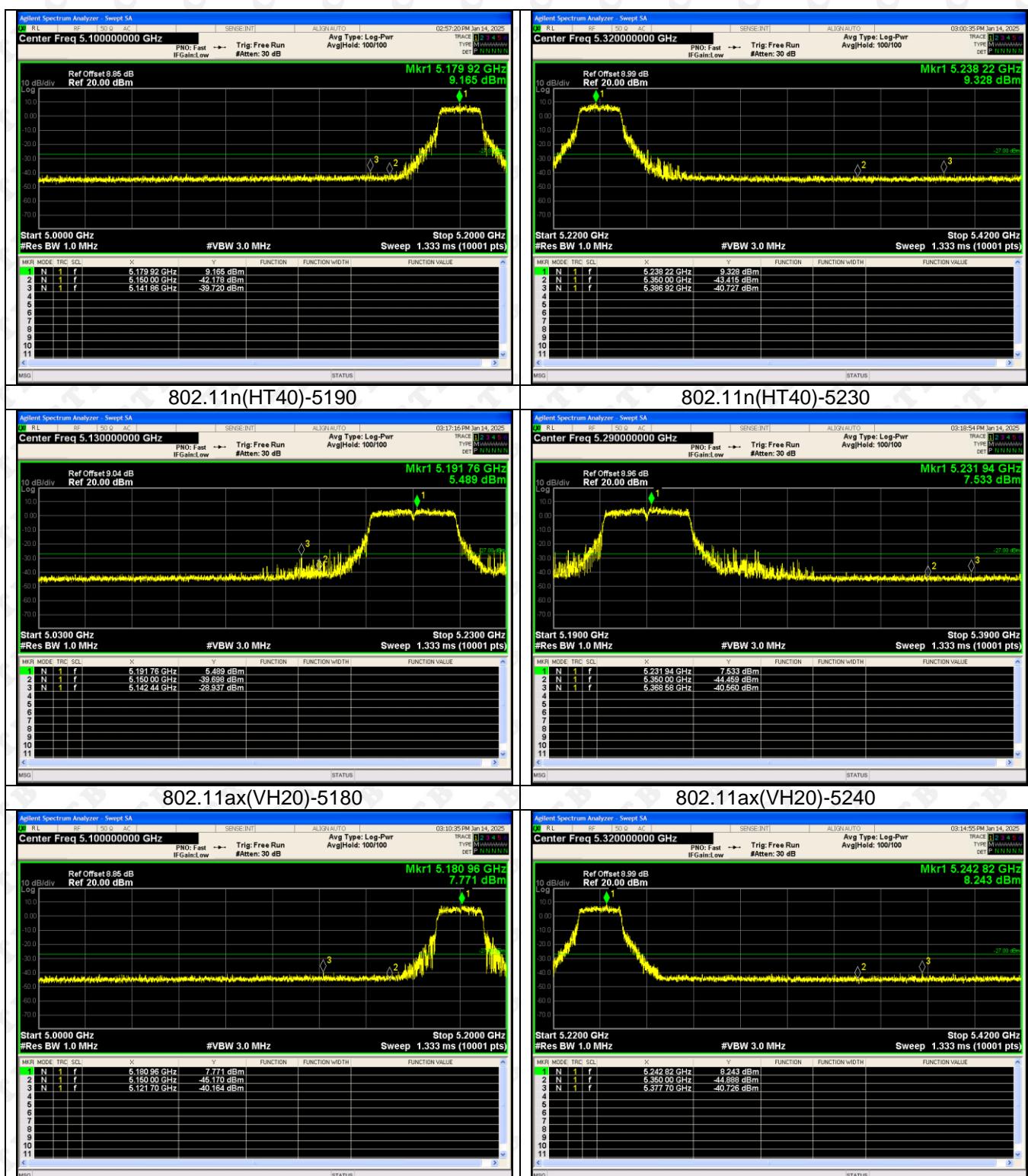
8. BAND EDGE

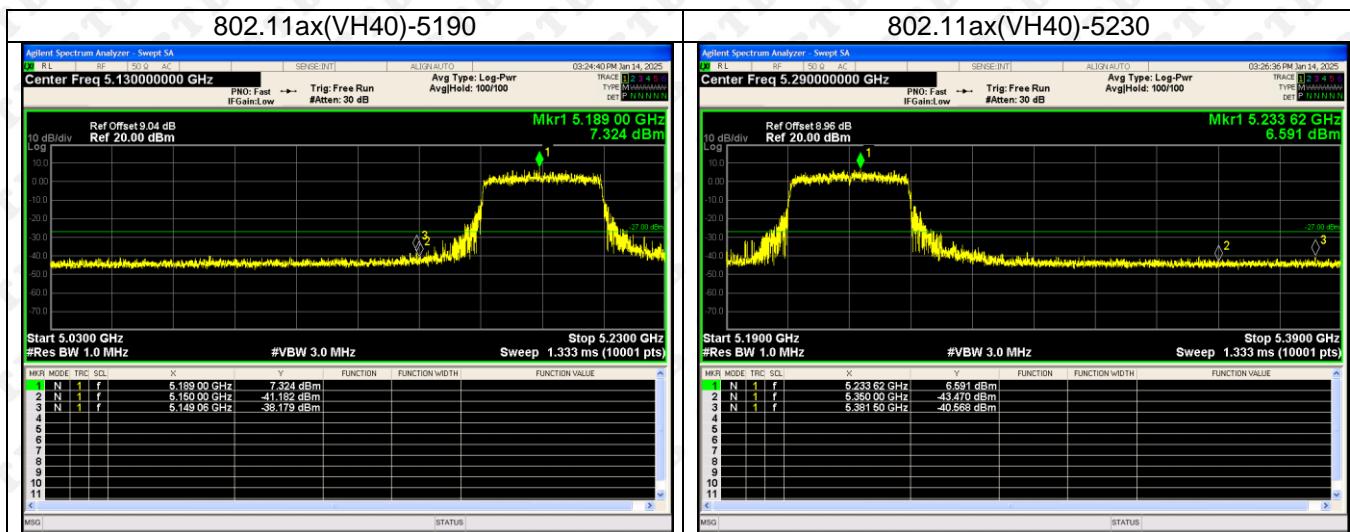
8.1 Block Diagram Of Test Setup

8.2 Limit

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.


8.3 Test procedure


1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.
4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
5. Repeat above procedures until all measured frequencies were complete.


8.4 Test Result

Test Graph

5180-5240MHz



Remark: The antenna gain in 5.2G is 2.39dBi, The test value plus ant is less than -27dBm/MHz, so the test result passes

9. CONDUCTED OUTPUT POWER

9.1 Block Diagram Of Test Setup

9.2 Limit

(1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or $11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(4) The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.

(5) The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a

bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

(h) Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS).

(1) Transmit power control (TPC). U-NII devices operating in the 5.25-5.35 GHz band and the 5.47-5.725 GHz band shall employ a TPC mechanism. The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm. A TPC mechanism is not required for systems with an e.i.r.p. of less than 500 mW.

9.3 Test procedure

According to KDB789033 D02v02r01 sectionE, the following is the measurement procedure.

(i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.

(ii) Set RBW = 1 MHz.

(iii) Set VBW \geq 3 MHz.

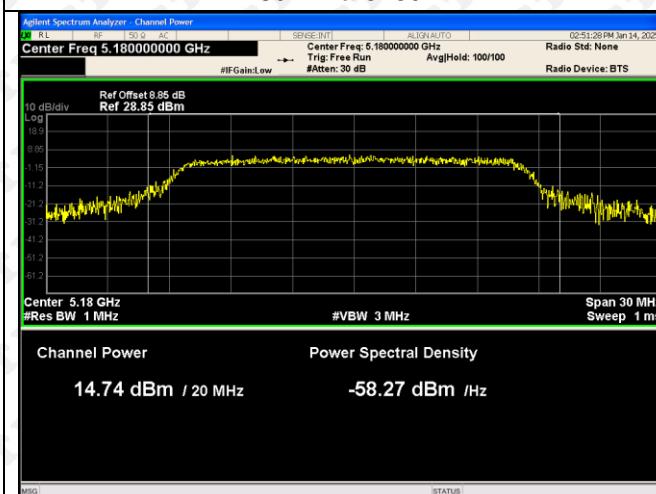
(iv) Number of points in sweep $\geq 2 \times$ span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)

(v) Sweep time = auto.

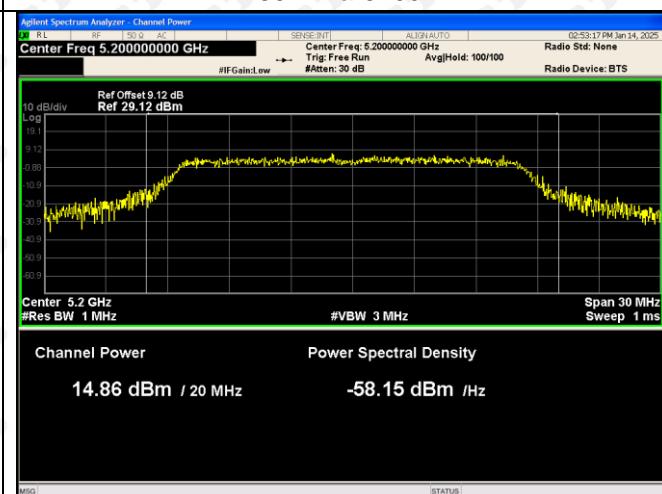
(vi) Detector = power averaging (rms), if available. Otherwise, use sample detector mode.

(vii) If transmit duty cycle $< 98\%$, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle $\geq 98\%$, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."

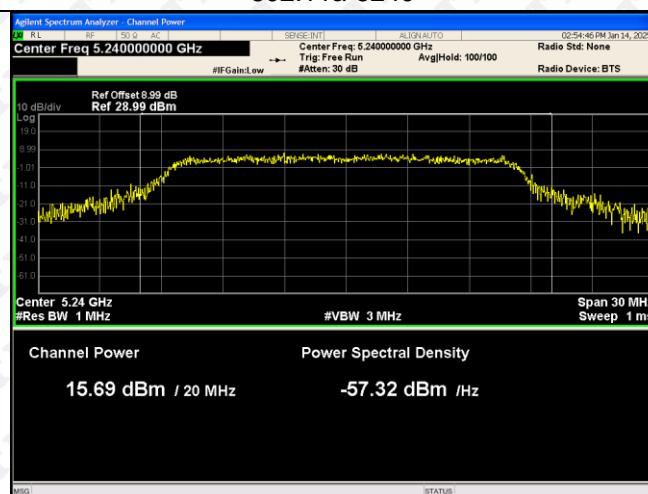
(viii) Trace average at least 100 traces in power averaging (rms) mode.

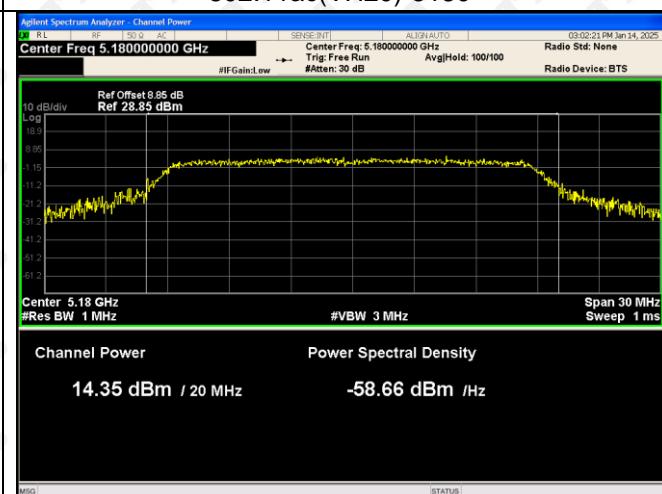

(ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the spectrum.

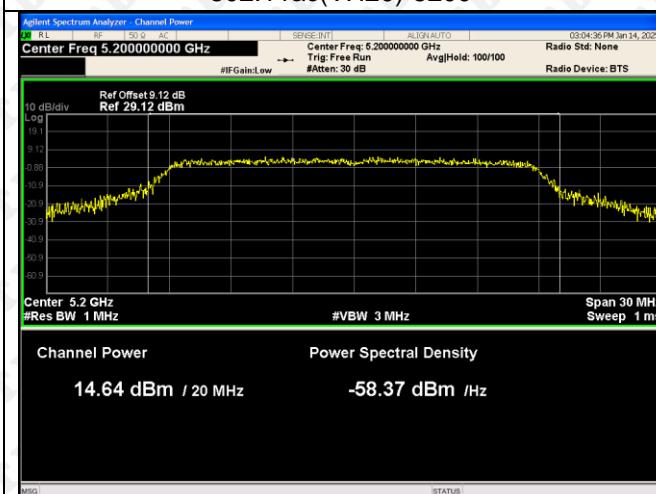
9.4 Test Result

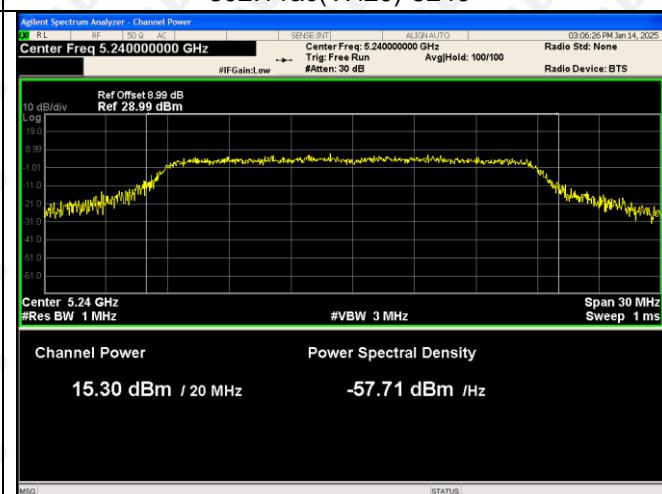

Test mode1	Test Channel (MHz)	Output Power dBm	Limit dBm
802.11a20	5180	14.738	23.98
	5200	14.861	23.98
	5240	15.686	23.98
802.11ac20	5180	14.348	23.98
	5200	14.639	23.98
	5240	15.298	23.98
802.11ac40	5190	14.735	23.98
	5230	15.292	23.98
802.11ax(HT20)	5180	15.314	23.98
	5200	14.557	23.98
	5240	15.339	23.98
802.11ax(HT40)	5190	15.592	23.98
	5230	16.354	23.98
802.11n20	5180	15.157	23.98
	5200	15.401	23.98
	5240	16.207	23.98
802.11n40	5190	16.004	23.98
	5230	16.458	23.98

5180-5240MHz-Power

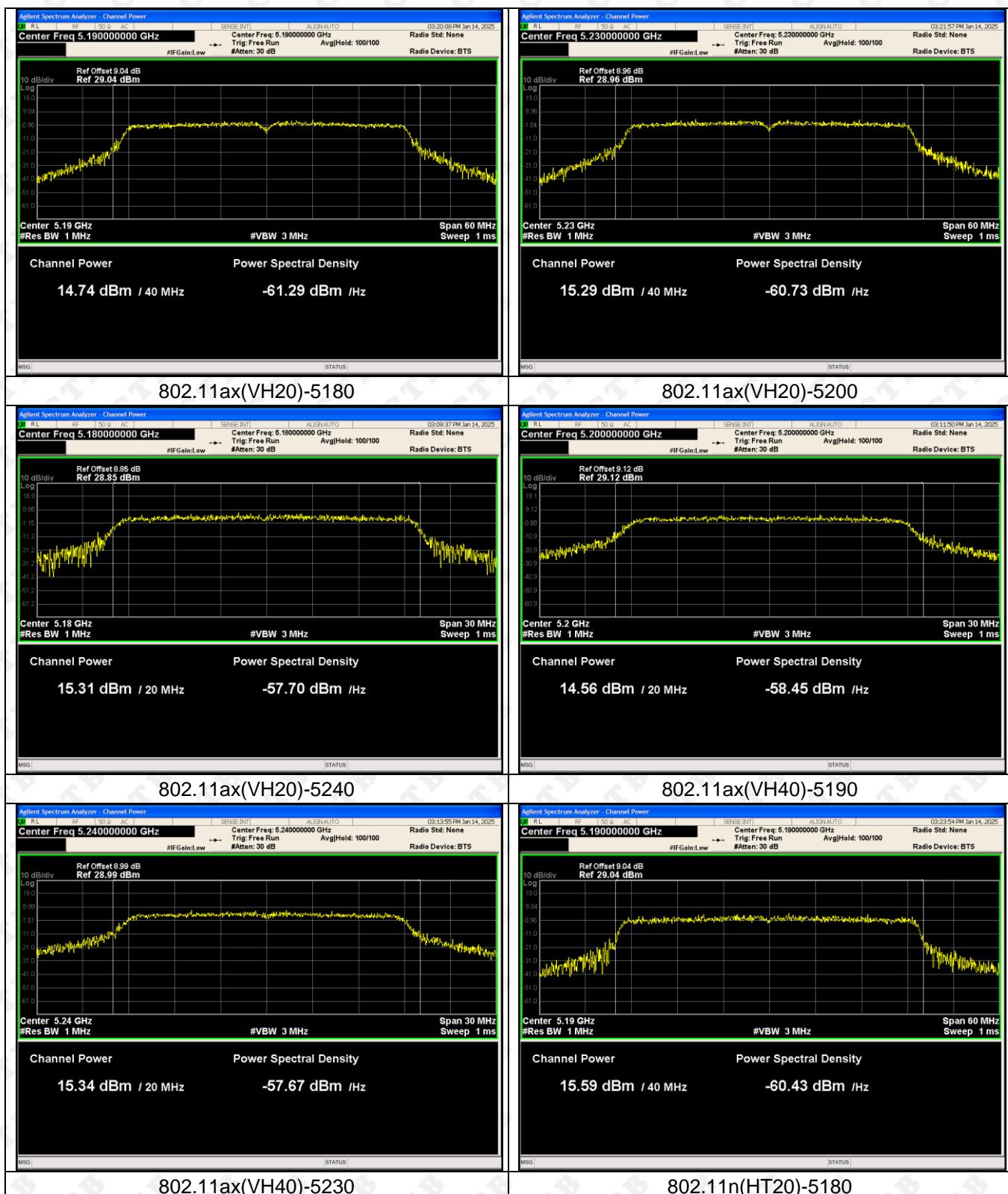

802.11a-5180

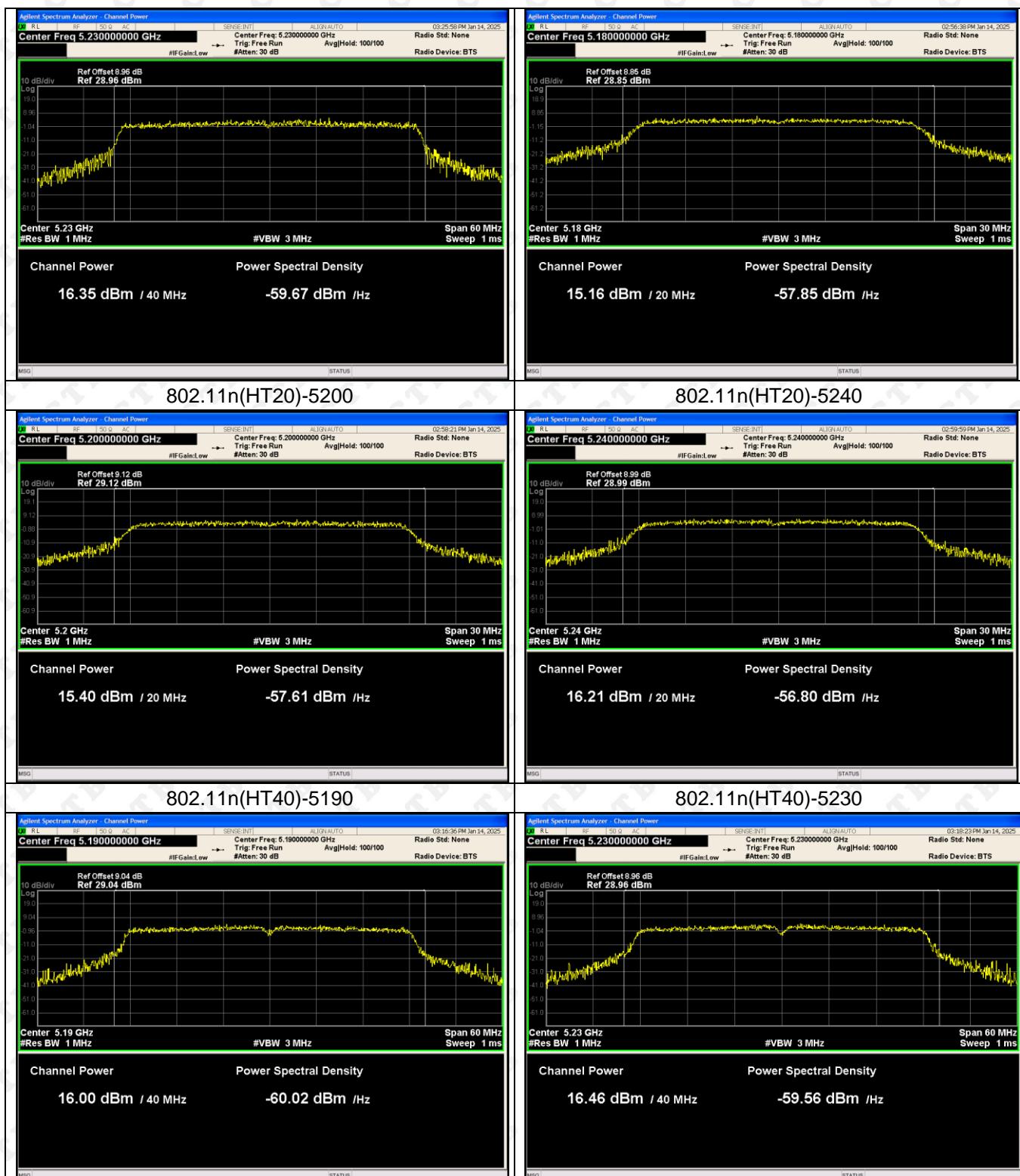

802.11a-5200


802.11a-5240

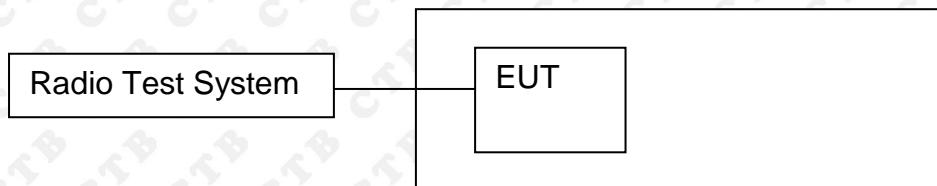

802.11ac(VH20)-5180

802.11ac(VH20)-5200




802.11ac(VH20)-5240

802.11ac(VH40)-5190


802.11ac(VH40)-5230

10. EMISSION BANDWIDTH& OCCUPIED BANDWIDTH

10.1 Block Diagram Of Test Setup

10.2 Limits

(1) For the band 5.15-5.25 GHz.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(e) Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

10.3 Test Procedure

According to KDB789033 D02v02r01 sectionE, the following is the measurement procedure.

1. Emission Bandwidth (EBW)

- Set RBW = approximately 1% of the emission bandwidth.
- Set the VBW > RBW.
- Detector = Peak.
- Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission.

Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

2. Minimum Emission Bandwidth for the band 5.725-5.85 GHz

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 kHz for the band 5.725-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- Set RBW = 100 kHz.
- Set the video bandwidth (VBW) $\geq 3 * \text{RBW}$.

- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described in this section. For devices that use channel aggregation refer to III.A and III.C for determining emission bandwidth.

D. 99% Occupied Bandwidth

The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

Measurement of the 99% occupied bandwidth is *required* only as a condition for using the optional band-edge measurement techniques described in II.G.3.d). Measurements of 99% occupied bandwidth may also optionally be used in lieu of the EBW to define the minimum frequency range over which the 789033 D02 General UNII Test Procedures New Rules v02r01 Page 4 spectrum is integrated when measuring maximum conducted output power as described in II.E. However, the EBW must be measured to determine bandwidth dependent limits on maximum conducted output power in accordance with Section 15.407(a).

The following procedure shall be used for measuring (99%) power bandwidth:

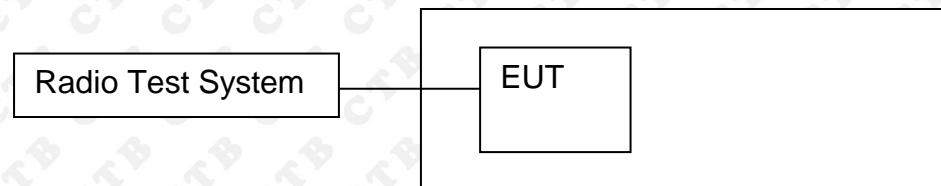
1. Set center frequency to the nominal EUT channel center frequency.
2. Set span = 1.5 times to 5.0 times the OBW.
3. Set RBW = 1% to 5% of the OBW
4. Set VBW $\geq 3 * RBW$
5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
6. Use the 99% power bandwidth function of the instrument (if available).
7. If the instrument does not have a 99% power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

10.4 Test Results

Test mode	Test Channel (MHz)	26dB Bandwidth (MHz)
802.11a	5180	23.479
	5200	23.758
	5240	21.661
802.11ac20	5180	24.520
	5200	24.872
	5240	24.504
802.11ac40	5190	40.619
	5230	40.914
802.11ax(HT20)	5180	24.026
	5200	26.268
	5240	24.520
802.11ax(HT40)	5190	41.971
	5230	42.185
802.11n20	5180	25.325
	5200	24.755
	5240	25.187
802.11n40	5190	42.401
	5230	41.546

Test Graph

5180-5240MHz



11. POWER SPECTRAL DENSITY

11.1 Block Diagram Of Test Setup

11.2 Limit

(1) For the band 5.15-5.25 GHz.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

11.3 Test procedure

According to KDB789033 D02v02r01 sectionE, the following is the measurement procedure.

For devices operating in the bands 5.15–5.25 GHz, 5.25–5.35 GHz, and 5.47–5.725 GHz, the preceding procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in Section 15.407(a)(5). For devices operating in the band 5.725–5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of RBWs less than 1 MHz, or 500 kHz, “provided that the measured power is integrated over the full reference bandwidth” to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply:

- a) Set RBW $\geq 1/T$, where T is defined in II.B.I.a.
- b) Set VBW ≥ 3 RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add $10 \log (500 \text{ kHz}/\text{RBW})$ to the

measured result, whereas RBW (<500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add $10 \log (1\text{MHz}/\text{RBW})$ to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.

e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 kHz for the II.F.5.c) and II.F.5.d), since RBW=100 kHz is available on nearly all spectrum analyzers.

11.4 Test Result

Test mode	Test Channel (MHz)	PSD [dBm/MHz]	Limit [dBm/MHz]	Result
802.11a	5180	-6.896	11	Pass
	5200	-5.902	11	Pass
	5240	-5.967	11	Pass
802.11ac(VH20)	5180	-5.851	11	Pass
	5200	-4.797	11	Pass
	5240	-4.216	11	Pass
802.11ac(VH40)	5190	-7.743	11	Pass
	5230	-7.633	11	Pass
802.11ax(HT20)	5180	-5.589	11	Pass
	5200	-4.755	11	Pass
	5240	-6.106	11	Pass
802.11ax(HT40)	5190	-8.169	11	Pass
	5230	-7.602	11	Pass
802.11n (VH20)	5180	-3.870	11	Pass
	5200	-4.500	11	Pass
	5240	-2.746	11	Pass
802.11n(VH40)	5190	-6.202	11	Pass
	5230	-4.791	11	Pass

5180-5240MHz

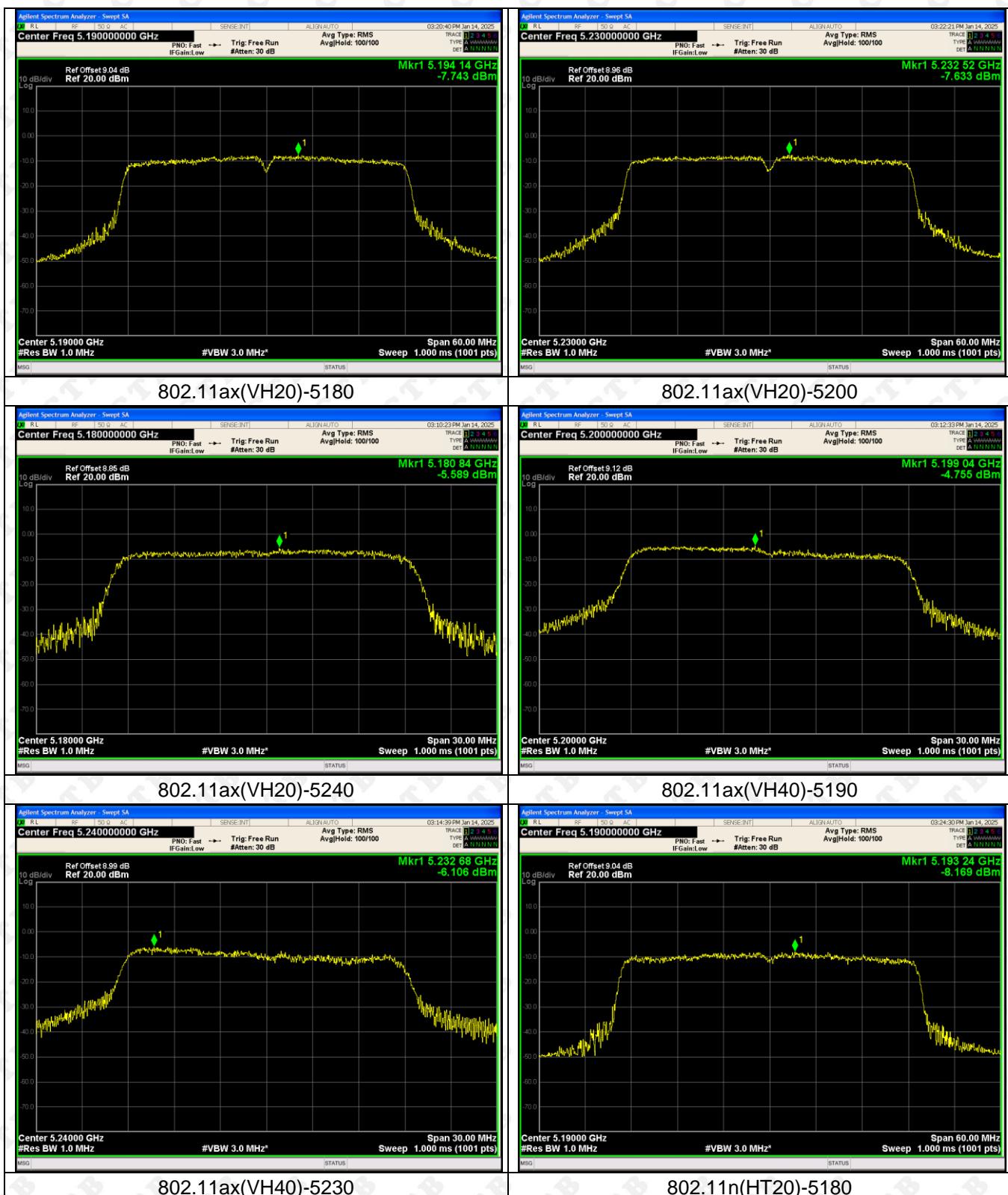
802.11a-5180

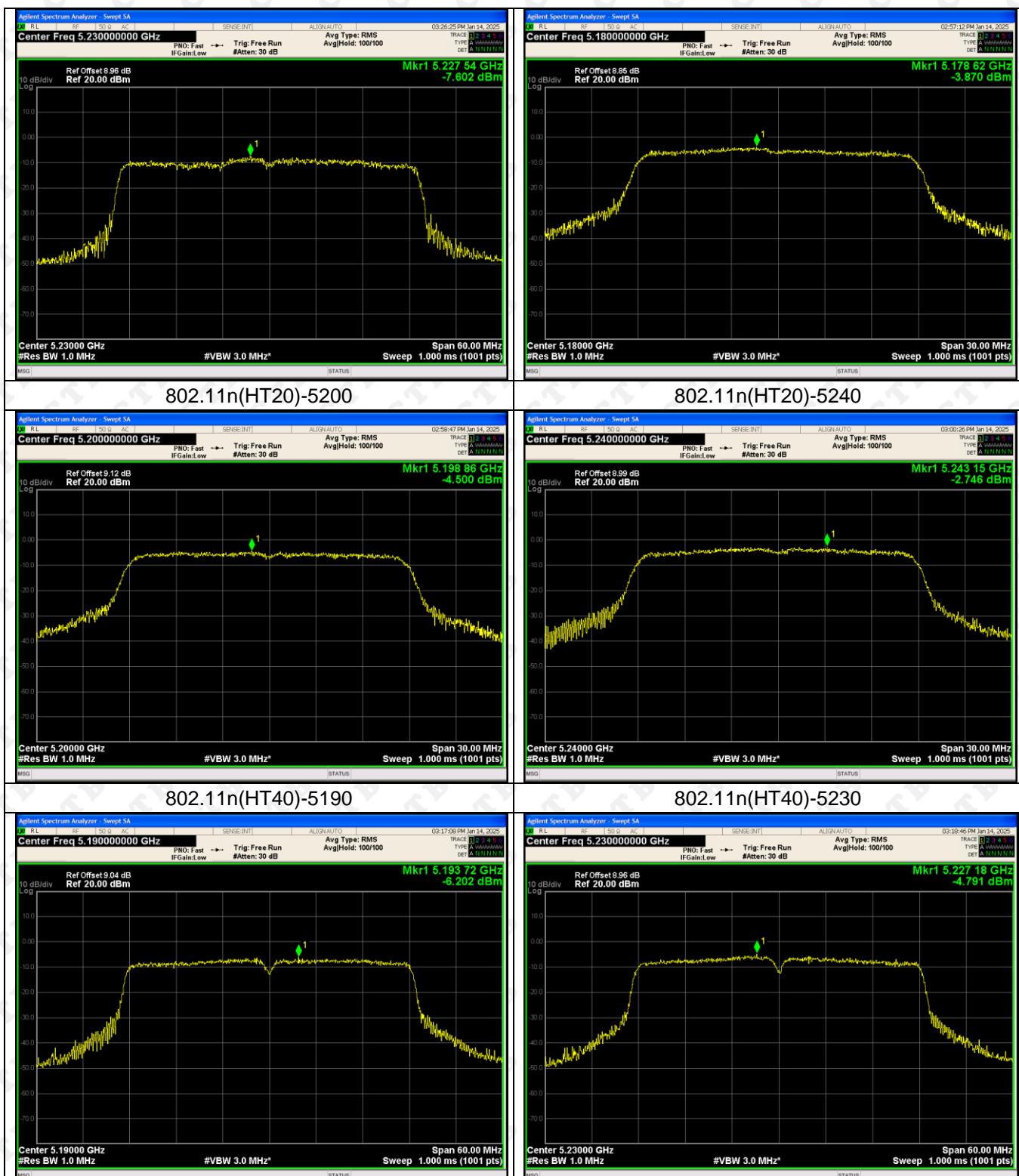
802.11a-5200

802.11a-5240

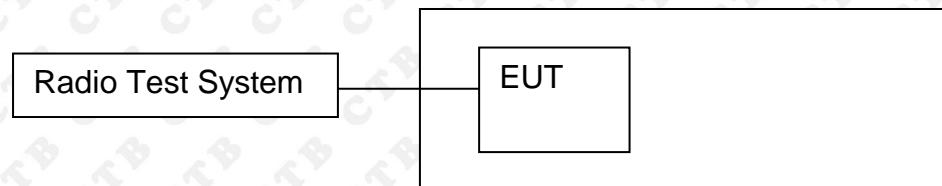
802.11ac(VH20)-5180

802.11ac(VH20)-5200




802.11ac(VH20)-5240

802.11ac(VH40)-5190


802.11ac(VH40)-5230

12. FREQUENCY STABILITY

12.1 Block Diagram Of Test Setup

12.2 Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

12.3 Test procedure

1. The EUT was placed inside temperature chamber and powered and powered by nominal DC voltage.
2. Set EUT as normal operation.
3. Turn the EUT on and couple its output to spectrum.
4. Turn the EUT off and set the chamber to the highest temperature specified.
5. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT and measure the operating frequency.
6. Repeat step with the temperature chamber set to the lowest temperature.

12.4 Test Result

TX Frequency (5150-5250MHz)

Voltage vs. Frequency Stability

TEST CONDITIONS			Reference Frequency: 5180MHz				
			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
T nom (°C)	20	V nom (V)	120.0	5180.0495	5180	0.0495	9.5609
		V max (V)	132.0	5180.0551	5180	0.0551	10.6407
		V min (V)	108.0	5180.0239	5180	0.0239	4.6202
Limits			±20ppm				
Result			Complies				

Temperature vs. Frequency Stability

TEST CONDITIONS			Reference Frequency: 5180MHz				
			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
V nom (V)	120	T (°C)	0	5180.0434	5180	0.0434	8.3798
		T (°C)	10	5180.0187	5180	0.0187	3.6122
		T (°C)	20	5180.0370	5180	0.0370	7.1359
		T (°C)	30	5180.0351	5180	0.0351	6.7828
		T (°C)	40	5180.0447	5180	0.0447	8.6381
Limits			±20ppm				
Result			Complies				

Voltage vs. Frequency Stability

TEST CONDITIONS			Reference Frequency: 5200MHz				
			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
T nom (°C)	20	V nom (V)	120.0	5200.0142	5200	0.0142	2.7361
		V max (V)	132.0	5200.0535	5200	0.0535	10.2818
		V min (V)	108.0	5200.0329	5200	0.0329	6.3338
Limits			±20ppm				
Result			Complies				

Temperature vs. Frequency Stability

TEST CONDITIONS			Reference Frequency: 5200MHz				
			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
V nom (V)	120	T (°C)	0	5200.0067	5200	0.0067	1.2808
		T (°C)	10	5200.0384	5200	0.0384	7.3857
		T (°C)	20	5200.0328	5200	0.0328	6.3013
		T (°C)	30	5200.0021	5200	0.0021	0.4063
		T (°C)	40	5200.0111	5200	0.0111	2.1321
Limits			±20ppm				
Result			Complies				

Voltage vs. Frequency Stability

TEST CONDITIONS			Reference Frequency: 5240MHz				
			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
T nom (°C)	20	V nom (V)	120.0	5240.0101	5240	0.0101	1.9328
		V max (V)	132.0	5240.0106	5240	0.0106	2.0315
		V min (V)	108.0	5240.0232	5240	0.0232	4.4244
Limits			±20ppm				
Result			Complies				

Temperature vs. Frequency Stability

TEST CONDITIONS			Reference Frequency: 5240MHz				
			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
V nom (V)	120	T (°C)	0	5240.0410	5240	0.0410	7.8323
		T (°C)	10	5240.0430	5240	0.0430	8.1992
		T (°C)	20	5240.0518	5240	0.0518	9.8864
		T (°C)	30	5240.0432	5240	0.0432	8.2414
		T (°C)	40	5240.0296	5240	0.0296	5.6435
Limits			±20ppm				
Result			Complies				

13. OPERATION IN THE ABSENCE OF INFORMATION TO THE TRANSMIT

13.1 Requirement

15.407(c) requirement:

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.

13.2 Test Results

Operation in the absence of information to the transmit:

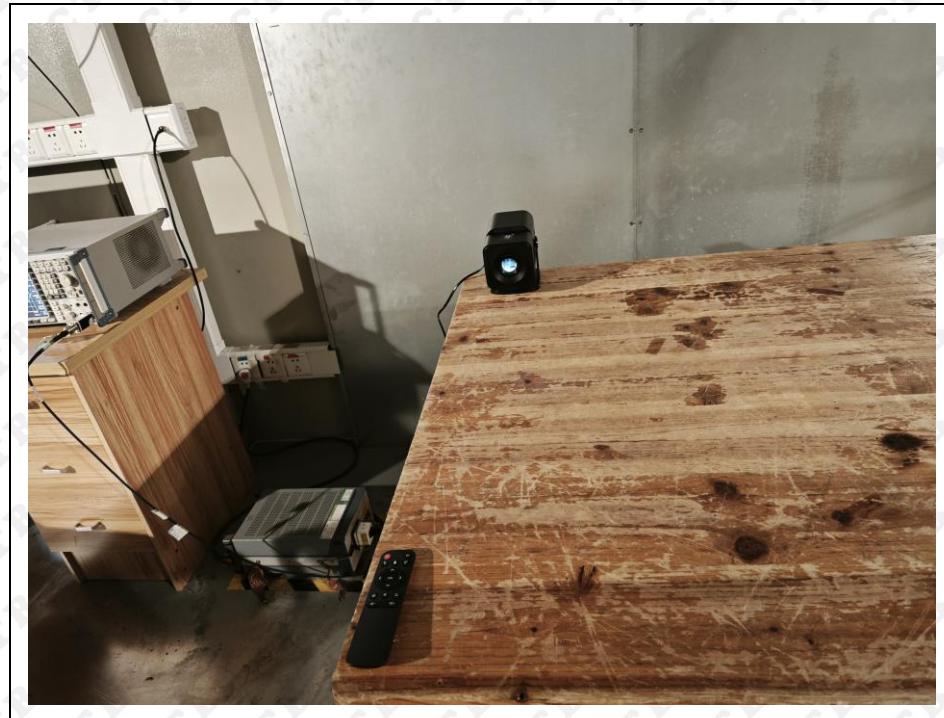
While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of WLAN message transmitting from remote device and verify whether it shall reconnect. (manufacturer declare)

14. ANTENNA REQUIREMENT

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:


The antenna is FPC antenna and no consideration of replacement. The best case gain of the antenna is 2.39dBi.

15. EUT TEST SETUP PHOTOGRAPHS

Radiated Emission

Conducted emission

***** END OF REPORT *****