

FCC Test Report

Application No.:	DNT2501100184R0322-00411
------------------	--------------------------

Applicant: Shenzhen Nixun Electronic Technology Co., Ltd.

Address of Applicant: Room 201, Building 12, Zone 3, Lianhe Industrial Zone, Nanyue

Community, Baolong Street, Longgang District, Shenzhen

EUT Description: WIRELESS BLUETOOTH SMART MEAT THERMOMETER

TXD01,TXD02,TXD03,TXD04,TXD05,TXD06,TXD07,TXD08,TXD09,

TXD10,NX01,NX02,NX03,NX04,NX05,NX06,NX07,NX08,NX09,NX10,

Model No.:

Master XT600, Master XT500, Master XT400, Master XT300, Master XT200,

Master XT100

FCC ID: 2BNE4-TXD01

Power Supply Input:DC 5V;

DC 3.7V by 1000mAh rechargeable lithium-ion battery

Trade Mark: /

47 CFR FCC Part 2, Subpart J

Standards: 47 CFR Part 15, Subpart C

ANSI C63.10: 2013

Date of Receipt: 2025/01/10

Date of Test: 2025/01/10 to 2025/01/16

Date of Issue: 2025/01/17

Test Result: PASS

Prepared By: Wante Jin (Testing Engineer)

Reviewed By: | engils then (Project Engineer)

Approved By: (Manager)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Dongguan DN Testing Co., Ltd.

Date: January 17, 2025

Page: 2/54

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V2.0		Jan.17, 2025	Valid	Original Report

1 Test Summary

Test Item	Test Requirement	Test Method	Test Result	Result
Antenna Requirement	15.203/247(b)	0'-0'	Clause 3.1	PASS
Duty Cycle		O O	Clause 3.2	PASS
DTS (6 dB) Bandwidth	15.247 (a)(2)	ANSI C63.10: 2013	Clause 3.3	PASS
Conducted Output Power	15.247 (b)(3)	ANSI C63.10: 2013	Clause 3.4	PASS
Power Spectral Density	15.247 (e)	ANSI C63.10: 2013	Clause 3.5	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10: 2013	Clause 3.6	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10: 2013	Clause 3.7	PASS
Radiated Spurious Emissions	15.247(d);15.205/15.209	ANSI C63.10: 2013	Clause 3.8	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d);15.205/15.209	ANSI C63.10: 2013	Clause 3.9	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10: 2013	Clause 3.10	PASS

Note:

^{1. &}quot;N/A" denotes test is not applicable in this test report.

Contents

1 Test Summary	 	 3
2 General Information	 	 5
2.1 Test Location	 	 5
2.2 General Description of EUT	 	5
2.3 Channel List	 	 6
2.4 Test Environment and Mode	 	 6
2.5 Power Setting of Test Software	 	6
2.6 Description of Support Units	 <i>'</i>	 6
2.7 Test Facility	 	 7
2.8 Measurement Uncertainty (95% confidence levels, k=2)		 7
2.9 Equipment List	 	 8
2.10 Assistant equipment used for test	 	 9
3 Test results and Measurement Data		10
3.1 Antenna Requirement	 	 10
3.2 Duty Cycle	 	 11
3.3 DTS (6 dB) Bandwidth	 	12
3.4 Conducted Output Power	 	 13
3.5 Power Spectral Density	 	 14
3.6 Band-edge for RF Conducted Emissions		 15
3.7 RF Conducted Spurious Emissions	 	 16
3.8 Radiated Spurious Emissions	 	 17
3.9 Restricted bands around fundamental frequency	 	 25
3.10 AC Power Line Conducted Emissions	 	 29
4 Appendix	 	 33
Appendix A: Duty Cycle	 	 33
Appendix B: DTS Bandwidth	 	 36
Appendix C: Maximum conducted output power	 	 39
Appendix D: Maximum power spectral density	 	 42
Appendix E: Band edge measurements	 	 45
Appendix F: Conducted Spurious Emission	 	 48

2 General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China
Test engineer:	Wayne Lin

2.2 General Description of EUT

Manufacturer:	Shenzhen Nixun Electronic Technology Co., Ltd.
Address of Manufacturer:	Room 201, Building 12, Zone 3, Lianhe Industrial Zone, Nanyue Community, Baolong Street, Longgang District, Shenzhen
EUT Description:	WIRELESS BLUETOOTH SMART MEAT THERMOMETER
Test Model No.:	TXD01
Additional Model(s):	TXD02,TXD03,TXD04,TXD05,TXD06,TXD07,TXD08,TXD09,TXD10,NX01, NX02,NX03,NX04,NX05,NX06,NX07,NX08,NX09,NX10,Master XT600, Master XT500,Master XT400,Master XT300,Master XT200,Master XT100
Chip Type:	HS6621CM
Serial Number	PR2501100184R0322
Power Supply	Input:DC 5V;
T 1.4.	DC 3.7V by 1000mAh rechargeable lithium-ion battery
Trade Mark:	N/A
Hardware Version:	V1.0
Software Version:	V1.0
Operation Frequency:	2402 MHz to 2480 MHz
Type of Modulation:	GFSK
Sample Type:	□ Portable Device, □ Module, □ Mobile Device
Antenna Type:	☐ External, ⊠ Integrated
Antenna Ports	
At	⊠ Provided by applicant
Antenna Gain*:	2.5dBi
	⊠ Provided by applicant
RF Cable*:	0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz); 1.8dB(4.4~6GHz);

Remark:

*All models are just name differences, motherboard, PCB circuit board, chip, electronic components,appearance is all the same.

*Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information, DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

2.3 Channel List

	Operation Frequency of each channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

2.4 Test Environment and Mode

Operating Environment:	
Temperature:	20~25.0 °C
Humidity:	45~56 % RH
Atmospheric Pressure:	101.0~101.30 KPa
Test mode:	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

2.5 Power Setting of Test Software

Software Name		REV1.0.1	
Frequency(MHz)	2402	2440	2480
BLE 1M Setting	2	2	2
BLE 2M Setting	2	2	2

2.6 Description of Support Units

The EUT has been tested independent unit.

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

· FCC, USA

Designation Number: CN1348

A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

• Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory. CAB identifier is CN0149.

IC#: 30755.

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	DTS Bandwidth	±0.0196%	
2	Maximum Conducted Output Power	±0.686 dB	
3	Maximum Power Spectral Density Level	±0.743 dB	
4	Band-edge Compliance	±1.328 dB	
5	Unwanted Emissions In Non-restricted Freq Bands	9KHz-1GHz:±0.746dB 1GHz-26GHz: ±1.328dB	

No.	Item Measurement Uncertainty		
1	Conduction Emission ± 3.0dB (150kHz to 30MHz)		
		± 4.8dB (Below 1GHz)	
	Dedicted Environmen	± 4.8dB (1GHz to 6GHz)	
2	Radiated Emission	± 4.5dB (6GHz to 18GHz)	
	, , , , , , , , ,	± 5.02dB (Above 18GHz)	

Date: January 17, 2025

Page: 8/54

2.9 Equipment List

For Connect EUT Antenna Terminal Test					
Description	Manufacturer	Model	Serial Number	Cal date	Due date
Signal Generator	Keysight	N5181A-6G	MY48180415	2024-10-23	2025-10-22
Signal Generator	Keysight	N5182B	MY57300617	2024-10-23	2025-10-22
Power supply	Keysight	E3640A	ZB2022656	2024-10-23	2025-10-22
Radio Communication Tester	R&S	CMW500	105082	2024-10-23	2025-10-22
Spectrum Analyzer	Aglient	N9010A	MY52221458	2024-10-23	2025-10-22
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA	NA
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA
Power Sensor	Anritsu	ML2495A	2129005	2024-10-23	2025-10-22
Pulse Power Sensor	Anritsu	MA2411B	1911397	2024-10-23	2025-10-22
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2024-10-23	2025-10-22

	Test Equipment for Conducted Emission										
Description Manufacturer Model Serial Number Cal Date Due Date											
Receiver	Receiver R&S ESCI3 101152										
LISN	R&S	ENV216	102874	2024-10-23	2025-10-22						
ISN	R&S	ENY81-CA6	1309.8590.03	2024-10-23	2025-10-22						

Test Ed	quipment for F	Radiated Emis	sion(30MHz	-1000MHz	z)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Receiver	R&S	ESR7	102497	2024-10-23	2025-10-22
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2024-10-23	2025-10-22
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2022-11-28	2025-11-27
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2024-10-23	2025-10-22

Page: 9/54

Test E	quipment for I	Radiated Emis	ssion(Above	1000MHz)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Frequency analyser	Keysight	N9010A	MY52221458	2024-10-23	2025-10-22
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2024-10-23	2025-10-22
Horn Antenna	ETS-LINDGREN	3117	00252567	2022-11-28	2025-11-27
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2022-11-28	2025-11-27
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2024-10-23	2025-10-22
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2024-10-23	2025-10-22

2.10 Assistant equipment used for test

Code	Equipment	Manufacturer	Model No.	Equipment No.
1	1 Adapter		GFDQ3- 0502000U	NA
2	Computer	acer	N22C8	EMC notebook01

Report No.: DNT2501100184R0322-00411 Date: January 17, 2025 Page: 10 / 54

3 Test results and Measurement Data

3.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

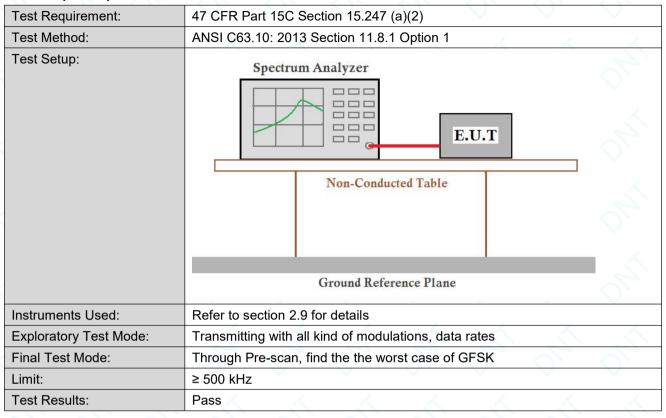
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

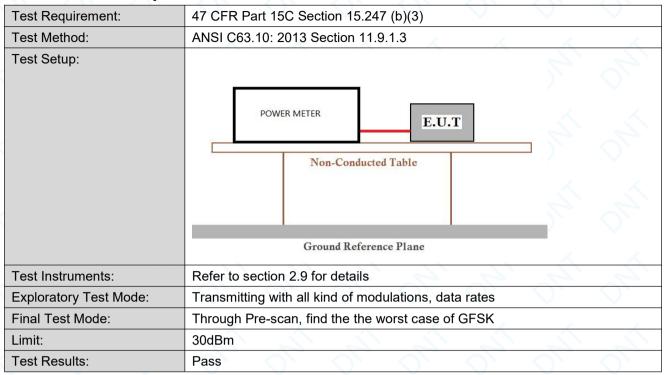
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.5dBi.

3.2 Duty Cycle


Refer to section : Appendix A

Note:

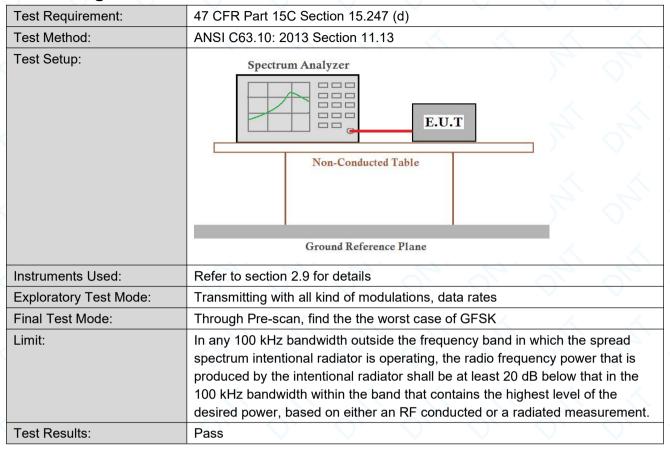
- 1.lf duty cycle <98 %, the conducted average output power and average power spectral density should be add duty factor.
- 2.If duty cycle ≥ 98 %,the EUT is consider to be transmitting continuously,the conducted average output power and average power spectral density no need to add duty factor(consider to be zero).
- 3. The conducted peak output power and peak power spectral density no need to consider duty factor.
- 4. The on-time time is transmission duration(T).


3.3 DTS (6 dB) Bandwidth

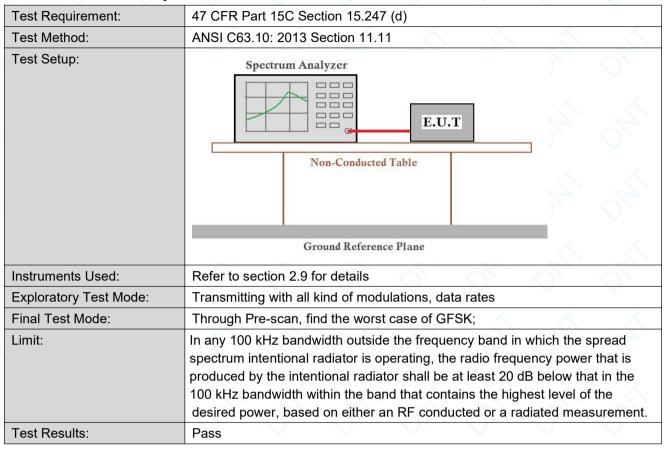
The detailed test data see: Appendix B


3.4 Conducted Output Power

The detailed test data see: Appendix C


3.5 Power Spectral Density

The detailed test data see: Appendix D


3.6 Band-edge for RF Conducted Emissions

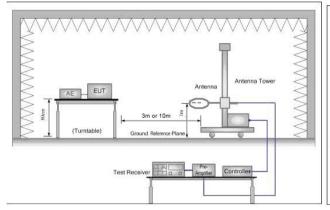
The detailed test data see: Appendix E

3.7 RF Conducted Spurious Emissions

The detailed test data see: Appendix F

Date: January 17, 2025

Page: 17 / 54


3.8 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Section	n 15.209 and 15.20	05									
Test Method:	ANSI C63.10: 2013 Sect	tion 11.12										
Test Site:	Measurement Distance:	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)										
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark							
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak							
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average							
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak							
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak							
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average							
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak							
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak							
		Peak	1MHz	3MHz	Peak							
	Above 1GHz	Peak	1MHz	10Hz (DC≥0.98) ≥1/T (DC<0.98)	Average							
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)							
	0.009MHz-0.490MHz	2400/F(kHz)	-	<u> </u>	300							
	0.490MHz-1.705MHz	24000/F(kHz)	P-	P - 1	30							
	1.705MHz-30MHz	30	· -	- V	30							
	30MHz-88MHz	100	40.0	Quasi-peak	3							
	88MHz-216MHz	150	43.5	Quasi-peak	3							
	216MHz-960MHz	200	46.0	Quasi-peak	3							
	960MHz-1GHz	500	54.0	Quasi-peak	3							
	Above 1GHz	500	54.0	Average	3							
	Remark: 15.35(b),Unless emissions is 20dB above applicable to the equipm emission level radiated by	e the maximum per ent under test. Thi	mitted avera	nge emission lin	nit							

Date: January 17, 2025

Page: 18 / 54

Test Setup:

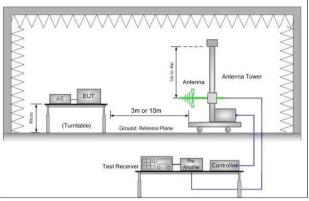


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

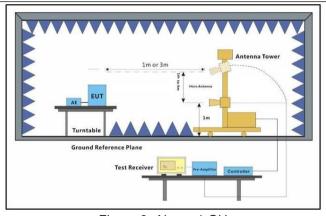
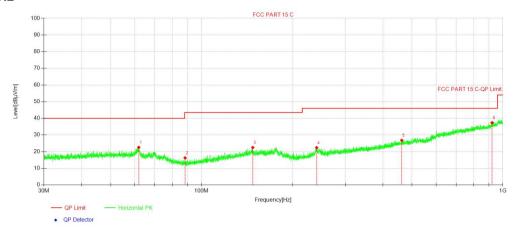


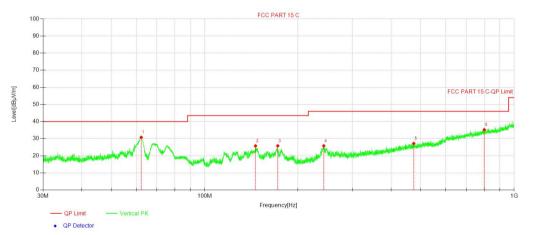
Figure 3. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel ,the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Dongguan DN Testing Co., Ltd.

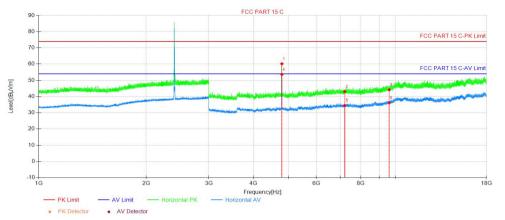

Report No.: DNT	2501100184R0322-00411 Date: January 17, 2025 Page: 19 / 54
Test Configuration:	Measurements Below 1000MHz RBW = 120 kHz VBW = 300 kHz Detector = Peak Trace mode = max hold
	Peak Measurements Above 1000 MHz • RBW = 1 MHz • VBW ≥ 3 MHz
	Detector = Peak Sweep time = auto Trace mode = max hold
	 Average Measurements Above 1000MHz RBW = 1 MHz VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates. Charge + Transmitting mode.
Final Test Mode:	Pretest the EUT at Charging+Transmitting mode. Through Pre-scan, find the worst case of GFSK,Only the worst case is recorded in the report.
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass

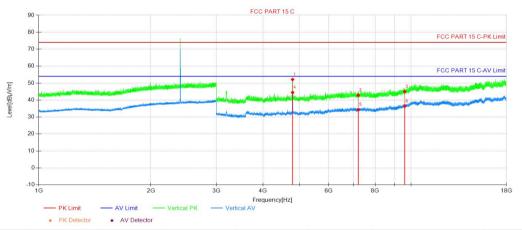

Date: January 17, 2025 Page: 20 / 54

Test data

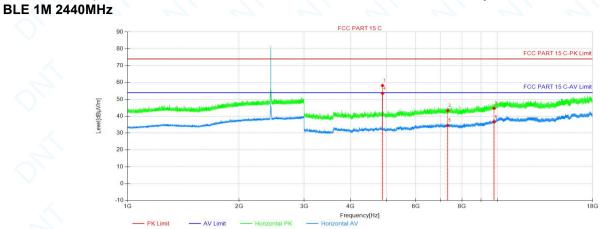
For 30-1000MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	61.92	31.53	-8.98	22.55	40.00	17.45	100	289	PK	Horizontal
2	88.24	30.10	-13.86	16.24	43.50	27.26	100	347	PK	Horizontal
3	148.02	30.47	-7.98	22.49	43.50	21.01	100	316	PK	Horizontal
4	241.16	31.59	-9.21	22.38	46.00	23.62	100	239	PK	Horizontal
5	462.02	29.31	-2.50	26.81	46.00	19.19	100	328	PK	Horizontal
6	921.22	31.50	5.84	37.34	46.00	8.66	100	130	PK	Horizontal

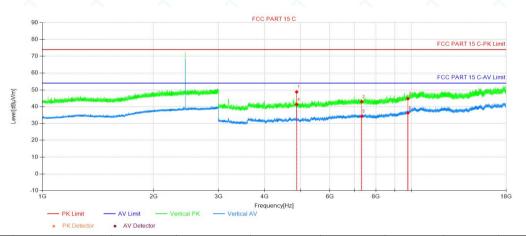

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	62.30	39.82	-9.03	30.79	40.00	9.21	100	125	PK	Vertical
2	145.86	33.89	-8.11	25.78	43.50	17.72	100	51	PK	Vertical
3	172.11	34.30	-8.48	25.82	43.50	17.68	100	223	PK	Vertical
4	242.44	34.95	-9.13	25.82	46.00	20.18	100	305	PK	Vertical
5	473.66	29.45	-2.27	27.18	46.00	18.82	100	330	PK	Vertical
6	800.94	30.94	4.31	35.25	46.00	10.75	100	332	PK	Vertical


Date: January 17, 2025

Page: 21 / 54


BLE 1M 2402MHz

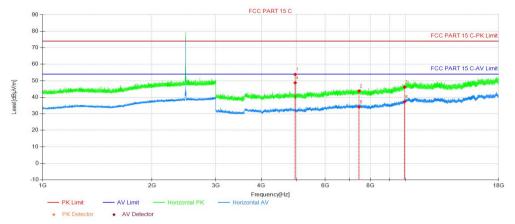
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	4804.59	64.79	-4.61	60.18	74.00	13.82	150	250	Peak	Н
2	7206.21	44.82	-1.76	43.06	74.00	30.94	150	233	Peak	Н
3	9608.58	43.26	0.88	44.14	74.00	29.86	150	195	Peak	Н
4	4805.34	58.27	-4.61	53.66	54.00	0.34	150	250	AV	Н
5	7206.21	36.28	-1.76	34.52	54.00	19.48	150	178	AV	Н
6	9608.58	35.29	0.88	36.17	54.00	17.83	150	160	AV	Н


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	4802.34	56.75	-4.60	52.15	74.00	21.85	150	38	Peak	V
2	7206.21	44.61	-1.76	42.85	74.00	31.15	150	92	Peak	V
3	9608.58	44.12	0.88	45.00	74.00	29.00	150	346	Peak	V
4	4803.84	49.07	-4.61	44.46	54.00	9.54	150	38	AV	V
5	7206.21	36.10	-1.76	34.34	54.00	19.66	150	310	AV	V
6	9608.58	35.61	0.88	36.49	54.00	17.51	150	274	AV	V

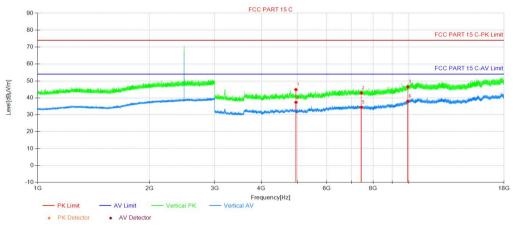
Date: January 17, 2025

Page: 22 / 54

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	4881.09	62.91	-4.71	58.20	74.00	15.80	150	328	Peak	Н
2	7320.21	44.85	-1.49	43.36	74.00	30.64	150	39	Peak	Н
3	9760.08	43.06	1.62	44.68	74.00	29.32	150	147	Peak	Н
4	4881.84	58.29	-4.72	53.57	54.00	0.43	150	328	AV	Н
5	7320.21	36.06	-1.49	34.57	54.00	19.43	150	182	AV	Н
6	9760.08	35.03	1.62	36.65	54.00	17.35	150	54	AV	Н



١	1 0.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
	1	4881.09	53.50	-4.71	48.79	74.00	25.21	150	160	Peak	V
	2	7320.21	44.50	-1.49	43.01	74.00	30.99	150	282	Peak	V
	3	9760.08	43.18	1.62	44.80	74.00	29.20	150	38	Peak	V
	4	4880.34	46.09	-4.71	41.38	54.00	12.62	150	109	AV	V
	5	7320.21	35.71	-1.49	34.22	54.00	19.78	150	248	AV	V
	6	9760.08	34.62	1.62	36.24	54.00	17.76	150	160	AV	V



Date: January 17, 2025

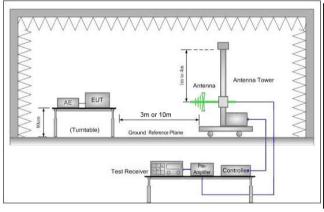
Page: 23 / 54

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	4960.59	58.68	-4.86	53.82	74.00	20.18	150	328	Peak	Н
2	7440.22	45.15	-1.34	43.81	74.00	30.19	150	360	Peak	Н
3	9920.59	43.88	2.27	46.15	74.00	27.85	150	109	Peak	Н
4	4960.59	53.62	-4.86	48.76	54.00	5.24	150	309	AV	Н
5	7440.22	35.43	-1.34	34.09	54.00	19.91	150	328	AV	Н
6	9920.59	35.06	2.27	37.33	54.00	16.67	150	55	AV	Н

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	4959.09	49.75	-4.86	44.89	74.00	29.11	150	146	Peak	V
2	7440.22	44.19	-1.34	42.85	74.00	31.15	150	182	Peak	V
3	9920.59	44.27	2.27	46.54	74.00	27.46	150	4	Peak	V
4	4961.34	42.21	-4.86	37.35	54.00	16.65	150	146	AV	V
5	7440.22	35.71	-1.34	34.37	54.00	19.63	150	20	AV	V
6	9920.59	35.74	2.27	38.01	54.00	15.99	150	358	AV	V

Date: January 17, 2025 Page: 24 / 54

Note:


- 1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:
 - Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)
- 2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.
- 3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.
- 4. All channels had been pre-test, only the worst case was reported.

Date: January 17, 2025 Page: 25 / 54

3.9 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	5.209 and 15.205	
Test Method:	ANSI C63.10: 2013 Section	11.12	, , , , , , , , , , , , , , , , , , ,
Test Site:	Measurement Distance: 3m	or 10m (Semi-Anechoic C	hamber)
Limit:	Frequency	Limit (dBuV/m)	Remark
	30MHz-88MHz	40.0	Quasi-peak
	88MHz-216MHz	43.5	Quasi-peak
	216MHz-960MHz	46.0	Quasi-peak
	960MHz-1GHz	54.0	Quasi-peak
	Ab 4011-	54.0	Average Value
	Above 1GHz	74.0	Peak Value
Test Setup:			\triangle , \triangle , \triangle

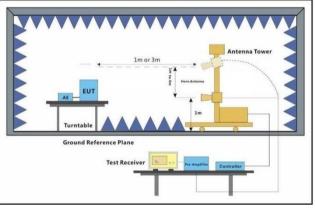


Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

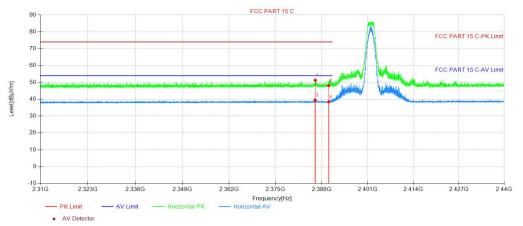
Test Procedure:

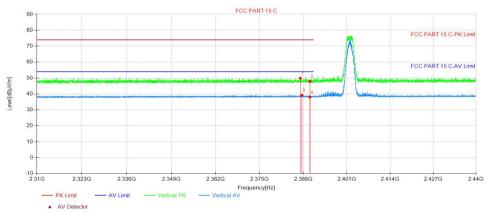
- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
- h. Test the EUT in the lowest channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode,And found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Test Configuration:

Measurements Below 1000MHz

Dongguan DN Testing Co., Ltd.

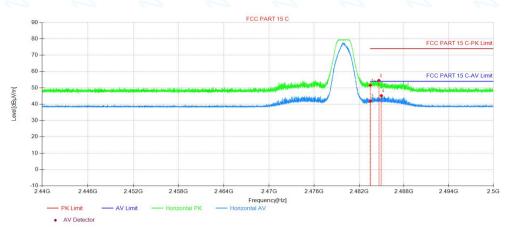

Report No.:	DNT2501100184R0322-00411
	 RBW = 120 kHz VBW = 300 kHz Detector = Peak Trace mode = max hold Peak Measurements Above 1000 MHz RBW = 1 MHz VBW ≥ 3 MHz Detector = Peak Sweep time = auto Trace mode = max hold Average Measurements Above 1000MHz RBW = 1 MHz VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates. Transmitting mode.
Final Test Mode:	Pretest the EUT at Charge + Transmitting mode. Through Pre-scan, find the worst case of GFSK Only the worst case is recorded in the report.
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass


Date: January 17, 2025

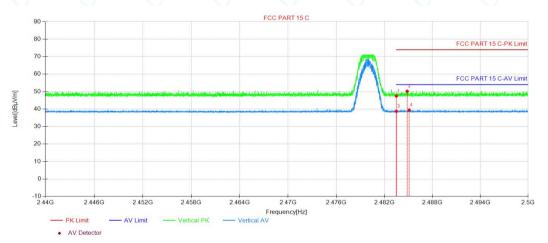
Page: 27 / 54

Test Date BLE 1M 2402MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBμV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	2386.22	52.12	-0.81	51.31	74.00	22.69	150	246	Peak	Н
2	2390.01	48.90	-0.80	48.10	74.00	25.90	150	123	Peak	Н
3	2386.17	40.29	-0.81	39.48	54.00	14.52	150	357	AV	Н
4	2390.01	39.30	-0.80	38.50	54.00	15.50	150	33	AV	Н



NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	2387.14	50.64	-0.80	49.84	74.00	24.16	150	289	Peak	V
2	2390.01	48.77	-0.80	47.97	74.00	26.03	150	324	Peak	V
3	2387.60	40.01	-0.80	39.21	54.00	14.79	150	138	AV	V
4	2390.01	38.85	-0.80	38.05	54.00	15.95	150	71	AV	V



Date: January 17, 2025

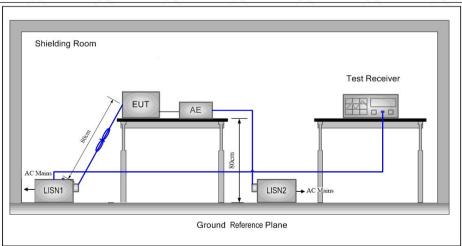
Page: 28 / 54

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
	1	2483.50	51.85	-0.29	51.56	74.00	22.44	150	356	Peak	Н
	2	2484.64	54.83	-0.28	54.55	74.00	19.45	150	356	Peak	Н
	3	2483.50	42.15	-0.29	41.86	54.00	12.14	150	166	AV	Н
1	4	2484.97	45.48	-0.27	45.21	54.00	8.79	150	356	AV	Н

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity
1	2483.50	47.75	-0.29	47.46	74.00	26.54	150	157	Peak	V
2	2484.85	50.48	-0.27	50.21	74.00	23.79	150	47	Peak	V
3	2483.50	39.02	-0.29	38.73	54.00	15.27	150	360	AV	V
4	2485.10	39.73	-0.27	39.46	54.00	14.54	150	47	AV	V

Note:

- 1. The BLE 1M is the worse case.
- 2. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

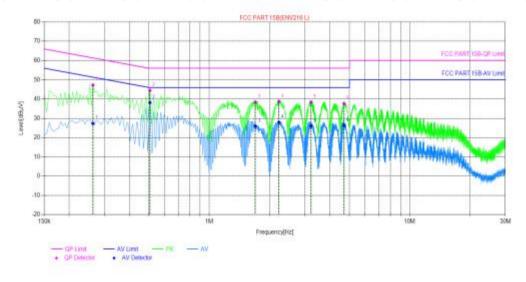

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)

Report No.: DNT2501100184R0322-00411 Page: 29 / 54 Date: January 17, 2025

3.10AC Power Line Conducted Emissions

ANSI C63.10: 2013 150kHz to 30MHz Frequency range (MHz) 0.15-0.5	Limit (d Quasi-peak	•					
Frequency range (MHz) 0.15-0.5	`	•					
0.15-0.5	`	•					
0.15-0.5	Quasi-peak						
	Quasi-peak Average						
0.5.5	66 to 56*	56 to 46*					
0.5-5 56 46							
5-30	60	50					
* Decreases with the logarit	hm of the frequency.						
room. 2) The EUT was connected impedance Stabilization Neimpedance. The power cable a second LISN 2, which was plane in the same way as the multiple socket outlet strip wisingle LISN provided the rate 3) The tabletop EUT was performed on the horizontal ground reference plane. And placed on the horizontal ground of the EUT shall be 0.4 m frowertical ground reference plane. The LISN cunit under test and bonded mounted on top of the ground between the closest points of the EUT and associated equal in order to find the maximum equipment and all of the interest.	I to AC power source throwat twork) which provides a 50 es of all other units of the shonded to the ground reference plane. This don't have been a connect multiplication of the LISN was not explain the confloor-standing arrange and reference plane, with a vertical ground reference was bonded to the hold was placed 0.8 m from the total ground reference plane. This does the LISN 1 and the EUT dipment was at least 0.8 m in emission, the relative potential to the conflower that the conflo	ugh a LISN 1 (Line ΩΩ/50μH + 5Ω linear EUT were connected to ference g measured. A ble power cables to a xceeded. table 0.8m above the ement, the EUT was rence plane. The rear erence plane. The rizontal ground the boundary of the the for LISNs istance was T. All other units of the from the LISN 2. to sitions of					
	1) The mains terminal disturoom. 2) The EUT was connected Impedance Stabilization Neimpedance. The power cable a second LISN 2, which was plane in the same way as the multiple socket outlet strip was ingle LISN provided the rate 3) The tabletop EUT was placed on the horizontal ground reference plane. And placed on the horizontal ground of the EUT shall be 0.4 m frowertical ground reference plane. The LISN cunit under test and bonded mounted on top of the ground between the closest points of the EUT and associated equal or the interest of the interest and all of the interest of the interest and all of the interest.	The mains terminal disturbance voltage test was c					

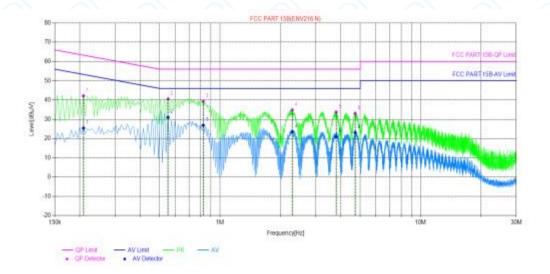
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.
	Charge + Transmitting mode.
Final Test Mode:	Through Pre-scan, find the the worst case of GFSK
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass


Page: 30 / 54

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:



Final Data List										
NO.	Freq. [MHz]	Factor [dB]	OP Value (dBuV)	QP Limit (dBuV)	QP Margin [dB]	AV Varius [dBuV]	AV Limit [dBuV]	AV Margin [dB]	Verdict	
1	0.2625	9.91	47.29	61.35	14.06	27.35	51.35	24.00	PASS	
2	0.5055	9.87	44.47	56.00	11.53	38.13	46.00	7.87	PASS	
3	1.698	9.73	38.45	56.00	17.55	25.98	46.00	20.02	PASS	
4	2.2245	9.73	38.76	56.00	17.24	27.95	46.00	18.05	PASS	
5	3.219	9.74	38.44	56.00	17.56	26.04	46.00	19.96	PASS	
6	4.704	9.78	37.67	56.00	18.33	26.23	46.00	19.77	PASS	

Page: 32 / 54

Neutral Line:

Final Data List										
NO.	Freq. [MHz]	Factor (dB)	QP Value [dBuV]	QP Limit [dBuV]	QP Margin [dB]	AV Value [dBuV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
1	0.2085	9.86	42.15	63.26	21.11	25.41	53.26	27.85	PASS	
2	0.5505	9.74	40.55	58.00	15.45	30.95	46.00	15.05	PASS	
3	0.825	9.79	39.28	56.00	16.72	26.93	48.00	19.07	PASS	
4	2.292	9.80	34.78	56.00	21.22	23.58	48.00	22.42	PASS	
5	3.7905	9.94	33.70	56.00	22.30	20.91	46.00	25.09	PASS	
6	4.7175	9.97	33.04	56.00	22.96	23.15	46.00	22.85	PASS	

Remark:

- 1. The BLE 1M is the worse case.
- 2. The following Quasi-Peak and Average measurements were performed on the EUT:
- 3. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including LISN Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including LISN Factor, Cable Factor etc.)

4 Appendix

Appendix A: Duty Cycle

Test Result

ROSuit								
TestMode	Antenna	Freq(MHz)	ON Time [ms]	Period [ms]	X	DC [%]	Limit	Verdict
BLE_1M	Ant1	2402	0.23	0.62	0.3710	37.10		
		2440	0.24	0.62	0.3871	38.71		
		2480	0.24	0.62	0.3871	38.71		
BLE_2M	Ant1	2402	0.14	0.62	0.2258	22.58	<u> </u>	
		2440	0.15	0.63	0.2381	23.81		
		2480	0.14	0.62	0.2258	22.58		

