

CTATED I Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

Report Reference No	CTA240925011	
FCC ID	2BLXN-PAD6PLUS	
Compiled by		
(position+printed name+signature):	File administrators Jinghua Xiao	
Supervised by (position+printed name+signature):		
Approved by	approved Taxis Vocan	
(position+printed name+signature):	RF Manager Eric Wang	
Date of issue	Oct.10, 2024	
Testing Laboratory Name	Shenzhen CTA Testing Technology Co., Ltd.	
Address	Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,	
Applicant's same	Fuhai Street, Baoʻan District, Shenzhen, China	
Applicant's name	Paitengsheng technology co., Itd	
Address	Room 311, Building C, Hongshengyuan Building, Longgang District, Shenzhen	
Test specification	Chanzanan TESTIN	
	FCC 47CFR §2.1093; ANSI/IEEE C95.1-1992; IEEE 1528-2013;	
Standard:	KDB 941225 D01; KDB 941225 D05; KDB 941225 D06; KDB 248227 D01; KDB 648474 D04; KDB 447498 D01; KDB 865664 D01; KDB 865664 D02; KDB 690783 D01	576
Shenzhen CTA Testing Technology	· · ·	
	whole or in part for non-commercial purposes as long as the Shenzhen	
	cknowledged as copyright owner and source of the material. Shenzhen s no responsibility for and will not assume liability for damages resulting	
	reproduced material due to its placement and context.	
Test item description:	Tablet /	
Trade Mark:	I Gran	
Manufacturer:	Same as Applicant	
Model/Type reference	Pad6 Plus	
	Please Refer to Page 7	
Listed Models	STIN	
	DC 3.7V	
Listed Models Rating Result	PASS	
Rating	TAIL	

Report No.: CTA240925011 Page 2 of 109 ΤΕSΤ REPORT Equipment under Test Tablet Pad6 Plus Model /Type • CTATESTING Pad6 Plus, S30pro, 12Spro, Pad5 pro, J5, Z50, P61, S22, X101, Listed Models Tab14, Tablet, P70, Pad6S, Pad6 pro, P62, P63, P64, P65, P66, Tab1, Tab2, Tab3, Tab4, Tab5, Tab6, Tab7, Tab8, Tab9, Tab10, Tab11, Tab12, Tab13, S23 pro, S22pro, S24 pro, p60, K11, K12, 11pro, 12pro, 13pro, 14pro, 15pro, X11pro, x99, mate60, mate70, mate80, 12pro, 13pro, 14pro, 13pro, 711pro, 700, 10pro, 700, 1 x99, mate60, mate70, mate80, mate90, mate10, mate20, mate30, x98, x97, x96, x94, x93, x92, x91, Mix 4, Mix 3, Mix 2, Mix 1, Mix 5 Paitengsheng technology co., Itd Applicant • Address ÷ Room 311, Building C, Hongshengyuan Building, Longgang District, Shenzhen Manufacturer Same as Applicant Address Same as Applicant ÷ CTATESTING PASS **Test Result:** The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

X X Revision History X X

REV.	ISSUED DATE	DESCRIPTION
W Rev.1.0	Oct.10, 2024	Initial Test Report Release
	GIA	TATESTIN
	NUMBER OF	GALCIN
		G
TING		69

Contents

	State	amont o	of Compliance			6
1	Siale	ement C	or Compliance		·····	טט ד
2					<u> </u>	
	2.1					
	2.2	Descript	ion of Equipment Under les	it (EUT)	CIATES	/
	2.3	Device (Category and SAR Limits			9
	2.4				2	
	2.5		•			
	2.6					
-	2.7					
3	-					
	3.1				ING	
	3.2					
4	SAR		-		~	
	4.1					
	4.2				<u> </u>	
	4.3	Robot			9	15
	4.4					
	4.5	Phanton	1			16
	4.6					
	4.7					
5	Test	Equipr	nent List	(A)	Gund	19
6	Tissu	ue Simu	ulating Liquids		TES IN	20
7	Syste	em Ver	ification Procedures .		C (A)	22
8					<u> </u>	
	8.1	Body-Su	pported Device Configuratio	ons	~	24
9	Meas	sureme	ent Procedures			25
	9.1	Spatial F	Peak SAR Evaluation			25
	9.2	Power F	Reference Measurement			25
	9.3	Area Sc	an Procedures			26
	9.4	Zoom S	can Procedures	<u></u> S1	ING	26
	9.5					
	9.6	Power D	Prift Monitoring			S 27
10) TES				CTA V	
	10.1					
	10.2					
	10.3		C.			
	10.4					
	10.4	Estimate	ed SAR	TING		
	10.5					
Δ.	pendi				FSTING	
	pendi				TAL	51
Δ.						56

Statement of Compliance 1

<Highest SAR Summary>

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had CTATES been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

TING		Highest Reported 1g-SAR(W/Kg)	Simultaneous
Frequency Band		Body (0mm)	Reported SAR (W/Kg)
	GSM 850	0.457	
	PCS 1900	0.650	ESTIN
	WCDMA band II	0.479	CTATES CTATES
	WCDMA band V	0.737	4 004
	LTE Band 7	0.781	1.294
	LTE Band 41	0.667	
	WLAN2.4G	0.513	
	WLAN5.2G	0.162	
SA	AR Test Limit (W/Kg)	1.60	NG
	Test Result	PASS	STIN
		GTA CTA 1-	

<Highest SAR Summary>

2 General Information

2.1 General Remarks

	Sep.11,2024	
	Sep.11,2024	Gil
		A Contraction
:	Oct.10, 2024	
		: Sep.11,2024

Product Name:	Tablet	
Model/Type reference:	Pad6 Plus	
Listed Models:	 Pad6 Plus, S30pro, 12Spro, Pad5 pro, J5, Z50, P61, S22, X101, Tab14, Tablet, P70, Pad6S, Pad6 pro, P62, P63, P64, P65, P66, Tab1, Tab2, Tab3, Tab4, Tab5, Tab6, Tab7, Tab8, Tab9, Tab10, Tab11, Tab12, Tab13, S23 pro, S22pro, S24 pro, p60, K11, K12, 11pro, 12pro, 13pro, 14pro, 15pro, X11pro, x99, mate60, mate70, mate80, mate90, mate10, mate20, mate30, x98, x97, x96, x94, x93, x92, x91, x99, mate60, mate70, mate80, mate90, mate10, mate20, mate30, x98, x97, x96, x94, x93, x92, x91, Mix 4, Mix 3, Mix 2, Mix 1, Mix 5 	
Power supply:	DC 3.7V	
Hardware version:	/ CIATEC TNG	
Software version:	1 CT TEST	
Bluetooth BLE		
Supported type:	Bluetooth low Energy	
Modulation:	GFSK	
Operation frequency:	2402MHz to 2480MHz	
Channel number:	40	
Channel separation:	2 MHz	
Support Type:	V5.0	
Antenna type:	FPCB antenna	
Antenna gain:	0.6 dBi	
WIFI2.4G		
Supported type:	802.11b/802.11g/802.11n(H20)/ 802.11n(H40)	
Modulation:	802.11b: DSSS 802.11g/802.11n(H20)/ 802.11n(H40): OFDM	
Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz 802.11n(H40): 2422MHz~2452MHz	
Channel number:	802.11b/802.11g/802.11n(H20): 11 802.11n(H40):7	
ring	61	

			-			
Channel separation:	5MHz					
Antenna type:	FPCB antenna	. G				
Antenna gain:	0.6 dBi	ESTINC				
WIFI5.2G						
	20MHz system	40MHz system	80MHz system	160MHz system		
Supported type:	802.11a 802.11n 802.11ac	802.11n 802.11ac	802.11ac	N/A		
Operation frequency:	5180MHz- 5240MHz	5190MHz- 5230MHz	5210MHz	N/A		
Modulation:	OFDM	OFDM	OFDM	N/A		
Channel number:	9	414	2	N/A		
Channel separation:	20MHz	40MHz	80MHz	N/A		
Antenna type:	FPCB antenna	C.C.P.				
Antenna gain:	-1.7 dBi	-1.7 dBi				
2G						
Modilation Type	GMSK/8PSK					
Antenna Type	FPCB antenna					
GSM/EDGE/GPRS	Supported GSM/0	GPRS/EGPRS	-EST	NG		
GSM/GPRS Power Class	GSM850:Power C	Class 4/ PCS1900:F	Power Class 1			
GSM/GPRS Operation Frequency	GSM850 :824.2M	Hz-848.8MHz/PCS	\$1900:1850.2MHz-19	09.8MHz		
GPRS Operation Frequency Band	GPRS850/GPRS	1900		C		
GPRS Multislot Class	Multi-slot Class 12	Multi-slot Class 12				
EGPRS Multislot Class	Multi-slot Class 12					
Antenna gain:	GSM850:-2.3 dbi,	DCS1900: 1.3dbi	2	la.		
WCDMA						
Operation Band:	FDD Band II & Ba	ind V	G	K CTA		
Power Class:	Power Class 3					
Modilation Type:	QPSK for WCDM	A/HSUPA/HSDPA,	16QAM for HSPA+			
Release Version:	R8	C				
Antenna type:	FPCB antenna	STING				
Antenna gain:	FDD Band II: -1.5 FDD Band V: -2.3		TATEST			
LTE				GA		

OTATES

		⊠E-UTRA Band 7(U.SBand)
	Operation Band:	\boxtimes E-UTRA Band 41(U.SBand)
	Release Version:	Release 9
Q.	Category:	Cat 4
	Modulation Type:	QPSK, 16QAM
	Antenna Description:	FPCB antenna -1.5dBi(max.) For E-UTRA Band 7 -1.5dBi(max.) For E-UTRA Band 41
TES	Category of device:	Portable device
CIM	Remark:	ESTINO

Remark:

The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

Device Category and SAR Limits 2.3

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

Applied Standard 2.4

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

FCC 47CFR §2.1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices
ANSI/IEEE C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.
IEEE 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
KDB 941225 D01	3G SAR Measurement Procedures v03r01
KDB 941225 D05	SAR for LTE Devices v02r05 Hotspot Mode SAR v02r01
KDB 941225 D06	Hotspot Mode SAR v02r01
KDB 248227 D01	SAR Guidance for IEEE 802 11 Wi-Fi SAR v02r02
KDB 648474 D04	Handset SAR v01r03
KDB 447498 D01	General RF Exposure Guidance v06
KDB 865664 D01	SAR Measurement 100 MHz to 6 GHz v01r04
KDB 865664 D02	SAR Measurement 100 MHz to 6 GHz v01r04 RF Exposure Reporting v01r02

KDB 690783 D01 SAR Listings on Grants v01r03

2.5 Test Facility

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

ISED#: 27890 CAB identifier: CN0127

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

Page 10 of 109

Environment of Test Site 2.6

Items	Required	Actual
Temperature (℃)	18-25	22~23
Humidity (%RH)	30-70	55~65
2.7 Test Configuration		CIA CTA

2.7 Test Configuration

The device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during all tests. For WLAN SAR testing, WLAN engineering testing software installed on the EUT can GIN CTA provide continuous transmitting RF signal.

Specific Absorption Rate (SAR) 3

3.1 Introduction

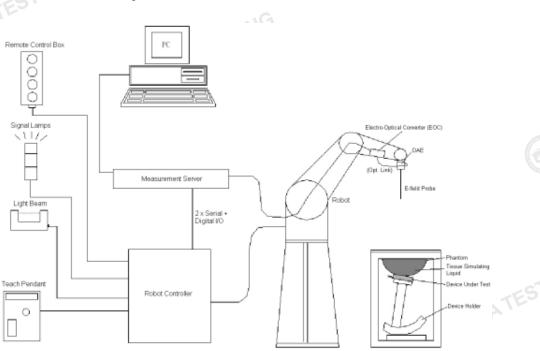
SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

3.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation CTATESTING description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by


$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity, δT is the temperature rise and δ tisthe exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied. CTA TESTING

DASY System Configurations

The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software $\mathbf{>}$
- A data acquisition electronic (DAE) attached to the robot arm extension \triangleright
- \triangleright A dosimetric probe equipped with an optical surface detector system
- \triangleright The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- \triangleright A probe alignment unit which improves the accuracy of the probe positioning
- \geq A computer operating Windows XP
- DASY software \triangleright
- STATESTING \triangleright Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom \geq
- A device holder \triangleright
- \geq Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system \geq

components are described in details in the following sub-sections.

4.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special CTATES calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. CTATESTING

E-Field Probe Specification <EX3DV4 Probe>

Construction	Symmetrical design with triangular core	
	Built-in shielding against static charges	
	PEEK enclosure material (resistant to organic	
	solvents, e.g., DGBE)	
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB	
Directivity	± 0.3 dB in HSL (rotation around probe axis)	$> c^{\uparrow A}$
	± 0.5 dB in tissue material (rotation normal to	
- C	probe axis)	and the second se
Dynamic Rang	e 10 μW/g to 100 W/kg; Linearity: ± 0.2 dB (noise:	the second se
	typically< 1 μW/g)	
Dimensions	Overall length: 330 mm (Tip: 20 mm)	
	Tip diameter: 2.5 mm (Body: 12 mm)	Photo of EX3DV4
	Typical distance from probe tip to dipole centers: 1 mm	TATESTIN

E-Field Probe Calibration \geq

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

4.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode CTATEST rejection is above 80dB.

CTATE Photo of DAE

4.3 Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controllersystem, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäublirobot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- > Low ELF interference (the closed metallic construction shields against motor control fields)

Photo of DASY5

4.4 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Photo of Server for DASY5

4.5 Phantom

<sam phantom="" twin=""></sam>	TEST	6
Shell Thickness	2 ± 0.2 mm;	014.
	Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	G BU, TO
Dimensions	Length: 1000 mm; Width: 500 mm;	
	Height: adjustable feet	
Measurement Areas	Left Hand, Right Hand, Flat Phantom	
	TATESTING	
	TE	Photo of SAM Phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI4 Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)	· · · · · · · ·	
Filling Volume	Approx. 30 liters		
Dimensions	Major ellipse axis: 600 mm Minor axis:400 mm		
		Photo of ELI4 Phantom	

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

4.6 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Page 17 of 109

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Donico nota

4.7 Data Storage and Evaluation

Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [W/kg]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity		Normi, aio, ai1, ai2
TEST	- Conversion factor	Con	ινFi
K C ¹	- Diode compression point		dcpi
Device parameters:	- Frequency		f
	- Crest factor		cf TES
Media parameters:	- Conductivity		σ
	- Density	ρ	

Page 18 of 109

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as:

$$\mathbf{V}_{i} = \mathbf{U}_{i} + \mathbf{U}_{i}^{2} \cdot \frac{\mathbf{cf}}{\mathbf{dcp}_{i}}$$

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field Probes: $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$

H-field Probes:
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with V_i = compensated signal of channel i,(i= x, y, z)

Norm = sensor sensitivity of channel i, (i= x, y, z), µV/(V/m)² for E-field Probes

ConvF= sensitivity enhancement in solution

aij= sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei= electric field strength of channel iin V/m

H_i= magnetic field strength of channel iin A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude): CTA TESTING

$$\mathbf{E_{tot}} = \sqrt{\mathbf{E_x^2} + \mathbf{E_y^2} + \mathbf{E_z^2}}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in W/kg

Etot= total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

CTATES' Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Test Equipment List 5

	Nome of Equipment	Turne (Medic)		Calib	ration
lanufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	835MHz System Validation Kit	D835V2	484	Aug. 25,2023	Aug. 24,2026
SPEAG	1900MHz System Validation Kit	D1900V2	5d002	Aug. 25,2023	Aug. 24,2026
SPEAG	2450MHz System Validation Kit	D2450V2	745	Aug. 28,2023	Aug. 27,2026
SPEAG	2600MHz System Validation Kit	D2600V2	1073	Feb. 17,2023	Feb. 16,2026
SPEAG	5GHz System Validation Kit	D5GHzV2	1301	Feb.16, 2023	Feb.15, 2026
Rohde & Schwarz	UNIVERSAL RADIO COMMUNICATION TESTER	CMW500	1201.0002K50- 104209-JC	Nov.05, 2023	Nov.04, 2024
SPEAG	Data Acquisition Electronics	DAE3	373	Jan.03,2024	Jan.02,2025
SPEAG	Dosimetric E-Field Probe	EX3DV4	3805	Nov.23,2023	Nov.22,2024
Agilent	ENA Series Network Analyzer	E5071C	MY46317418	Oct.25, 2023	Oct.24, 2024
SPEAG	DAK	DAK-3.5	1226	Oct.25, 2023	Oct.24, 2024
SPEAG	SAM Twin Phantom	QD000P40CD	1802	NA1	NA1
SPEAG	ELI Phantom	QDOVA004AA	2058	NA1	NA1
AR	Amplifier	ZHL-42W	QA1118004	Oct.25, 2023	Oct.24, 2024
Agilent	Power Meter	N1914A	MY50001102	Oct.25, 2023	Oct.24, 2024
Agilent	Power Sensor	N8481H	MY51240001	Oct.25, 2023	Oct.24, 2024
R&S	Spectrum Analyzer	N9020A	MY51170037	Oct.25, 2023	Oct.24, 2024
Agilent	Signal Generation	N5182A	MY48180656	Oct.25, 2023	Oct.24, 2024
Worken	Directional Coupler	0110A05601O-10	COM5BNW1A2	Oct.25, 2023	Oct.24, 2024

Note:

- The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically 2. damaged, or repaired during the interval.
- The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer 3. and compensated during system check.
- The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) 4. and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.
- In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise 5. power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it
- 6. "1": NA as this is not measurement equipment. CTATESTING

Tissue Simulating Liquids 6

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed:

Photo of Liquid Height

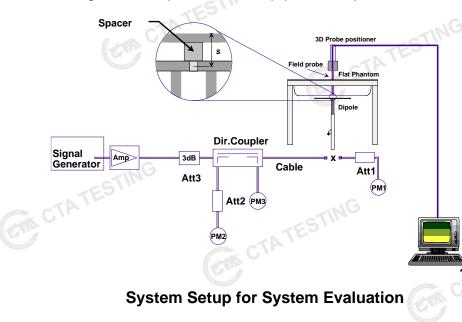
Ingredients	Frequency (MHz)										
% by weight)	450	700-900	1750-2000	2300-2500	2500-2700						
ater	38.56	40.30	55.24	55.00	54.92						
alt (NaCl)	3.95	1.38	0.31	0.2	0.23						
ucrose	56.32	57.90	OSTING	0	0						
EC 🕑	0.98	0.24	0	0	0						
actericide	0.19	0.18	0	0	05111						
ween	0	0	44.45	44.80	44.85						
	Sodium Chloride			ucrose: 98+% P							
	l, 16 MΩ+ resistiv hylene (20) sorbit	•	HEC	: Hydroxyethyl C	Cellulose						
SL5GHz is comp	posed of the follow	wing ingredients:									
ater: 50-65%		ving ingredients:									
ineral oil: 10-30)%	CTATL			5						
nulsifiers: 8-25	%			TA TESTING							
odium salt: 0-1.	5%		C		CA C						

Page 21 of 109

The following table shows the measuring results for simulating liquid.

	Measured	Target	Tissue		Measured	Tissue		- Liquid			
	Frequency (MHz)	εr	σ	٤r	Dev. (%)	σ	Dev. (%)	Temp.	Test Data		
	835	41.5	0.90	40.785	-1.72%	0.863	-4.11%	23.6	Sep.11, 2024		
	1900	40.0	1.40	40.256	0.64%	1.411	0.79%	22.8	Sep.13, 2024	CTATES	
CTATES	2450	39.2	1.80	38.965	-0.60%	1.722	-4.33%	22.4	Sep.19, 2024	0.	
	2600	39.0	1.96	37.225	-4.55%	1.885	-3.83%	22.2	Sep.26, 2024		
GVF	5250	35.9	4.71	36.336	1.21%	4.623	-1.85%	22.6	Oct.10, 2024		
			CTA		(cm (;TATES			CTATESTING		

System Verification Procedures 7


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

\geq Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates TESTING situations where the system uncertainty is exceeded due to drift or failure.

\geq System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Photo of Dipole Setup

Validation Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Power fed onto reference dipole (mW)	Targeted SAR 1g (W/kg)	Measured SAR1g (W/kg)	Normalized SAR (W/kg)	Deviation (%)
09/11/2024	835	250	9.68	2.44	9.76	0.83%
09/13/2024	1900	250	40.1	10.58	42.32	5.54%
09/19/2024	2450	250	52.7	12.56	50.24	-4.67%
09/26/2024	2600	250	56.8	14.36	57.44	1.13%
10/10/2024	5250	100	77.7	7.85	78.50	1.03%
	5250	ATING		7.85		1.03%

8 EUT Testing Position

8.1 Body-Supported Device Configurations

According to KDB 616217 section 4.3, SAR should be separately assessed with each surface and separation distance positioned against the flat phantom that correspond to the intended use as specified by the manufacturer. The antennas in tablets are typically located near the back (bottom) surface and/or along the edges of the devices; therefore, SAR evaluation is required for these configurations. Exposures from antennas through the front (top) surface of the display section of a full-size tablet, away from the edges, are generally limited to the user's hands. Exposures to hands for typical consumer transmitters used in tablets are not expected to exceed the extremity SAR limit; therefore, SAR evaluation for the front surface of tablet display screens are generally not necessary, except for tablets that are designed to require continuous operations with the hand(s) next to the antenna(s).

- > To position the device parallel to the phantom surface with either keypad up or down.
- > To adjust the device parallel to the flat phantom.
- > To adjust the distance between the device surface and the flat phantom to 0 mm.
- When each surface is measurement, the SAR Test Exclusion Threshold in KDB 447498 should be applied.

Fig.81 Illustration for Body Position

Measurement Procedures 9

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the middle channel.
- (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as setup photos demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- (f) Measure SAR transmitting at the middle channel for all applicable exposure positions.
- (g) Identify the exposure position and device configuration resulting the highest SAR
- (h) Measure SAR at the lowest and highest channels attheworst exposure position and device configuration if applicable.

According to the test standard, the recommended procedure for assessing the peak spatial-average CTATES SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a provinced

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

9.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface CTATES determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

9.3 Area Scan Procedures

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

	\leq 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ}\pm1^{\circ}$	$20^\circ\pm1^\circ$
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$\begin{array}{l} 3-4 \; \mathrm{GHz:} \leq 12 \; \mathrm{mm} \\ 4-6 \; \mathrm{GHz:} \leq 10 \; \mathrm{mm} \end{array}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension measurement plane orientat above, the measurement res corresponding x or y dimen at least one measurement po	ion, is smaller than the olution must be \leq the sion of the test device with

Zoom Scan Procedures 9.4

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same CTATES procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			\leq 3 GHz	> 3 GHz	1900
Marinum zoom ooon	anotial ras	alution: Arr Arr	\leq 2 GHz: \leq 8 mm	$3 - 4 \text{ GHz} \le 5 \text{ mm}^*$	
Maximum zoom scan	spatialites	olution: Δx_{Zoom} , Δy_{Zoom}	$2 - 3 \text{ GHz}$: $\leq 5 \text{ mm}^*$	$4 - 6 \text{ GHz} \le 4 \text{ mm}^*$	
				$3 - 4$ GHz: ≤ 4 mm	
	uniform	grid: $\Delta z_{Zoom}(n)$	\leq 5 mm	$4-5$ GHz: ≤ 3 mm	
				$5-6~\mathrm{GHz}$: $\leq 2~\mathrm{mm}$	
Maximum zoom		$\Delta z_{Zoom}(1)$: between		3 – 4 GHz: < 3 mm	ESTIN
scan spatial resolution, normal to		$\begin{array}{c} \Delta z_{\text{Zoom}}(1). \text{ between} \\ 1^{\text{st}} \text{ two points closest} \\ \text{to phantom surface} \\ \end{array} \leq 4 \text{ mm}$	\leq 4 mm	$4 - 5 \text{ GHz} \le 2.5 \text{ mm}$	E2.
phantom surface	graded		$5-6~\text{GHz}$: $\leq 2~\text{mm}$		
	grid	$\Delta z_{Zoom}(n>1)$: between subsequent points	$\leq 1.5 \cdot \Delta z_{Zo}$		
2011				$3 - 4 \text{ GHz}$: $\geq 28 \text{ mm}$	
Minimum zoom scan volume	x, y, z		\geq 30 mm	$4-5~\text{GHz}$: $\geq 25~\text{mm}$	
sean voranie				$5-6$ GHz: ≥ 22 mm	
Note: δ is the penetrat	tion depth of	of a plane-wave at norma	l incidence to the tissue med	ium: see IEEE Std	

oth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No.: CTA240925011 9.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregateSAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

Page 27 of 109

10 TEST CONDITIONS AND RESULTS

10.1 Conducted Power Results

<GSM Conducted power>

SM Conducted power>	and the	CTA '	STING		G	ING	
Band GSM850	1	Burst Avera	age Power (dB	Frame-Average Power (dBm)			
TX Channel	Tune-up	128	190	251	128	190	251
Frequency (MHz)	limit (dBm)	824.2	836.6	848.8	824.2	836.6	848.6
GSM	33.00	32.62	32.54	32.87	23.43	23.35	23.68
GPRS (GMSK, 1 Tx slot)	33.00	32.22	32.24	32.13	23.03	23.05	22.94
GPRS (GMSK, 2 Tx slots)	32.00	31.26	30.38	30.63	25.08	24.20	24.45
GPRS (GMSK, 3 Tx slots)	30.00	29.92	29.05	29.39	25.50	24.63	24.97
GPRS (GMSK, 4 Tx slots)	29.00	28.27	28.97	27.12	25.10	25.80	23.95
EGPRS (8PSK, 1 Tx slot)	28.50	28.12	28.13	28.15	19.09	19.1	19.12
EGPRS (8PSK, 2 Tx slots)	26.50	26.20	26.15	26.15	20.18	20.13	20.13
EGPRS (8PSK, 3 Tx slots)	24.00	23.76	23.80	23.80	19.5	19.54	19.54
EGPRS (8PSK, 4 Tx slots)	23.50	23.07	23.03	23.03	20.06	20.02	20.02
Band PCS1900	1	Burst Avera	age Power (dB	Frame-Average Power (dBm)			
TX Channel	Tune-up	512	661	810	512	661	810
Frequency (MHz)	limit (dBm)	1850.2	1880.0	1909.8	1850.2	1880.0	1909.8
GSM	30.00	29.73	29.82	29.67	20.54	20.63	20.48
GPRS (GMSK, 1 Tx slot)	30.00	29.43	29.28	29.13	20.24	20.09	19.94
GPRS (GMSK, 2 Tx slots)	28.00	27.54	27.22	27.20	21.36	21.04	21.02
GPRS (GMSK, 3 Tx slots)	27.00	26.12	26.01	26.03	21.70	21.59	21.61
GPRS (GMSK, 4 Tx slots)	26.00	25.06	25.83	25.88	21.89	22.66	22.71
EGPRS (8PSK, 1 Tx slot)	27.50	27.21	27.22	27.21	18.18	18.19	18.18
EGPRS (8PSK, 2 Tx slots)	26.50	25.10	25.13	25.09	19.08	19.11	19.07
EGPRS (8PSK, 3 Tx slots)	24.00	23.81	23.78	23.78	19.55	19.52	19.52
EGPRS (8PSK, 4 Tx slots)	23.50	23.04	23.05	23.06	20.03	20.04	20.05

Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6.02 dB

Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB

Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3.01 dB

Note:

TATESTING 1. Per KDB 447498 D01, the maximum output power channel is used for SAR testing and for further SAR test reduction

2. For Data mode SAR testing, GPRS should be evaluated, therefore the EUT was set in corresponding TX slots due to

<WCDMA Conducted Power>

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. TESTING A summary of these settings are illustrated below:

HSDPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration. a.
- The RF path losses were compensated into the measurements. b.
- A call was established between EUT and Base Station with following setting: c.
 - Set Gain Factors (β_c and β_d) and parameters were set according to each i.
 - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
 - Set RMC 12.2Kbps + HSDPA mode. iii.
 - iv. Set Cell Power = -86 dBm
 - Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK) ٧.

 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8

 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - Set CQI Repetition Factor to 2 Χ.
 - xi. Power Ctrl Mode = All Up bits
- The transmitted maximum output power was recorded. d.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βο	βa	βd (SF)	βc/βd	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)	
1	2/15	15/15	64	2/15	4/15	0.0	0.0	
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0	
3	15/15	8/15	64	15/8	30/15	1.5	0.5	
4	15/15	4/15	64	15/4	30/15	1.5	0.5	
Note 1:				$s = 30/15 * \beta_c$.				61
Note 2:	Magnitude (EVM) with H	S-DPCCH te	irement test in class in clause 5.13. and $\Delta_{NACK} = 30/2$	1A, and HSDF	PA EVM with ph	ase	and the second
	with $\beta_{hs} = 2$	4/15 * β_c .						
Note 3:	DPCCH the	MPR is base		For all other con tive CM differenc releases.				
Note 4:	For subtest 2	2 the β₀/β₀ ra	atio of 12/15 f	or the TFC during factors for the re		TF1, TF1) to β	= 11/15 and β_d	ESTI
			Setu	o Configurati	on	(-	CTA CTA	

Setup Configuration

Page 30 of 109

HSUPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration. а.
- The RF path losses were compensated into the measurements. b.
- c. A call was established between EUT and Base Station with following setting * :
 - Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK i.
 - Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific subii. CTATES test in the following table, C11.1.3, quoted from the TS 34.121
 - iii. Set Cell Power = -86 dBm
 - iv. Set Channel Type = 12.2k + HSPA
- CTATESTINY. Set UE Target Power
 - vi. Power Ctrl Mode= Alternating bits
 - vii. Set and observe the E-TFCI
 - viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
 - The transmitted maximum output power was recorded. d.

test	βc	βa	βα (SF)	βc/βd	<mark>βнs</mark> (Note1)	β _{ec}	β _{ed} (Note 5) (Note 6)	β _{ed} <i>(SF)</i>	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81
Note 1	Δ _{АСК} , 4	ANACK and	d Δ _{CQI} =	= 30/15 w	vith $eta_{\scriptscriptstyle hs}$	= 30/15 *	β_c .						
	CM =	1 for β_c/β	$B_{d} = 12/1$	15 , β _{hs} /β _c		or all ot	her combinatio	ns of	DPDCH, [OPCCH,	HS- DPC	CH, E-D	PDCH
Note 2:			the MF	PR is bas	ed on the	e relative	CM difference	e.					
Note 2: Note 3:	and E- For su	-DPCCH ibtest 1 tl	he β _c /β	d ratio of	11/15 for	the TFC	CM difference during the ma ce TFC (TF1, 7	easure					by
	and E- For su setting For su	-DPCCH ibtest 1 th the sign ibtest 5 th	he β _c /β nalled g he β _c /β	d ratio of ain facto d ratio of	11/15 for ors for the 15/15 for	the TFC reference the TFC	during the m	easure TF1) to easure	$\beta_c = \frac{10}{10}$	5 and β od (TF1,	a = 15/15 TF0) is	achieved	
Note 3	and E For su setting For su setting In cas	-DPCCH ibtest 1 th the sign ibtest 5 th the sign	he β _c /β nalled g he β _c /β nalled g ng by l	d ratio of ain facto d ratio of ain facto JE using	11/15 for ors for the 15/15 for ors for the	the TFC reference the TFC reference	during the me the TFC (TF1, T during the me	easure TF1) to easure TF1) to	$\beta_c = 10/1$ ement peri $\beta_c = 14/1$	5 and β od (TF1, 5 and β	a = 15/15 TF0) is a = 15/15	achieved	
Note 3 Note 4 Note 5	and E- For su setting For su setting In cas TS25.	-DPCCH abtest 1 th the sign btest 5 th the sign e of testin 306 Table	he β_c/β_c halled g he β_c/β_c halled g ng by L e 5.1g.	d ratio of ain facto a ratio of ain facto JE using	11/15 for ors for the 15/15 for ors for the E-DPDC	the TFC reference the TFC reference H Physic	during the mo ce TFC (TF1, during the mo ce TFC (TF1,	easure TF1) to easure TF1) to	$\beta_c = 10/1$ ement peri $\beta_c = 14/1$	5 and β od (TF1, 5 and β	a = 15/15 TF0) is a = 15/15	achieved	
Note 3 Note 4 Note 5	and E- For su setting For su setting In cas TS25.	-DPCCH abtest 1 th the sign btest 5 th the sign e of testin 306 Table	he β_c/β_c halled g he β_c/β_c halled g ng by L e 5.1g.	d ratio of ain facto a ratio of ain facto JE using	11/15 for ors for the 15/15 for ors for the E-DPDC set by A	the TFC reference the TFC reference H Physic bsolute (during the m the TFC (TF1, T during the m the TFC (TF1, T al Layer catego Grant Value.	easure TF1) to easure TF1) to gory 1, ON	$p \beta_c = 10/1$ ement peri $p \beta_c = 14/1$ Sub-test	5 and β od (TF1, 5 and β 3 is omit	a = 15/15 TF0) is a = 15/15	achieved	
Note 3 Note 4 Note 5	and E For su setting For su setting In cas TS25.	-DPCCH abtest 1 th the sign btest 5 th the sign e of testin 306 Table	he β_c/β_c halled g he β_c/β_c halled g ng by L e 5.1g.	d ratio of ain facto a ratio of ain facto JE using	11/15 for ors for the 15/15 for ors for the E-DPDC set by A	the TFC reference the TFC reference H Physic bsolute (during the mode of TFC (TF1, during the mode of TFC (TF1, al Layer categ Grant Value.	easure TF1) to easure TF1) to gory 1, ON	$p \beta_c = 10/1$ ement peri $p \beta_c = 14/1$ Sub-test	5 and β od (TF1, 5 and β 3 is omit	a = 15/15 TF0) is a = 15/15	achieved	

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Setup Configuration GIA CTATESTING

Report No.: CTA240925011	
<wcdma conducted="" power=""></wcdma>	>

WCDMA		Band	ll (dBm)			Band	d V (dBm)]
TX Channel	Tune-up	9262	9400	9538	Tune- up	4132	4183	4233	
Frequency (MHz)	limit (dBm)	1852.4	1880.0	1907.6	limit (dBm)	826.4	836.6	846.6	
RMC 12.2Kbps	24.00	23.55	23.59	23.55	24.00	23.42	23.47	23.41	TE
HSDPA Subtest-1	23.00	22.94	22.97	22.98	23.00	22.98	22.98	22.99	ATATE
HSDPA Subtest-2	23.00	22.90	22.82	22.87	23.00	22.85	22.90	22.82	0.
HSDPA Subtest-3	23.00	22.71	22.77	22.81	23.00	22.77	22.71	22.74	
HSDPA Subtest-4	23.00	22.76	22.83	22.84	23.00	22.76	22.75	22.77	
HSUPA Subtest-1	23.00	22.88	22.79	22.77	23.00	22.71	22.85	22.75	
HSUPA Subtest-2	23.00	22.80	22.87	22.86	23.00	22.81	22.85	22.88	
HSUPA Subtest-3	23.00	22.73	22.73	22.82	23.00	22.81	22.80	22.78	6
HSUPA Subtest-4	23.00	22.87	22.84	22.88	23.00	22.85	22.84	22.88	
HSUPA Subtest-5	23.00	22.72	22.81	22.77	23.00	22.74	22.77	22.70	1

General Note

- Per KDB 941225 D01 v02, RMC 12.2kbps setting is used to evaluate SAR as primary mode. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.
- It is expected by the manufacturer that MPR for some HSDPA/HSUPA subtests may differ from the specification of 3GPP, according to the chipset implementation in this model. The implementation and expected deviation are detailed in tune-up procedure exhibit.

CTATES

<LTE Conducted Power>

Page 33 of 109

			LTE Band	d 7			
				Cha	annel/Freque	ency(MHz)	
BW	Modulation	RB	RB	20850	21100	21350	Tune-up limit
(MHz)		Size	Offset	2510	2535	2560	(dBm)
20	QPSK	1	0	23.69	23.36	23.80	24.00
20	QPSK	1	49	23.47	23.41	23.67	24.00
20	QPSK	1	99	23.76	24.03	23.30	25.00
20	QPSK	50	0	22.11	22.44	22.44	23.00
20 20 20	QPSK	50	24	22.62	22.60	22.25	23.00
20	QPSK	50	50	22.36	22.50	22.18	23.00
20	QPSK	100	0	22.60	22.71	22.25	23.00
20	16QAM	1	0	22.34	22.19	22.32	23.00
20	16QAM	1	49	22.73	22.61	22.41	23.00
20	16QAM	1	99	22.37	22.62	22.24	23.00
20	16QAM	50	0	21.19	21.37	21.32	22.00
20	16QAM	50	24	21.79	21.55	21.60	22.00
20	16QAM	50	50	21.32	21.47	21.40	22.00
20	16QAM	100	0	21.43	21.65	21.43	22.00
BW				Chai	nnel/Freque	ency(MHz)	Tune-up limit
(MHz)	Modulation	RB Size	RB Offset	20825	21100	21375	(dBm)
(11112)				2507.5	2535	2562.5	
						00.04	24.00
15	QPSK	1	0	23.72	23.73	23.84	24.00
15 15	QPSK QPSK	1	0 37	23.72 23.50	23.73 23.56	23.84	24.00
15 15 15	QPSK	1	37	23.50	23.56	23.45	24.00
15 15 15	QPSK QPSK	1	37 74	23.50 23.18	23.56 23.73	23.45 23.29	24.00 24.00
15 15 15	QPSK QPSK QPSK	1 1 36	37 74 0	23.50 23.18 22.26	23.56 23.73 22.17	23.45 23.29 22.25	24.00 24.00 23.00
15 15 15	QPSK QPSK QPSK QPSK	1 1 36 36	37 74 0 20	23.50 23.18 22.26 22.46	23.56 23.73 22.17 22.50	23.45 23.29 22.25 22.36	24.00 24.00 23.00 23.00
15 15 15 15 15 15	QPSK QPSK QPSK QPSK QPSK	1 1 36 36 36	37 74 0 20 39	23.50 23.18 22.26 22.46 22.53	23.56 23.73 22.17 22.50 22.26	23.45 23.29 22.25 22.36 22.26	24.00 24.00 23.00 23.00 23.00
15 15 15 15 15 15 15	QPSK QPSK QPSK QPSK QPSK QPSK	1 1 36 36 36 75	37 74 0 20 39 0	23.50 23.18 22.26 22.46 22.53 22.16	23.56 23.73 22.17 22.50 22.26 22.23	23.45 23.29 22.25 22.36 22.26 22.71	24.00 24.00 23.00 23.00 23.00 23.00
15 15 15 15 15 15 15 15	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM	1 1 36 36 36 75 1	37 74 0 20 39 0 0	23.50 23.18 22.26 22.46 22.53 22.16 22.41	23.56 23.73 22.17 22.50 22.26 22.23 22.33	23.45 23.29 22.25 22.36 22.26 22.71 22.65	24.00 24.00 23.00 23.00 23.00 23.00 23.00
15 15 15 15 15 15 15 15 15	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM	1 1 36 36 36 75 1 1	37 74 0 20 39 0 0 37	23.50 23.18 22.26 22.46 22.53 22.16 22.41 22.16	23.56 23.73 22.17 22.50 22.26 22.23 22.33 22.33 22.28	23.45 23.29 22.25 22.36 22.26 22.71 22.65 22.57	24.00 24.00 23.00 23.00 23.00 23.00 23.00 23.00
15 15 15 15 15 15 15 15 15 15	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM	1 1 36 36 36 75 1 1 1 1	37 74 0 20 39 0 0 37 74	23.50 23.18 22.26 22.46 22.53 22.16 22.41 22.16 22.38	23.56 23.73 22.17 22.50 22.26 22.23 22.33 22.33 22.28 22.32	23.45 23.29 22.25 22.36 22.26 22.71 22.65 22.57 22.36	24.00 24.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00
15 15 15 15 15 15 15 15 15 15	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM	1 1 36 36 36 75 1 1 1 1 36	37 74 0 20 39 0 0 0 37 74 0	23.50 23.18 22.26 22.46 22.53 22.16 22.41 22.16 22.38 21.48	23.56 23.73 22.17 22.50 22.26 22.23 22.33 22.33 22.28 22.32 21.63	23.45 23.29 22.25 22.36 22.26 22.71 22.65 22.57 22.36 21.79	24.00 24.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 22.00

Report No.: CTA240925011

Page 34 of 109

Modulation QPSK QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM	RB Size 1 1 1 1 25 25 25 25 50 1 1 1 1 1	RB Offset 0 25 49 0 12 25 0 0 0	20800 2505 23.39 23.43 23.25 22.45 22.29 22.41 22.62	nnel/Freque 21100 2535 23.68 23.92 23.31 22.49 22.45 22.40	ency(MHz) 21400 2565 23.17 23.42 23.78 22.48 22.20 22.52	Tune-up limit (dBm) 24.00 24.00 24.00 23.00 23.00	TATE
QPSK QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM	Size 1 1 1 25 25 25 25 50 1 1 1	Offset 0 25 49 0 12 25 0 0 0	2505 23.39 23.43 23.25 22.45 22.29 22.41 22.62	2535 23.68 23.92 23.31 22.49 22.45 22.40	2565 23.17 23.42 23.78 22.48 22.20	24.00 24.00 24.00 23.00 23.00	TATE
QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM	1 1 25 25 25 25 50 1 1	0 25 49 0 12 25 0 0 0	23.39 23.43 23.25 22.45 22.29 22.41 22.62	23.68 23.92 23.31 22.49 22.45 22.40	23.17 23.42 23.78 22.48 22.20	24.00 24.00 23.00 23.00	TAT
QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM	1 1 25 25 25 50 1 1	25 49 0 12 25 0 0	23.43 23.25 22.45 22.29 22.41 22.62	23.92 23.31 22.49 22.45 22.40	23.42 23.78 22.48 22.20	24.00 24.00 23.00 23.00	TATE
QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM	1 25 25 25 50 1 1	49 0 12 25 0 0	23.25 22.45 22.29 22.41 22.62	23.31 22.49 22.45 22.40	23.78 22.48 22.20	24.00 23.00 23.00	TAT
QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM	25 25 25 50 1 1	0 12 25 0 0	22.45 22.29 22.41 22.62	22.49 22.45 22.40	22.48 22.20	23.00 23.00	TAT
QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM	25 25 50 1 1	12 25 0 0	22.29 22.41 22.62	22.45 22.40	22.20	23.00	<u>S</u> Vra
QPSK QPSK 16QAM 16QAM 16QAM 16QAM	25 50 1 1	25 0 0	22.41 22.62	22.40			
QPSK 16QAM 16QAM 16QAM 16QAM	50 1 1	0 0	22.62		22.52	Ч————————————————————————————————————	
16QAM 16QAM 16QAM 16QAM	1	0		00 5 1		23.00	
16QAM 16QAM 16QAM 16QAM	1		├j	22.54	22.39	23.00	
16QAM 16QAM			22.39	22.61	22.50	23.00	
16QAM	1	25	22.18	22.22	22.41	23.00	
		49	22.17	22.19	22.22	23.00	
100.00	25	0	21.56	21.54	21.20	22.00	
16QAM	25	12	21.48	21.56	21.46	22.00	
16QAM	25	25	21.43	21.50	21.35	22.00	
16QAM	50	0	21.77	21.65	21.48	22.00	
	RB	RB	Char	nnel/Freque	ency(MHz)	Tune-up limit	
Modulation			20775	21100	21425	(ubiii)	
	0.20	Onoot	2502.5	2535	2567.5		
QPSK	1	0	23.61	23.48	23.08	24.00	
QPSK	1	12	23.82	23.68	23.77	24.00	
QPSK	1	24	23.51	23.95	23.59	24.00	
QPSK	12	0	22.36	22.06	22.21	23.00	
QPSK	12	7	22.56	22.54	22.23	23.00	
QPSK	12	13	22.13	22.61	22.38	23.00	
QPSK	25	0	22.59	22.33	22.51	23.00	
16QAM	1	0	22.38	22.65	22.38	23.00	
16QAM	1	12	22.60	22.44	22.26	23.00	
16QAM	1	24	22.60	22.35	22.41	23.00	
16QAM	12	0	21.64	21.71	21.74	22.00	
16QAM	12	7	21.66	21.49	21.84	22.00	
16QAM	12	13	21.41	21.63	21.31	22.00	
160AM	-	0	21.73	21.49	21.49	22.00	
	Modulation QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM	ModulationRB SizeQPSK1QPSK1QPSK1QPSK12QPSK12QPSK12QPSK12QPSK12QPSK1216QAM116QAM1216QAM1216QAM1216QAM1216QAM1216QAM1216QAM1216QAM12	Modulation RB Size RB Offset QPSK 1 0 QPSK 1 12 QPSK 1 24 QPSK 12 0 QPSK 12 0 QPSK 12 0 QPSK 12 0 QPSK 12 13 QPSK 25 0 16QAM 1 12 16QAM 1 24 16QAM 1 24 16QAM 1 21 16QAM 1 24 16QAM 12 0 16QAM 12 0 16QAM 12 7 16QAM 12 13 16QAM 12 13 16QAM 12 13	ModulationRB SizeRB OffsetChar $QPSK$ 1023.61 $QPSK$ 11223.82 $QPSK$ 12423.51 $QPSK$ 12022.36 $QPSK$ 12722.56 $QPSK$ 127322.13 $QPSK$ 121322.13 $QPSK$ 121322.59 $16QAM$ 1022.38 $16QAM$ 12422.60 $16QAM$ 12422.60 $16QAM$ 12021.64 $16QAM$ 12721.66 $16QAM$ 121321.41 $16QAM$ 121321.41	Modulation RB Size RB Offset Chamel/Freque 20775 Chamel/Freque 21100 QPSK 1 0 23.61 23.48 QPSK 1 12 23.82 23.68 QPSK 1 24 23.51 23.95 QPSK 12 0 22.36 22.06 QPSK 12 7 22.56 22.54 QPSK 12 7 22.56 22.54 QPSK 12 13 22.13 22.61 QPSK 12 13 22.13 22.61 QPSK 12 13 22.59 22.33 16QAM 1 0 22.38 22.65 16QAM 1 24 22.60 22.34 16QAM 1 24 22.60 22.35 16QAM 1 24 22.60 22.35 16QAM 12 7 21.66 21.49 16QAM 12 7 21.66	Modulation RB Size RB Offset Channel/Frequency(MHz) 20775 21100 21425 2502.5 2535 2567.5 QPSK 1 0 23.61 23.48 23.08 QPSK 1 12 23.82 23.68 23.77 QPSK 1 24 23.51 23.95 22.59 QPSK 12 0 22.36 22.06 22.21 QPSK 12 7 22.56 22.54 22.33 QPSK 12 7 22.56 22.54 22.33 QPSK 12 13 22.13 22.61 22.38 QPSK 25 0 22.59 22.33 22.51 16QAM 1 0 22.88 22.65 22.38 16QAM 1 24 22.60 22.44 22.26 16QAM 12 0 21.64 21.71 21.74 16QAM 12 7 21.6	Modulation RB Size RB Offset Chamel/Frequency(MHz) Tune-up limit (dBm) QPSK 1 0 23.61 21100 21425 QPSK 1 0 23.61 23.48 23.08 24.00 QPSK 1 12 23.82 23.68 23.77 24.00 QPSK 1 24 23.51 23.95 23.59 24.00 QPSK 12 0 22.36 22.06 22.21 23.00 QPSK 12 0 22.36 22.06 22.21 23.00 QPSK 12 7 22.56 22.54 22.33 23.00 QPSK 12 13 22.13 22.61 22.38 23.00 QPSK 25 0 22.59 22.33 22.51 23.00 QPSK 25 0 22.88 22.65 22.38 23.00 16QAM 1 24 22.60 22.44 22.26 23.00

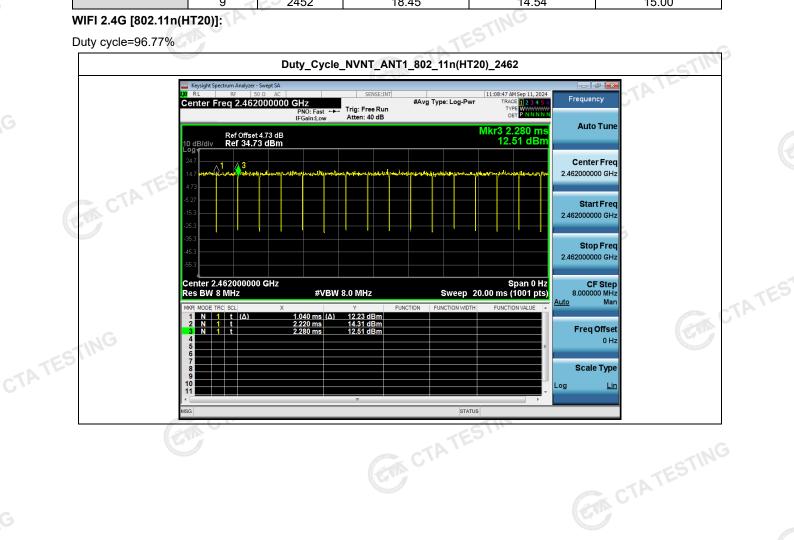
Page 35 of 109

						LTE Ba	and 41				
6			Tune-up								
	BW (MHz)	Modulation		RB Offset	39750	40185	40620	41055	41490	limit (dBm)	
	()		Size		2506	2549.5	2593	2636.5	2680	(ubiii)	
	20	QPSK	1	0	23.57	23.53	23.66	23.67	23.66	24.00	
	20	QPSK	1	49	23.81	23.53	23.17	23.25	23.40	24.00	Ar
	20	QPSK	1	99	23.90	23.72	23.83	23.38	23.35	24.00	GV
	20	QPSK	50	0	22.17	22.31	22.57	22.52	22.66	23.00	
TATES	20	QPSK	50	24	22.17	22.50	22.50	22.23	22.06	23.00	
	20	QPSK	50	50	22.56	22.19	22.08	22.32	22.42	23.00	
	20	QPSK	100	0	22.59	22.42	22.14	22.31	22.44	23.00	
	20	16QAM	1	0	22.44	22.36	22.56	22.51	22.64	23.00	
	20	16QAM	1	49	22.31	22.33	22.46	22.38	22.41	23.00	3
	20	16QAM	1	99	22.11	22.20	22.33	22.22	22.23	23.00	
	20	16QAM	50	0	21.57	21.55	21.44	21.38	21.36	22.00	
	20	16QAM	50	24	21.63	21.41	21.46	21.56	21.66	22.00	
	20	16QAM	50	50	21.55	21.46	21.41	21.28	21.49	22.00	
	20	16QAM	100	0	21.43	21.54	21.74	21.74	21.77	22.00	
8.	DW			RB		(Channel/Frequ	uency(MHz)		Tune-up	
	DVV	BW Modulation	RB		39725	40173	40620	41068	41515	- limit	
			C:								
	(MHz)		Size	Offset						– (dBm)	
			Size		2503.5	2548.5	2593	2637.8	2682.5		
	15	QPSK		0	2503.5 23.83	2548.5 23.63	2593 23.59	2637.8 23.72	2682.5 23.50	24.00	
	15 15	QPSK QPSK	1	0 37	2503.5 23.83 23.19	2548.5 23.63 23.50	2593 23.59 23.68	2637.8 23.72 23.29	2682.5 23.50 23.22	24.00 24.00	CTAT
	15 15 15 15	QPSK QPSK QPSK	1 1 1	0 37 74	2503.5 23.83 23.19 23.19	2548.5 23.63 23.50 23.36	2593 23.59 23.68 23.64	2637.8 23.72 23.29 23.73	2682.5 23.50 23.22 23.64	24.00 24.00 24.00	CTAT
TES	15 15 15 15	QPSK QPSK	1	0 37	2503.5 23.83 23.19	2548.5 23.63 23.50	2593 23.59 23.68	2637.8 23.72 23.29	2682.5 23.50 23.22	24.00 24.00	STAT
TATES	15 15 15 15	QPSK QPSK QPSK QPSK	1 1 1 36	0 37 74 0	2503.5 23.83 23.19 23.19 22.31	2548.5 23.63 23.50 23.36 22.33	2593 23.59 23.68 23.64 22.53	2637.8 23.72 23.29 23.73 22.29	2682.5 23.50 23.22 23.64 22.44	24.00 24.00 24.00 23.00	STAT
TATES	15 15 15 15	QPSK QPSK QPSK QPSK QPSK	1 1 1 36 36	0 37 74 0 20	2503.5 23.83 23.19 23.19 22.31 22.09	2548.5 23.63 23.50 23.36 22.33 22.05	2593 23.59 23.68 23.64 22.53 22.31	2637.8 23.72 23.29 23.73 22.29 22.21	2682.5 23.50 23.22 23.64 22.44 22.36	24.00 24.00 24.00 23.00 23.00	TAT
rA TES	15 15 15 15 15 15 15	QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1 1 1 36 36 36	0 37 74 0 20 39	2503.5 23.83 23.19 23.19 22.31 22.09 22.14 22.71	2548.5 23.63 23.50 23.36 22.33 22.05 22.03	2593 23.59 23.68 23.64 22.53 22.31 22.29	2637.8 23.72 23.29 23.73 22.29 22.21 22.23	2682.5 23.50 23.22 23.64 22.44 22.36 22.34 22.24	24.00 24.00 24.00 23.00 23.00 23.00	TAT
TATES	15 15 15 15 15 15 15 15	QPSK QPSK QPSK QPSK QPSK QPSK	1 1 36 36 36 75	0 37 74 0 20 39 0	2503.5 23.83 23.19 23.19 22.31 22.09 22.14	2548.5 23.63 23.50 23.36 22.33 22.05 22.03 22.21	2593 23.59 23.68 23.64 22.53 22.31 22.29 22.6	2637.8 23.72 23.29 23.73 22.29 22.21 22.23 22.19	2682.5 23.50 23.22 23.64 22.44 22.36 22.34	24.00 24.00 24.00 23.00 23.00 23.00 23.00 23.00	STAT
TATES	15 15 15 15 15 15 15 15 15	QPSK QPSK QPSK QPSK QPSK QPSK QPSK 16QAM	1 1 36 36 36 75 1	0 37 74 0 20 39 0 0	2503.5 23.83 23.19 23.19 22.31 22.09 22.14 22.71 22.37	2548.5 23.63 23.50 23.36 22.33 22.05 22.03 22.21 22.20	2593 23.59 23.68 23.64 22.53 22.31 22.29 22.6 22.13	2637.8 23.72 23.29 23.73 22.29 22.21 22.23 22.19 22.16	2682.5 23.50 23.22 23.64 22.44 22.36 22.34 22.24 22.24 22.28	24.00 24.00 24.00 23.00 23.00 23.00 23.00 23.00 23.00	STAT S
TA TES	15 15 15 15 15 15 15 15 15 15 15	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM	1 1 36 36 36 75 1 1	0 37 74 0 20 39 0 0 37	2503.5 23.83 23.19 23.19 22.31 22.09 22.14 22.71 22.37 22.31	2548.5 23.63 23.50 23.36 22.33 22.05 22.03 22.21 22.20 22.24 22.06	2593 23.59 23.68 23.64 22.53 22.31 22.29 22.6 22.13 22.38	2637.8 23.72 23.29 23.73 22.29 22.21 22.23 22.19 22.16 22.38	2682.5 23.50 23.22 23.64 22.44 22.36 22.34 22.24 22.24 22.28 22.57	24.00 24.00 24.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00	STAT S
TATES	15 15 15 15 15 15 15 15 15 15 15	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM	1 1 36 36 36 75 1 1 1	0 37 74 0 20 39 0 0 37 74	2503.5 23.83 23.19 23.19 22.31 22.09 22.14 22.71 22.37 22.31 22.48	2548.5 23.63 23.50 23.36 22.33 22.05 22.03 22.21 22.20 22.24	2593 23.59 23.68 23.64 22.53 22.31 22.29 22.6 22.13 22.38 22.30	2637.8 23.72 23.29 23.73 22.29 22.21 22.23 22.19 22.16 22.38 22.04	2682.5 23.50 23.22 23.64 22.44 22.36 22.34 22.24 22.24 22.28 22.57 22.42	24.00 24.00 24.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00	STAT
TATES	15 15 15 15 15 15 15 15 15 15 15 15	QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM	1 1 36 36 36 75 1 1 1 36	0 37 74 0 20 39 0 0 37 74 0	2503.5 23.83 23.19 23.19 22.31 22.09 22.14 22.71 22.37 22.31 22.48 21.48	2548.5 23.63 23.50 23.36 22.33 22.05 22.03 22.21 22.20 22.24 22.06 21.53	2593 23.59 23.68 23.64 22.53 22.31 22.29 22.6 22.13 22.38 22.30 21.47	2637.8 23.72 23.29 23.73 22.29 22.21 22.23 22.19 22.16 22.38 22.04 22.04 21.34	2682.5 23.50 23.22 23.64 22.44 22.36 22.34 22.24 22.28 22.57 22.42 21.44	24.00 24.00 24.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00	ot AT

0

Report No.: CTA240925011

Page 36 of 109


	BW		RB	RB		Cha	innel/Freque	ency(MHz)		Tune-up
1	(MHz)	Modulation	Size	Offset	39700	40160	40620	41080	41540	- limit
6	(11112)		0120	Onoot	2501	2547	2593	2639	2685	(dBm)
	10	QPSK	1	0	23.64	23.40	23.43	23.24	23.34	24.00
	10	QPSK	1	25	23.70	23.73	23.68	23.84	23.85	24.00
	10	QPSK	1	49	23.38	23.50	23.73	23.68	23.87	24.00
	10	QPSK	25	0	22.27	22.13	22.45	22.38	22.24	23.00
	10	QPSK	25	12	22.43	22.44	22.65	22.45	22.55	23.00
TATES	10	QPSK	25	25	22.17	22.26	22.33	22.33	22.67	23.00
,nr	10	QPSK	50	0	22.35	22.31	22.40	22.38	22.49	23.00
	10	16QAM	1	0	22.57	22.41	22.66	22.24	22.16	23.00
	10	16QAM	1	25	22.20	22.19	22.54	22.51	22.43	23.00
	10	16QAM	1	49	22.39	22.22	22.17	22.25	22.17	23.00
	10	16QAM	25	0	21.65	21.61	21.63	21.56	21.50	22.00
	10	16QAM	25	12	21.63	21.54	21.76	21.51	21.25	22.00
	10	16QAM	25	25	21.52	21.48	21.29	21.27	21.56	22.00
	10	16QAM	50	0	21.78	21.60	21.54	21.53	21.22	22.00
						Cha	innel/Freque	encv(MHz)	•	Tune-up
	BW	Modulation	RB	RB	00075	[54505	limit
(-	(MHz)		Size	Offset	39675	40148	40620	41093	51565	(dBm)
-		0.001/			2498.5	2545.8	2593	2640.3	2687.5	
-	5	QPSK	1	0	23.45	23.72	23.99	23.86	23.95	24.00
-	5	QPSK	1	12	23.80	23.56	23.74	23.46	23.13	24.00
-	5	QPSK	1	24	23.67	23.78	23.81	23.77	23.78	24.00
-	5	QPSK	12	0	22.31	22.03	22.23	22.19	22.45	23.00
-59	5	QPSK	12	7	22.51	22.34	22.27	22.17	22.57	23.00
TATES	5	QPSK	12	13	22.06	22.33	22.53	22.45	22.46	23.00
-		QPSK	25	0	22.43	22.17	22.24	22.34	22.47	23.00
F	5	16QAM	1	0	22.42	22.36	22.21	22.44	22.45	23.00
-	5	16QAM	1	12	22.35	22.23	22.16	22.27	22.28	23.00
-	5	16QAM	1	24	22.07	22.14	22.46	22.15	22.11	23.00
F	5	16QAM	12	0	21.24	21.22	21.37	21.63	21.48	22.00
-	5	16QAM	12	7	21.42	21.27	21.50	21.52	21.36	22.00
/	5	16QAM 16QAM	12 25	13 0	21.35 21.51	21.33 21.47	21.37	21.38	21.26	22.00
-	5				1 21.51	21.47	21.52	21.55	21.50	22.00

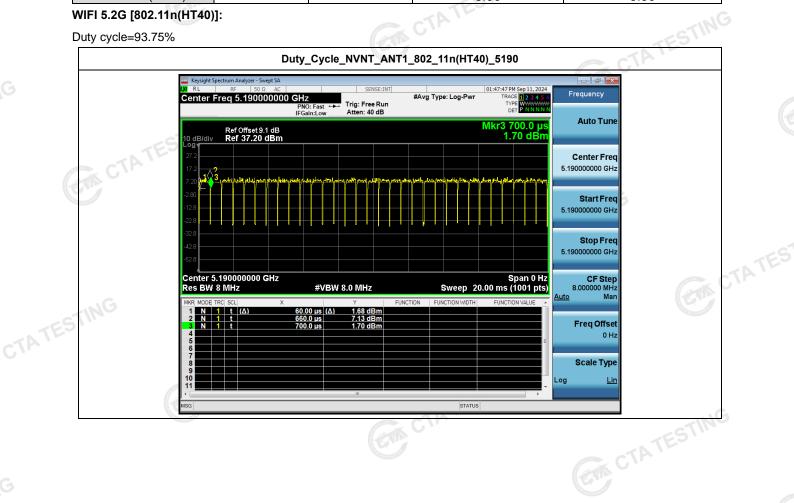
<WLAN 2.4GHz Conducted Power>

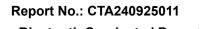
(Mode	Channel	Frequency (MHz)	Conducted Peak Output Power(dBm)	Conducted Average Output Power(dBm)	Tune-up limit (dBm)	
		1	2412	13.26	11.74	12.00	
	802.11b	6	2437	13.38	11.75	12.00	
		11	2462	13.95	12.39	13.00	
		1	2412	17.60	14.14	15.00	- G
	802.11g	6	2437	17.97	14.39	15.00	TATES
		11	2462	18.52	15.12	15.50	CTA .
		1	2412	18.24	14.4	15.00	
	802.11n(HT20)	6	2437	18.59	14.93	15.00	
		11	2462	19.15	15.59	16.00	
CTATES		3	2422	19.04	15.42	15.50	
C/r	802.11n(HT40)	6	2437	18.88	14.93	15.00	
		9	2452	18.45	14.54	15.00	

WIFI 2.4G [802.11n(HT20)]:

Duty cycle=96.77%

Report No.: CTA240925011 <WLAN 5.2GHz Conducted Power>

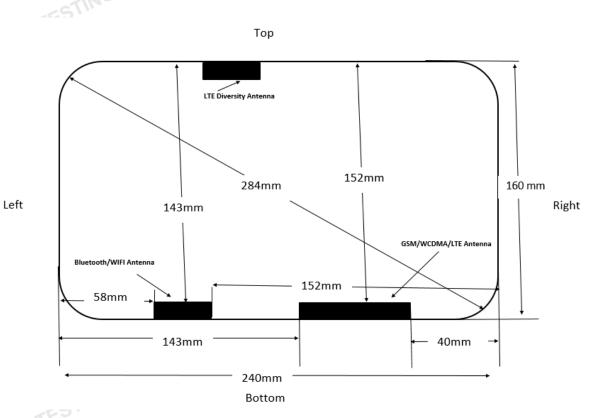

Page 38 of 109


CTATES

Turne	Channel	Frequency	Conducted Average	Tune-up limit	
Туре	Channel	(MHz)	Output Power(dBm)	(dBm)	
	36	5180	8.19	8.50	
802.11a	40	5200	7.58	68.00	
	48	5240	7.02	8.00	
	36	5180	8.44	8.50	
802.11n(HT20)	40	5200	7.96	8.00	
	48	5240	7.40	8.00	
000.44 m/(1)T40)	38	5190	8.53	9.00	
802.11n(HT40)	46	5230	8.00	8.00	
	36	5180	7.33	8.00	
802.11ac(HT20)	40	5200	7.98	8.00	
	48	5240	7.44	8.00	
$902.41 \circ o(UT40)$	38	5190	8.00	8.00	
802.11ac(HT40)	46	5230	7.36	8.00	
802.11ac(HT80)	42	5210	8.06	8.50	
FI 5.2G [802.11n(HT4	D)]:		CTATES	-cT	

WIFI 5.2G [802.11n(HT40)]:

CTATES


Page 39 of 109

GA CTATES

	<bluetooth condu<="" th=""><th>cted Power</th><th>`></th><th></th><th></th><th></th></bluetooth>	cted Power	` >			
	Mode	Channel	Frequency (MHz)	Conducted Peak Output Power(dBm)	Conducted Average Output Power(dBm)	Tune-up limit (dBm)
The second		0	2402	4.15	2.15	2.50
	BLE	19	2440	3.99	1.99	2.00
		39	2480	3.58	1.58	2.00

Cen C

Report No.: CTA240925011 10.2 Transmit Antennas(Rear View)

Antennas	Front Side	Rear Side	Top Side	Bottom Side	Left Side	Right Side
WWAN Main	<5mm	<5mm	152mm	<5mm	143mm	40mm
WLAN/BT	<5mm	<5mm	143mm	<5mm	58mm	152mm

Page 41 of 109

Report No.: CTA240925011 10.3 SAR Test Exclusion and Estimated SAR

Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and Product specific 10g SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition is satisfied. These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance CTATES required for the exposure conditions.

MHz	5	10	15	20	25	mm	
150	39	77	116	155	194		1
300	27	55	82	110	137	7	
450	22	45	67	89	112	7	
835	16	33	49	66	82	1	STI
900	16	32	47	63	79		5.
1500	12	24	37	49	61	SAR Test	
1900	11	22	33	44	54	Exclusion Threshold (mW)	
2450	10	19	29	38	48		
3600	8	16	24	32	40		
5200	7	13	20	26	33		
5400	6	13	19	26	32		
5800	6	12	19	25	31		
	•				•	•	1
							-
MHz	30	35	40	45	50	mm	
MHz 150	30 232	35 271	40 310	45 349	50 387	mm	
						mm	
150	232	271	310	349	387	mm	
150 300	232 164	271 192	310 219	349 246	387 274	mm	
150 300 450	232 164 134	271 192 157	310 219 179	349 246 201	387 274 224	-	G
150 300 450 835	232 164 134 98	271 192 157 115	310 219 179 131	349 246 201 148	387 274 224 164	SAR Test	Cin
150 300 450 835 900	232 164 134 98 95	271 192 157 115 111	310 219 179 131 126	349 246 201 148 142	387 274 224 164 158	SAR Test Exclusion	Ga
150 300 450 835 900 1500	232 164 134 98 95 73	271 192 157 115 111 86	310 219 179 131 126 98	349 246 201 148 142 110	387 274 224 164 158 122	SAR Test	(cr
150 300 450 835 900 1500 1900	232 164 134 98 95 73 65	271 192 157 115 111 86 76	310 219 179 131 126 98 87	349 246 201 148 142 110 98	387 274 224 164 158 122 109	SAR Test Exclusion	G
150 300 450 835 900 1500 1900 2450	232 164 134 98 95 73 65 57	271 192 157 115 111 86 76 67	310 219 179 131 126 98 87 77	349 246 201 148 142 110 98 86	387 274 224 164 158 122 109 96	SAR Test Exclusion	C
150 300 450 835 900 1500 1900 2450 3600	232 164 134 98 95 73 65 57 47	271 192 157 115 111 86 76 67 55	310 219 179 131 126 98 87 77 63	349 246 201 148 142 110 98 86 71	387 274 224 164 158 122 109 96 79	SAR Test Exclusion Threshold (mW)	ESTIN

SAR Test Exclusion Thresholds for 100 MHz – 6 GHz and ≤ 50 mm

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

The test exclusions are applicable only when the minimum test separation distance is > 50 mm and for transmission frequencies between 100 MHz and 6 GHz.

MHz 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 100 474 481 487 494 501 507 514 β21 527 534 541 547 554 561 567 150 387 397 407 417 427 437 447 457 467 477 487 497 507 517 527 300 274 294 314 334 354 374 394 414 434 454 474 494 514 534 554 450 224 254 284 314 344 374 404 434 464 494 524 554 584 614 644	mm
150 387 397 407 417 427 437 447 457 467 477 487 497 507 517 527 300 274 294 314 334 354 374 394 414 434 454 474 494 514 534 554	
300 274 294 314 334 354 374 394 414 434 454 474 494 514 534 554	
450 224 254 284 314 344 374 404 434 464 494 524 554 584 614 644	
835 164 220 275 331 387 442 498 554 609 665 721 776 832 888 943	
900 158 218 278 338 398 458 518 578 638 698 758 818 878 938 998	
1500 122 222 322 422 522 622 722 822 922 1022 1122 1222 1322 1422 1522	mW
1900 109 209 309 409 509 609 709 809 909 1009 1109 1209 1309 1409 1509	
2450 96 196 296 396 496 596 696 796 896 996 1096 1196 1296 1396 1496	
3600 79 179 279 379 479 579 679 779 879 979 1079 1179 1279 1379 1479	
5200 66 166 266 366 466 566 666 766 866 966 1066 1166 1266 1366 1466	
5400 65 165 265 365 465 565 665 765 865 965 1065 1165 1265 1365 1465	
5800 62 162 262 362 462 562 662 762 862 962 1062 1162 1262 1362 1462	

SAR Test Exclusion Thresholds for 100 MHz - 6 GHz and > 50 mm

According to the table above, Standalone SAR exclusion calculation for this device are as below:

Freq. Band	Frequency (MHz)	Position	Test Separation (mm)	Max Power (dBm)	Max Power (mW)	Exclusion Threshold (mW)	Exclusion (Yes/No)
	2402	Rear	5	2.50	1.78	10	Yes
	2402	Left edge	58	2.50	1.78	176	Yes
BT	2402	Right edge	152	2.50 C	1.78	1116	Yes
	2402	Top edge	143	2.50	1.78	1026	Yes
	2402	Bottom edge	5 6 1	2.50	1.78	10	Yes
	2462	Rear	5	16.00	39.81	10	No
	2462	Left edge	58	16.00	39.81	176	Yes
Wi-Fi	2462	Right edge	152	16.00	39.81	1116	Yes
2.4G	2462	Top edge	143	16.00	39.81	1026	Yes
	2462	Bottom edge	5	16.00	39.81	10	No
Ċ	5190	Rear	50	9.00	7.94	7	No
	5190	Left edge	58	9.00	7.94	146	Yes
Wi-Fi	5190	Right edge	152	9.00	7.94	1086	Yes
5.2G	5190	Top edge	143	9.00	7.94	996	Yes
1	5190	Bottom edge	5	9.00	7.94	7	No CTA

Freq. Band	Frequency (MHz)	Position	Test Separation (mm)	Max Power (dBm)	Max Power (mW)	Exclusion Threshold (mW)	Exclusion (Yes/No
6	836.6	Rear	5	25.80	380.19	16	No
	836.6	Left edge	143	25.80	380.19	681.8	Yes
GSM 850	836.6	Right edge	40	25.80	380.19	131	No
	836.6	Top edge	152	25.80	380.19	732	Yes
	836.6	Bottom edge	5	25.80	380.19	16	No
-1G	1909.8	Rear	5	22.71	186.64	11	No
STING	1909.8	Left edge	143	22.71	186.64	1039	Yes
PCS 1900	1909.8	Right edge	40	22.71	186.64	87	No
	1909.8	Top edge	152	22.71	186.64	1129	Yes
	1909.8	Bottom edge	5	22.71	186.64	11	No
WCDMA - Band II -	1880.0	Rear	5	24.00	251.19	11	No
	1880.0	Left edge	143	24.00	251.19	1039	Yes
	1880.0	Right edge	40	24.00	251.19	87	No
	1880.0	Top edge	152	24.00	251.19	1129	Yes
	1880.0	Bottom edge	5	24.00	251.19	11	No
	836.6	Rear	5	24.00	251.19	16	No
	836.6	Left edge	143	24.00	251.19	681.8	Yes
WCDMA	836.6	Right edge	40	24.00	251.19	131	No
Band V	836.6	Top edge	152	24.00	251.19	732	Yes
	836.6	Bottom edge	5	24.00	251.19	16	No
	2535.0	Rear	5	25.00	316.23	10	No
	2535.0	Left edge	143	25.00	316.23	1026	Yes
LTE Dand 7	2535.0	Right edge	40	25.00	316.23	77	No
Band 7	2535.0	Top edge	152	25.00	316.23	1116	Yes
5711	2535.0	Bottom edge	5	25.00	316.23	10	No
	2506.0	Rear	5	24.00	251.19	10	No
	2506.0	Left edge	143	24.00	251.19	1026	Yes
LTE Band 44	2506.0	Right edge	40	24.00	251.19	77	No
Band 41	2506.0	Top edge	152	24.00	251.19	1116	Yes
	2506.0	Bottom edge	5	24.00	251.19	10	No

TES

		EUT Sides	for SAR Test	ing			
Mode	Exposure Condition	Front	Rear	Left	Right	Тор	Bottom
BT	Body	N/A	No	No	No	No	No
WIFI 2.4G	Body	N/A S	Yes	No	No	No	Yes
WIFI 5.2G	Body	N/A	Yes	No	No	No	Yes
					TATES		

Mode	Exposure Condition	Front	Rear	Left	Right	Тор	Bottom
GSM 850	Body	N/A	Yes	No	Yes	No	Yes
PCS 1900	Body	N/A	Yes	No	Yes	No	Yes
WCDMA Band II	Body	N/A	Yes	No	Yes	No	Yes
WCDMA Band V	Body	N/A	Yes	No	Yes	No	Yes
LTE Band 7	Body	N/A	Yes	No	Yes	No	Yes
LTE Band 41	Body	N/A	Yes	No	Yes	No	Yes
EUT Sides for SAR T	esting.	I		-			

According to KDB616217, exposures to hands for typical consumer transmitters used in tablets are not expected to exceed the extremity SAR limit; therefore, SAR evaluation for the front surface of tablet display screens are re CTATESTING generally not necessary.

10.4 SAR Test Results

General Note:

- Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a) Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - b) For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
 c) For WI AN/Plant at a Provide scale of the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
 - c) For WLAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tuneup scaling factor
- Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 3 Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.

<Body SAR>

Page 46 of 109

	TEST			SAR	Values [G	SM 850]					
Plot No.	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR1g (W/kg)	Reported SAR1g (W/kg)	
		Measu	ured / F	Reported	SAR numb	bers-Body	distance 0	mm			
#1	GPRS 4tx slot	Rear	190	836.6	28.97	29.00	1.007	0.06	0.454	0.457	-9
	GPRS 4tx slot	Right Edge	190	836.6	28.97	29.00	1.007	-0.15	0.366	0.369	TATE
	GPRS 4tx slot	Bottom Edge	190	836.6	28.97	29.00	1.007	-0.16	0.436	0.439	0.1
	6										•

SAR Values [PCS 1900]

		GPRS 4tx slot	Bottom Edge	190	836.6	28.97	29.00	1.007	-0.16	0.436	0.439					
CTATE	STIN	SAR Values [PCS 1900]														
CTA	Plot No.	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR1g (W/kg)	Reported SAR1g (W/kg)					
			Measu	ured / I	Reported	SAR num	bers-Body	distance 0	mm							
	#2	GPRS 4tx slot	Rear	810	1909.8	25.88	26.00	1.028	-0.08	0.632	0.650					
		GPRS 4tx slot	Right Edge	810	1909.8	25.88	26.00	1.028	0.09	0.558	0.574					
		GPRS 4tx slot	Bottom Edge	810	1909.8	25.88	26.00	1.028	-0.11	0.609	0.626					

SAR Values [WCDMA band II]

		TING		SAR Val	ues [WCD	MA band]	-		
Plot No.	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR1g (W/kg)	Reported SAR1g (W/kg)
		Meas	ured / I	Reported	SAR numl	bers-Body	distance 0	mm		
#3	RMC 12.2K	Rear	9400	1880.0	23.59	24.00	1.099	-0.04	0.436	0.479
	RMC 12.2K	Right Edge	9400	1880.0	23.59	24.00	1.099	-0.17	0.336	0.369
	RMC 12.2K	Bottom Edge	9400	1880.0	23.59	24.00	1.099	-0.02	0.408	0.448
M	G									S
111			5	SAR Val	ues [WCD	MA band	V]			
Plot	Mode	Test	Ch.	Freq.	Average Power	Tune-Up Limit	Scaling	Power Drift	Measured SAR1g	Reported SAR1g

SAR Values [WCDMA band V]

		RMC 12.2K	Bottom Edge	9400	1880.0	23.59	24.00	1.099	-0.02	0.408	0.448	U
	TIN	G						\ <i>/</i> 1			A CONTRACT	-
CTATES	Plot No.	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	MA band Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR1g (W/kg)	Reported SAR1g (W/kg)	
			Meas	sured / F	Reported	SAR num	bers-Body	distance 0	mm			
	#4	RMC 12.2K	Rear	4183	836.6	23.47	24.00	1.130	-0.11	0.652	0.737	
		RMC 12.2K	Right Edge	4183	836.6	23.47	24.00	1.130	-0.20	0.562	0.635	
		RMC 12.2K	Bottom Edge	4183	836.6	23.47	24.00	1.130	-0.19	0.618	0.698	

Page 47 of 109

		NG		SAR V	alues [LT/	E Band 7]				
Plot No.	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR1g (W/kg)	Reported SAR1g (W/kg)
		Ме	asured	/ Reporte	d SAR numb	ers-Body di	stance 0mr	n		
#5	20MHz/1RB#99	Rear	21100	2535	24.03	25.00	1.250	0.09	0.625	0.781
	20MHz/1RB#99	Right Edge	21100	2535	24.03	25.00	1.250	-0.15	0.541	0.676
	20MHz/1RB#99	Bottom Edge	21100	2535	24.03	25.00	1.250	-0.11	0.601	0.751
	20MHz/50RB#24	Rear	20850	2510	22.62	23.00	1.091	0.11	0.578	0.631
1170	20MHz/50RB#24	Right Edge	20850	2510	22.62	23.00	1.091	-0.16	0.502	0.548
9	20MHz/50RB#24	Bottom Edge	20850	2510	22.62	23.00	1.091	-0.18	0.554	0.605
		TATE	STIN	SAR V	alues (LTE	E Band 41	- NG			
		C VI			Average	Tune-Un		Power	Measured	Reported

SAR Values [LTE Band 41]

Plot No.	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR1g (W/kg)	Reported SAR1g (W/kg)
		Ме	asured	/ Reporte	d SAR numb	ers-Body di	stance 0mn	n		
#6	20MHz/1RB#99	Rear	39750	2506	23.90	24.00	1.023	-0.02	0.652	0.667
	20MHz/1RB#99	Right Edge	39750	2506	23.90	24.00	1.023	-0.17	0.564	0.577
	20MHz/1RB#99	Bottom Edge	39750	2506	23.90	24.00	1.023	-0.05	0.629	0.644
	20MHz/50RB#0	Rear	41490	2680	22.66	23.00	1.081	-0.03	0.598	0.647
110	20MHz/50RB#0	Right Edge	41490	2680	22.66	23.00	1.081	-0.15	0.516	0.558
	20MHz/50RB#0	Bottom Edge	41490	2680	22.66	23.00	1.081	-0.07	0.566	0.612
			GIA	SAR	Values [W	/IFI 2.4G]	- c1	ATES	STIN	

	Plot No.	Mode	Test Position	Ch.	Freq. (MHz)	Duty Cycle Factor	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
				Mea	sured / Re	eported SAR	numbers-Bo	ody distance	0mm			
CTA	-	802.11b	Rear	11	2462	1.005	12.39	13.00	1.151	-0.05	0.345	0.399
		802.11b	Bottom Edge	11	2462	1.005	12.39	13.00	1.151	-0.17	0.318	0.368
	#7	802.11n(HT20)	Rear	11	2462	1.033	15.59	16.00	1.099	-0.06	0.452	0.513
		802.11n(HT20)	Bottom Edge	11	2462	1.033	15.59	16.00	1.099	0.15	0.433	0.492

SAR Values [WIFI 5.2G]

					SAR Value	-	-		Dever	GIR	Demented
Plot No.	Mode	Test Position	Ch.	Freq. (MHz)	Duty Cycle Factor	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
			Me	asured / R	eported SAR r	numbers-Bo	ody distanc	e Omm			
#8	802.11n(HT40)	Rear	38	5190	1.067	8.53	9.00	1.114	0.01	0.136	0.162
and the second	802.11n(HT40)	Bottom Edge	38	5190	1.067	8.53	9.00	1.114	-0.13	G 0.108	0.128

10.5 Estimated SAR

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion:

CTATES • (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[√f(GHz)/x] W/kg for test separation distances \leq 50 mm;

Where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test TATESTING exclusion.

Estimated SAR Result

Freq. Band	Frequency (GHz)	Test Position	max. power (dBm)	max. power (mw)	Test Separation (mm)	Estimated
Bluetooth	2.48	Body	2.50	1.78	5	0.075

10.6 Simultaneous Transmission Analysis

Application Simultaneous Transmission information:

Per FCC KD B447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the transmitting antenna in a specific a physical test configuration is \leq 1.6 W/Kg. When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

$$Ratio = \frac{(SAR_1 + SAR_2)^{1.5}}{(\text{peak location separation,mm})} < 0.04$$

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

No.	Simultaneous Transmission Configurations	Body-worn
1	WWAN (2/3/4G) + WLAN 2.4GHz	Yes
2	WWAN (2/3/4G) + WLAN 5GHz	Yes
3	WWAN (2/3/4G) + Bluetooth	Yes

Note: WLAN and BT share the same antenna and cannot transmitting at the same time.

Evaluation of Simultaneous SAR

Simultaneous transmission SAR for WIFI/BT and GSM/WCDMA/ LTE

		1	2	3	4					
		MAX. WWAN	MAX.	MAX.		1+2	1+3	1+4		
	Exposure	Reported SAR	WLAN2.4G	WLAN5G	Bluetooth	Summed	Summed	Summed	SPLSR	<u> </u>
	Position		Reported SAR	Reported SAR		1g SAR	1g SAR	1g SAR		TATES
		1g SAR	1g SAR	1g SAR	1g SAR	(W/kg)	(W/kg)	(W/kg)		CTR
		(W/kg)	(W/kg)	(W/kg)	(W/kg)					
CTATES	Rear	0.781	0.513	0.162	0.075	1.294	0.943	0.856	N/A	
CIL	Right Edge	0.676	TESTING	/	/	0.676	0.676	0.676	N/A	
	Bottom Edge	0.751	0.492	0.128	0.075	1.243	0.879	0.826	N/A	

MAX. ΣSAR_{1g} =**1.294** W/kg<1.6 W/kg, so the Simultaneous transmission SAR with volume scan are not required.

Page 50 of 109

Appendix A. EUT Photos and Test Setup Photos

835MHz System Check

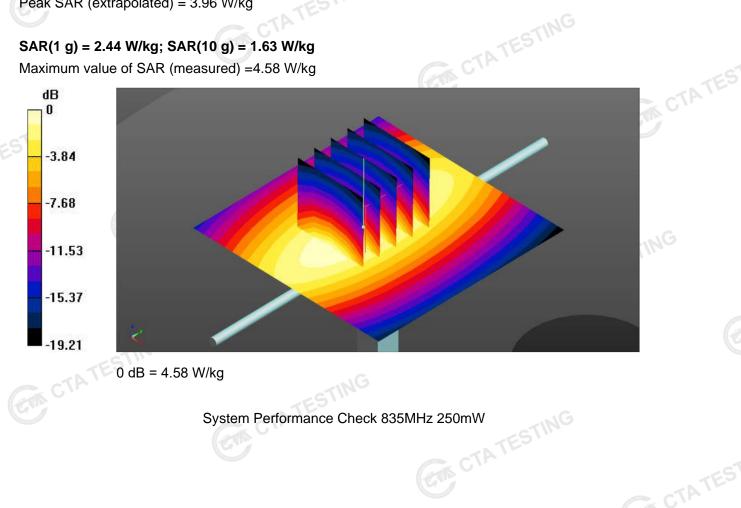
Date: 09/11/2024

DUT: Dipole 835 MHz; Type: D835V2; Serial: 484 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.863 S/m; ε_r = 40.785; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3805; ConvF(9.26, 9.26, 9.26); Calibrated: Nov. 23, 2023;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn373; Calibrated:2024/01/03
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (5x18x1): Measured grid: dx=15 mm, dy=1.5 mm Maximum value of SAR (measured) = 4.65 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 78.65 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 3.96 W/kg

SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.63 W/kg

Maximum value of SAR (measured) =4.58 W/kg

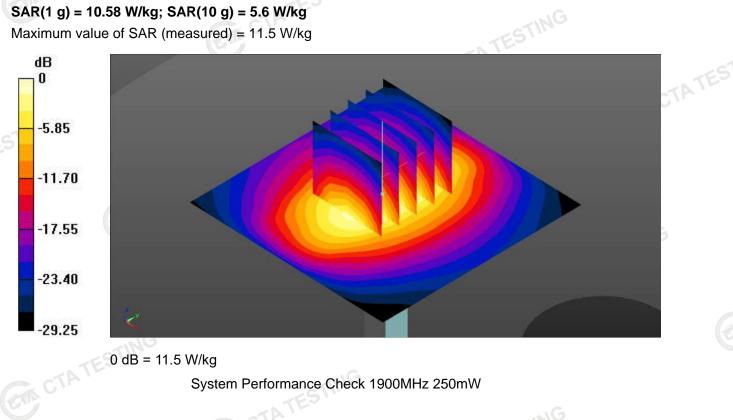
Report No.: CTA240925011 **1900MHz System Check**

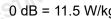
Page 52 of 109 Date: 09/13/2024

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d002

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.411 S/m; ϵ r =40.256; ρ = 1000 kg/m3 GTA CTA Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN3805; ConvF(7.85, 7.85, 7.85); Calibrated: Nov. 23, 2023
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn373; Calibrated:2024/01/03
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Area Scan (6x10x1): Measurement grid: dx=15 mm, dy=15 mm Maximum value of SAR (measured) = 12.6 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 66.52 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 18.6 W/kg

SAR(1 g) = 10.58 W/kg; SAR(10 g) = 5.6 W/kg

Maximum value of SAR (measured) = 11.5 W/kg

Report No.: CTA240925011 2450MHz System Check

Page 53 of 109 Date: 09/19/2024

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 745

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.722 S/m; ϵ r = 38.965; ρ = 1000 kg/m3 CTATE Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN3805; ConvF(7.42, 7.42, 7.42); Calibrated: Nov. 23, 2023
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn373; Calibrated:2024/01/03
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (4x8x1): Measurement grid: dx=12 mm, dy=12 mm Maximum value of SAR (measured) =20.2 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.32 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 16.3 W/kg

SAR(1 g) = 12.56 W/kg; SAR(10 g) = 6.55 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

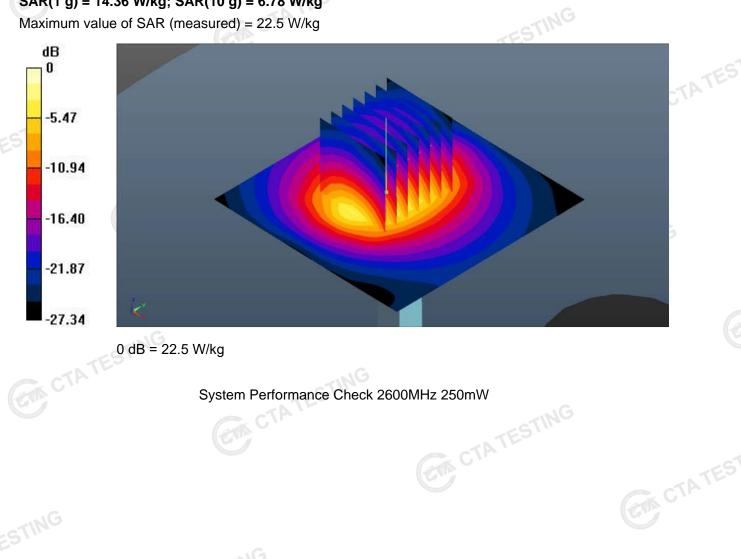
Report No.: CTA240925011 2600MHz System Check

Page 54 of 109 Date: 09/26/2024

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1073

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 1.885 S/m; ϵ r = 37.225; ρ = 1000 kg/m3 CTATE Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN3805; ConvF(7.17, 7.17, 7.17); Calibrated: Nov. 23, 2023
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn373; Calibrated:2024/01/03
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (4x8x1): Measurement grid: dx=12 mm, dy=12 mm Maximum value of SAR (measured) = 23.2 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 48.96 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 26.9 W/kg

SAR(1 g) = 14.36 W/kg; SAR(10 g) = 6.78 W/kg

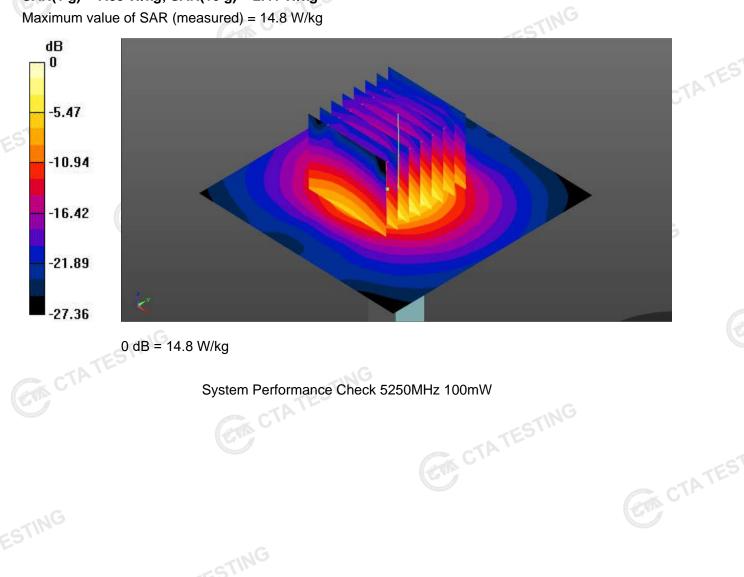
Maximum value of SAR (measured) = 22.5 W/kg

Report No.: CTA240925011 5250MHz System Check

Page 55 of 109 Date: 10/10/2024

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: 1301

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; σ =4.623 S/m; ϵ r = 36.336; ρ = 1000 kg/m3 CTATE Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN3805; ConvF(5.38, 5.38 5.38); Calibrated: Nov. 23, 2023
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn373; Calibrated:2024/01/03
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (5x5x1): Measured grid: dx=10 mm, dy=10 mm Maximum value of SAR (measured) = 15.6 W/kg

Zoom Scan (7x7x12): Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 45.32 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 11.3 W/kg

SAR(1 g) = 7.85 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 14.8 W/kg

Appendix C. Plots of SAR Test Data

#1

Date: 09/11/2024

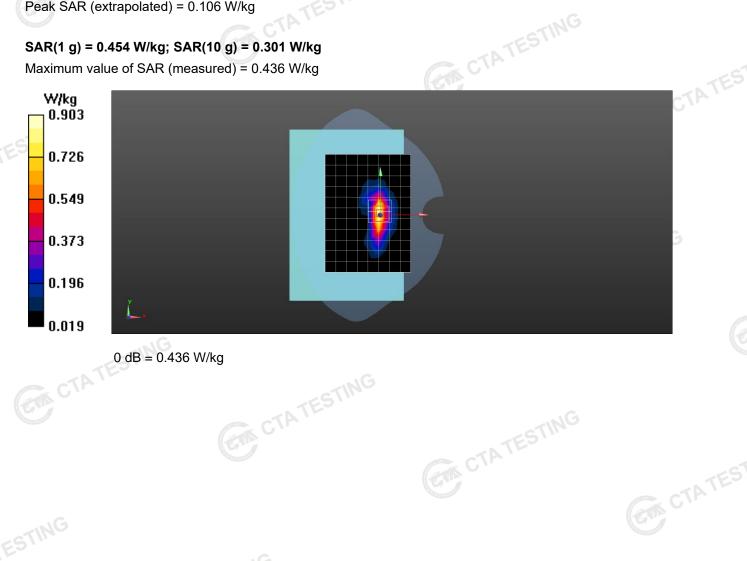
GSM850_GPRS(4 TX slots)_Rear_0mm_Ch190

Communication System: UID 0, Generic GSM (0); Frequency: 836.6 MHz; Duty Cycle: 1:2.075 Medium parameters used: f = 836.6 MHz; σ = 0.856 S/m; ϵ_r = 40.165; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3805; ConvF(9.26, 9.26, 9.26); Calibrated: Nov. 23, 2023 •
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn373; Calibrated:2024/01/03 •
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974 •
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front /Area Scan (9x12x1): Measurement grid: dx=15 mm, dy=15 mm Maximum value of SAR (measured) = 0.441W/kg


Front /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value =4.775 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.106 W/kg

SAR(1 g) = 0.454 W/kg; SAR(10 g) = 0.301 W/kg

Maximum value of SAR (measured) = 0.436 W/kg

#2

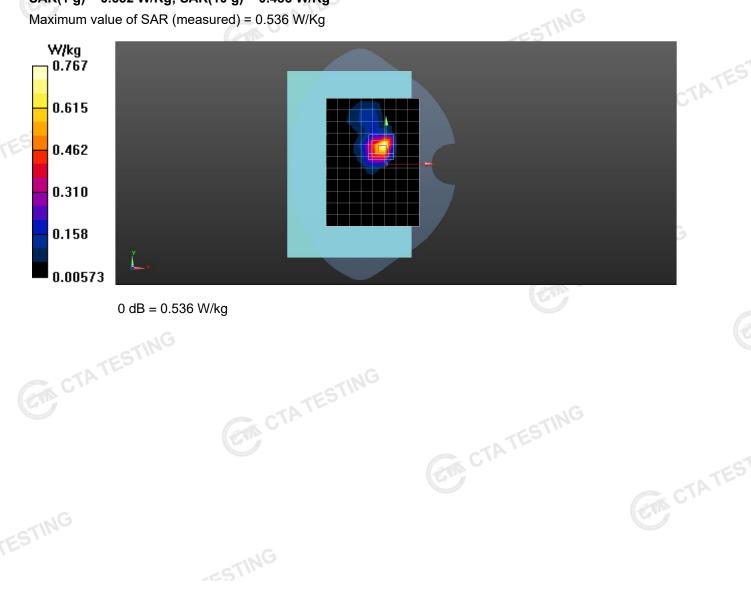
Date: 09/13/2024

PCS1900_GPRS(4 TX slots)_Rear_0mm_Ch810

Communication System: UID 0, Generic GSM (0); Frequency: 1909.8 MHz; Duty Cycle: 1:2.075 Medium parameters used: f = 1909.8 MHz; σ = 1.445 S/m; ϵ_r =40.987; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3805; ConvF(7.85, 7.85, 7.85); Calibrated: Nov. 23, 2023
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn373; Calibrated:2024/01/03
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Front /Area Scan (9x12x1): Measurement grid: dx=15 mm, dy=15 mm Maximum value of SAR (measured) = 0.542 W/kg

Front /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.216 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.365 W/kg

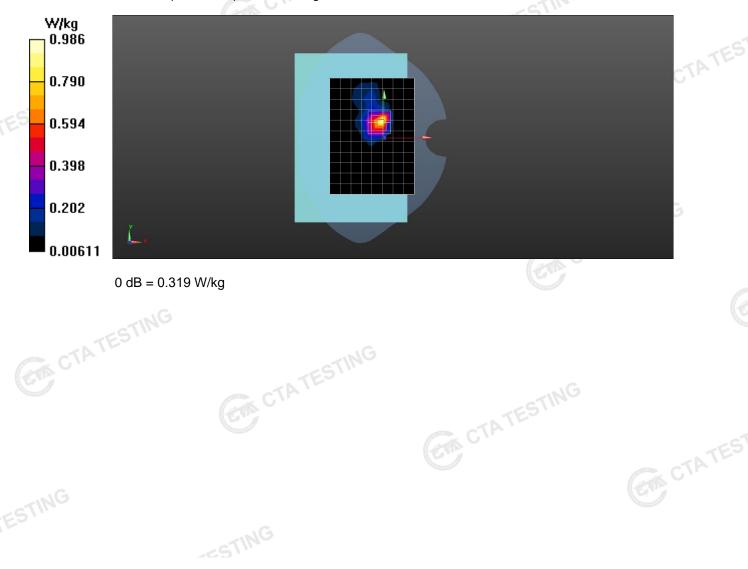
SAR(1 g) = 0.632 W/Kg; SAR(10 g) = 0.485 W/Kg Maximum value of SAR (measured) = 0.536 W/Kg

#3

Date: 09/13/2024

WCDMA Band II_RMC 12.2K_Rear_0mm_Ch9400

Communication System: UID 0, Generic WCDMA (0); Frequency: 1880.0 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880.0 MHz; σ = 1.398 S/m; ϵ_r = 41.026; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN3805; ConvF(7.85, 7.85, 7.85); Calibrated: Nov. 23, 2023
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn373; Calibrated:2024/01/03
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front /Area Scan (9x12x1): Measurement grid: dx=15 mm, dy=15 mm Maximum value of SAR (measured) = 0.333 W/kg

Front /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.985 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) =0.236 W/kg

SAR(1 g) = 0.436 W/Kg; SAR(10 g) = 0.275 W/Kg Maximum value of SAR (measured) = 0.319 W/kg

#4

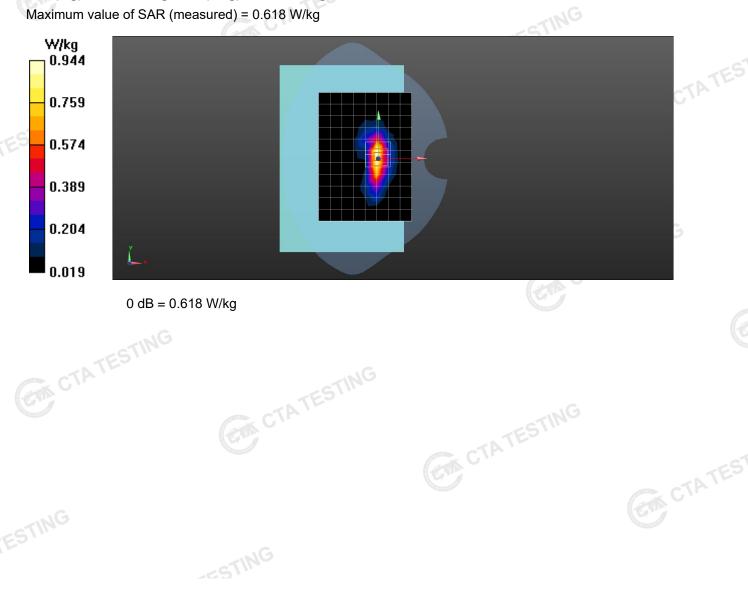
Date: 09/11/2024

WCDMA Band V_ RMC 12.2K_Rear_0mm_Ch4183

Communication System: UID 0, Generic WCDMA (0); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; σ = 0.898 S/m; ϵ_r = 40.968; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3805; ConvF(9.26, 9.26, 9.26); Calibrated: Nov. 23, 2023
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn373; Calibrated:2024/01/03
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Front /Area Scan (9x12x1): Measurement grid: dx=15 mm, dy=15 mm Maximum value of SAR (measured) = 0.635 W/kg

Front /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.598 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.369 W/Kg

SAR(1 g) = 0.652 W/Kg; SAR(10 g) = 0.418 W/Kg Maximum value of SAR (measured) = 0.618 W/kg

Date: 09/26/2024

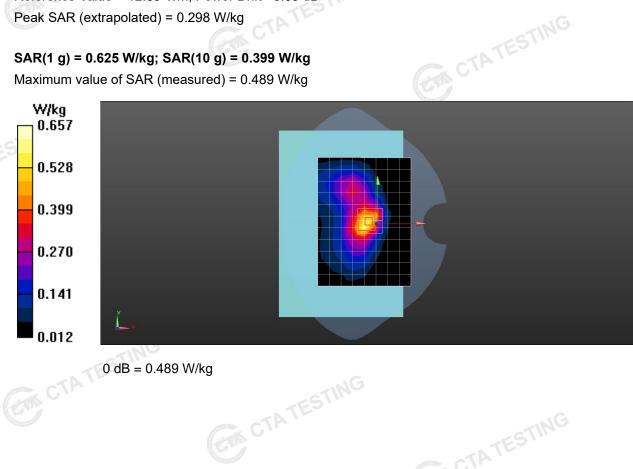
LTE Band 7_20MHz/1RB#99_Rear_0mm_Ch21100

Communication System: UID 0, Generic LTE (0); Frequency 2535 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2535 MHz; σ = 1.863 S/m; ϵ r = 37.526; ρ = 1000 kg/m3

Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN3805; ConvF(7.17, 7.17, 7.17); Calibrated: Nov. 23, 2023 •
- Sensor-Surface: 2mm (Mechanical Surface Detection) •
- Electronics: DAE3 Sn373; Calibrated:2024/01/03
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) •

Front /Area Scan (9x12x1): Measurement grid: dx=12 mm, dy=12 mm Maximum value of SAR (measured) = 0.498 W/kg

Front /Zoom Scan (7x7x7)/Cube 0:Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.69 V/m; Power Drift =0.09 dB

Peak SAR (extrapolated) = 0.298 W/kg

SAR(1 g) = 0.625 W/kg; SAR(10 g) = 0.399 W/kg

#6

Date: 09/26/2024

LTE Band 41_20MHz/1RB#99_Rear_0mm_Ch39750

Communication System: UID 0, Generic LTE (0); Frequency: 2506 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2506 MHz; σ = 1.902 S/m; ϵ r =38.965; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3805; ConvF(7.17, 7.17, 7.17); Calibrated: Nov. 23, 2023
- Sensor-Surface: 2mm (Mechanical Surface Detection) •
- Electronics: DAE3 Sn373; Calibrated:2024/01/03
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974 •
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front /Area Scan (10x15x1): Measurement grid: dx=12 mm, dy=12 mm Maximum value of SAR (measured) = 0.582 W/kg

Front /Zoom Scan (7x7x7)/Cube 0:Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 44.63 V/m; Power Drift = -0.02 dB TING

Peak SAR (extrapolated) = 0.366 W/kg

SAR(1 g) = 0.652 W/kg; SAR(10 g) = 0.469 W/kg Maximum value of SAR (measured) = 0.566 W/kg

#7 Date: 09/19/2024

WIFI2.4G_802.11n(HT20)_Rear_0mm_Ch11

Communication System: UID 0, Generic WIFI (0); Frequency: 2462 MHz; Duty Cycle: 1:1.033 Medium parameters used: f = 2462 MHz; σ = 1.825 S/m; ϵ r =39.857; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3805; ConvF(7.42, 7.42, 7.42); Calibrated: Nov. 23, 2023
- Sensor-Surface: 2mm (Mechanical Surface Detection) •
- Electronics: DAE3 Sn373; Calibrated:2024/01/03
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974 •
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front /Area Scan (10x13x1): Measurement grid: dx=12 mm, dy=12 mm Maximum value of SAR (measured) = 0.285 W/kg

Front /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.524 V/m; Power Drift = -0.06 dB TING

Peak SAR (extrapolated) = 0.125 W/kg

SAR(1 g) = 0.452 W/kg; SAR(10 g) = 0.311 W/kg

Maximum value of SAR (measured) = 0.279 W/kg

#8 Date: 10/10/2024

WLAN 5.2GHz_802.11n(HT40)_Rear_0mm_CH38

Communication System: UID 0, Generic WLAN (0); Frequency: 5190 MHz; Duty Cycle: 1:1.067 Medium parameters used: f = 5190 MHz; σ =4725 S/m; ϵ r = 35.212; ρ = 1000 kg/m3 Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3805; ConvF(5.38, 5.38, 5.38); Calibrated: Nov. 23, 2023
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn373; Calibrated:2024/01/03
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (10x15x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.365 W/Kg

Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 2.986 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) =0.125 W/kg

SAR(1 g) = 0.136 W/kg; SAR(10 g) = 0.088 W/kg

Maximum value of SAR (measured) = 0.358 W/Kg

Appendix D. DASY System Calibration Certificate

Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn Client: CTA			J02Z80102
CALIBRATION C	ERTIFICATE		
Object	EX3DV4 -	SN : 3805	
Calibration Procedure(s)	FF-Z11-00	04-02	
	Calibration	Procedures for Dosimetric E-field Probes	
Calibration date:	Novembe	23, 2023	1G
measurements and the uncertai	inties with confidence p	o national standards, which realize the physical units of robability are given on the following pages and are part ratory facility: environment temperature(22±3)°C and hur	of the certificate.
Calibration Equipment used (Ma	&TE critical for calibration	on)	
Primary Standards	ID# Ca	al Date(Calibrated by, Certificate No.) Scheduled Cali	bration
Power Meter NRP2	101919	12-Jun-23(CTTL, No.J23X05435)	Jun-24
Power sensor NRP-Z91	101547	12-Jun-23(CTTL, No.J23X05435)	Jun-24
Power sensor NRP-Z91	101548	12-Jun-23(CTTL, No.J23X05435)	Jun-24
Reference 10dBAttenuator	18N50W-10dB	19-Jan-23(CTTL, No.J23X00212)	Jan-25
Reference 10dBAttenuator Reference 20dBAttenuator	18N50W-20dB	19-Jan-23(CTTL, No.J23X00211)	
Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4	18N50W-20dB SN 3846	19-Jan-23(CTTL, No.J23X00211) 31-May-23(SPEAG, No.EX-3846_May23)	
Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4	18N50W-20dB SN 3846 SN 1555	19-Jan-23(CTTL, No.J23X00211) 31-May-23(SPEAG, No.EX-3846_May23) 24-Aug-23(SPEAG, No.DAE4-1555_Aug23)	Jan-25 May-24 Aug-24
Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards	18N50W-20dB SN 3846 SN 1555 ID #	19-Jan-23(CTTL, No.J23X00211)31-May-23(SPEAG, No.EX-3846_May23)24-Aug-23(SPEAG, No.DAE4-1555_Aug23)Cal Date(Calibrated by, Certificate No.)Sch	Jan-25 May-24 Aug-24 reduled Calibration
Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A	18N50W-20dB SN 3846 SN 1555 ID # 6201052605	19-Jan-23(CTTL, No.J23X00211) 31-May-23(SPEAG, No.EX-3846_May23) 24-Aug-23(SPEAG, No.DAE4-1555_Aug23) Cal Date(Calibrated by, Certificate No.) Sch 12-Jun-23(CTTL, No.J23X05434)	Jan-25 May-24 Aug-24 reduled Calibration Jun-24
Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C	18N50W-20dB SN 3846 SN 1555 ID # 6201052605 MY46110673	19-Jan-23(CTTL, No.J23X00211) 31-May-23(SPEAG, No.EX-3846_May23) 24-Aug-23(SPEAG, No.DAE4-1555_Aug23) Cal Date(Calibrated by, Certificate No.) Sch 12-Jun-23(CTTL, No.J23X05434) 10-Jan-23(CTTL, No.J23X00104)	Jan-25 May-24 Aug-24 Meduled Calibration Jun-24 Jan-24
Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C Reference 10dBAttenuator	18N50W-20dB SN 3846 SN 1555 ID # 6201052605 MY46110673 BT0520	19-Jan-23(CTTL, No.J23X00211) 31-May-23(SPEAG, No.EX-3846_May23) 24-Aug-23(SPEAG, No.DAE4-1555_Aug23) Cal Date(Calibrated by, Certificate No.) Sch 12-Jun-23(CTTL, No.J23X05434) 10-Jan-23(CTTL, No.J23X00104) 11-May-23(CTTL, No.J23X04061)	Jan-25 May-24 Aug-24 Meduled Calibration Jun-24 Jan-24 May-25
Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C Reference 10dBAttenuator Reference 20dBAttenuator	18N50W-20dB SN 3846 SN 1555 ID # 6201052605 MY46110673 BT0520 BT0267	19-Jan-23(CTTL, No.J23X00211) 31-May-23(SPEAG, No.EX-3846_May23) 24-Aug-23(SPEAG, No.DAE4-1555_Aug23) 24-Aug-23(SPEAG, No.DAE4-1555_Aug23) Cal Date(Calibrated by, Certificate No.) Sch 12-Jun-23(CTTL, No.J23X05434) 10-Jan-23(CTTL, No.J23X00104) 11-May-23(CTTL, No.J23X04061) 11-May-23(CTTL, No.J23X04062)	Jan-25 May-24 Aug-24 reduled Calibration Jun-24 Jan-24 May-25 May-25
Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C Reference 10dBAttenuator Reference 20dBAttenuator OCP DAK-3.5	18N50W-20dB SN 3846 SN 1555 ID # 6201052605 MY46110673 BT0520 BT0267 SN 1040	19-Jan-23(CTTL, No.J23X00211) 31-May-23(SPEAG, No.EX-3846_May23) 24-Aug-23(SPEAG, No.DAE4-1555_Aug23) Cal Date(Calibrated by, Certificate No.) Sch 12-Jun-23(CTTL, No.J23X05434) 10-Jan-23(CTTL, No.J23X00104) 11-May-23(CTTL, No.J23X04061) 11-May-23(CTTL, No.J23X04062) 18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_Jan23)	Jan-25 May-24 Aug-24 Meduled Calibration Jun-24 Jan-24 May-25
Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C Reference 10dBAttenuator Reference 20dBAttenuator OCP DAK-3.5	18N50W-20dB SN 3846 SN 1555 ID # 6201052605 MY46110673 BT0520 BT0267 SN 1040	19-Jan-23(CTTL, No.J23X00211) 31-May-23(SPEAG, No.EX-3846_May23) 24-Aug-23(SPEAG, No.DAE4-1555_Aug23) 24-Aug-23(SPEAG, No.DAE4-1555_Aug23) Cal Date(Calibrated by, Certificate No.) Sch 12-Jun-23(CTTL, No.J23X05434) 10-Jan-23(CTTL, No.J23X00104) 11-May-23(CTTL, No.J23X04061) 11-May-23(CTTL, No.J23X04062)	Jan-25 May-24 Aug-24 reduled Calibration Jun-24 Jan-24 May-25 May-25
Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standart SignalGenerator MG3700A Network Analyzer E5071C Reference 10dBAttenuator Reference 20dBAttenuator OCP DAK-3.5	18N50W-20dB SN 3846 SN 1555 ID # 6201052605 MY46110673 BT0520 BT0267 SN 1040	19-Jan-23(CTTL, No.J23X00211) 31-May-23(SPEAG, No.EX-3846_May23) 24-Aug-23(SPEAG, No.DAE4-1555_Aug23) Cal Date(Calibrated by, Certificate No.) Sch 12-Jun-23(CTTL, No.J23X05434) 10-Jan-23(CTTL, No.J23X00104) 11-May-23(CTTL, No.J23X04061) 11-May-23(CTTL, No.J23X04062) 18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_Jan23) Function	Jan-25 May-24 Aug-24 reduled Calibration Jun-24 Jan-24 May-25 May-25 Jan-24
Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C Reference 10dBAttenuator Reference 20dBAttenuator OCP DAK-3.5	18N50W-20dB SN 3846 SN 1555 ID # 6201052605 MY46110673 BT0520 BT0267 SN 1040 Name Yu Zongying	19-Jan-23(CTTL, No.J23X00211) 31-May-23(SPEAG, No.EX-3846_May23) 24-Aug-23(SPEAG, No.DAE4-1555_Aug23) Cal Date(Calibrated by, Certificate No.) Sch 12-Jun-23(CTTL, No.J23X05434) 10-Jan-23(CTTL, No.J23X00104) 11-May-23(CTTL, No.J23X04061) 11-May-23(CTTL, No.J23X04062) 18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_Jan23) Function Signature SAR Test Engineer	Jan-25 May-24 Aug-24 reduled Calibration Jun-24 Jan-24 May-25 May-25 Jan-24
Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C Reference 10dBAttenuator Reference 20dBAttenuator OCP DAK-3.5	18N50W-20dB SN 3846 SN 1555 ID # 6201052605 MY46110673 BT0520 BT0267 SN 1040	19-Jan-23(CTTL, No.J23X00211) 31-May-23(SPEAG, No.EX-3846_May23) 24-Aug-23(SPEAG, No.DAE4-1555_Aug23) Cal Date(Calibrated by, Certificate No.) Sch 12-Jun-23(CTTL, No.J23X05434) 10-Jan-23(CTTL, No.J23X00104) 11-May-23(CTTL, No.J23X04061) 11-May-23(CTTL, No.J23X04062) 18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_Jan23) Function Signature SAR Test Engineer SAR Test Engineer	Jan-25 May-24 Aug-24 Jun-24 Jan-24 May-25 May-25 Jan-24

Certificate No: 23J02Z80102

CTATEST

Page 1 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:

CTATES

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:23J02Z80102

Page 2 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:3805

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (<i>k</i> =2)
Norm(µV/(V/m) ²) ^A	0.49	0.63	0.45	±10.0%
DCP(mV) ^B	101.4	97.7	101.4	

Modulation Calibration Parameters

UID	Communication System Name	_	A dB	B dBõV	С	D dB	VR mV	Unc ^E (<i>k</i> =2)
0	cw	X	0.0	0.0	1.0	0.00	169.0	±2.5%
		Y	0.0	0.0	1.0		189.9	
		Z	0.0	0.0	1.0		155.5	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:23J02Z80102

CTATES

Page 3 of 9

In Collaboration with S P C A G CALIBRATION LABORATORY

> Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:3805

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (<i>k</i> =2)
750	41.9	0.89	9.66	9.66	9.66	0.14	1.30	±12.7%
835	41.5	0.90	9.26	9.26	9.26	0.13	1.43	±12.7%
1750	40.1	1.37	8.16	8.16	8.16	0.23	1.09	±12.7%
1900	40.0	1.40	7.85	7.85	7.85	0.24	1.04	±12.7%
2000	40.0	1.40	7.83	7.83	7.83	0.22	1.13	±12.7%
2300	39.5	1.67	7.66	7.66	7.66	0.40	0.87	±12.7%
2450	39.2	1.80	7.42	7.42	7.42	0.36	0.94	±12.7%
2600	39.0	1.96	7.17	7.17	7.17	0.39	0.97	±12.7%
3300	38.2	2.71	7.01	7.01	7.01	0.47	0.90	±13.9%
3500	37.9	2.91	6.87	6.87	6.87	0.45	1.02	±13.9%
3700	37.7	3.12	6.65	6.65	6.65	0.35	1.25	±13.9%
3900	37.5	3.32	6.60	6.60	6.60	0.40	1.25	±13.9%
4100	37.2	3.53	6.54	6.54	6.54	0.40	1.15	±13.9%
4200	37.1	3.63	6.45	6.45	6.45	0.35	1.35	±13.9%
4400	36.9	3.84	6.36	6.36	6.36	0.40	1.25	±13.9%
4600	36.7	4.04	6.26	6.26	6.26	0.40	1.30	±13.9%
4800	36.4	4.25	6.20	6.20	6.20	0.40	1.38	±13.9%
4950	36.3	4.40	5.95	5.95	5.95	0.40	1.40	±13.9%
5250	35.9	4.71	5.38	5.38	5.38	0.40	1.50	±13.9%
5600	35.5	5.07	4.75	4.75	4.75	0.50	1.30	±13.9%
5750	35.4	5.22	4.88	4.88	4.88	0.45	1.40	±13.9%

Calibration Parameter Determined in Head Tissue Simulating Media

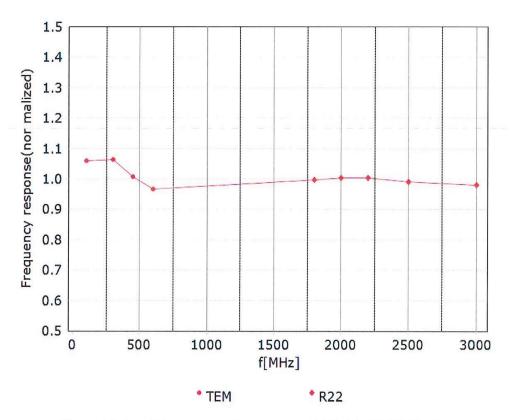
^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:23J02Z80102

CTATES


Page 4 of 9

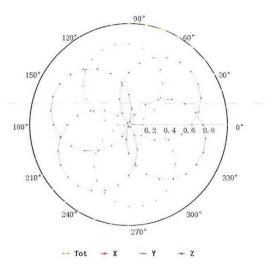
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

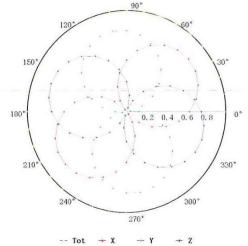
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

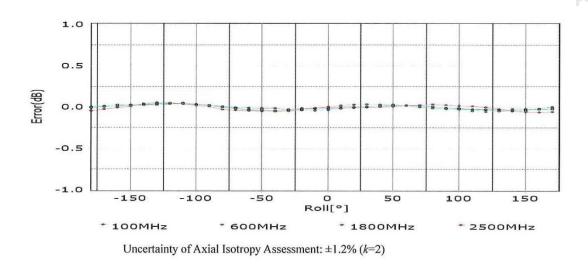
Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:23J02Z80102

Page 5 of 9

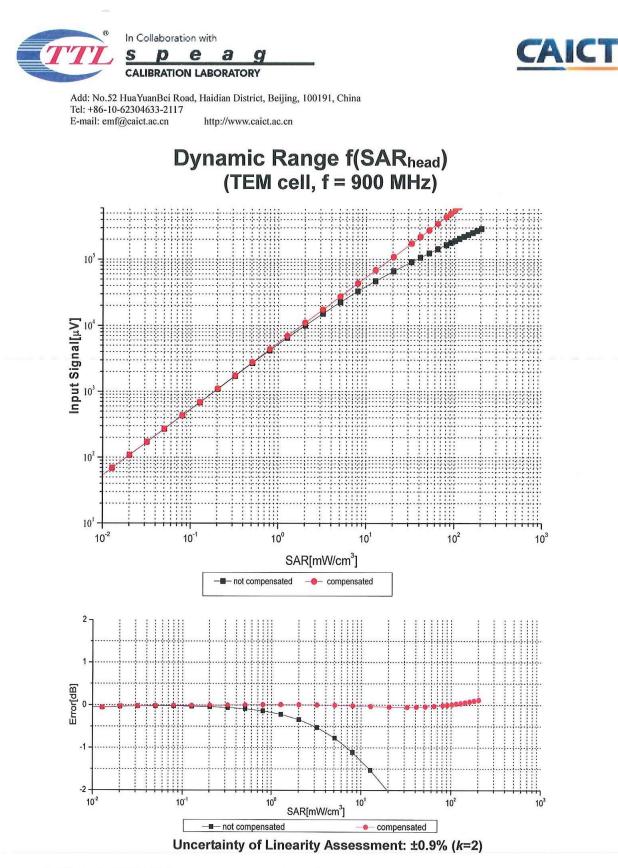



Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caiet.ac.en http://www.caiet.ac.en


Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

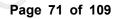
f=1800 MHz, R22



Certificate No:23J02Z80102

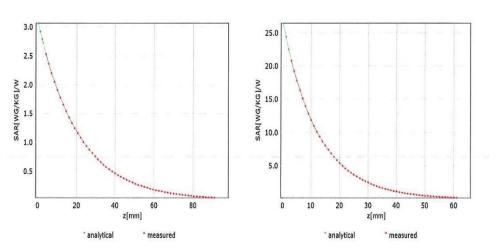
CTATES

Page 6 of 9

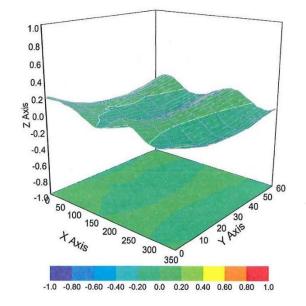


Certificate No:23J02Z80102

CTATES


In Collaboration with S P E A G CALIBRATION LABORATORY

> Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caiet.ac.cn http://www.caiet.ac.cn


Conversion Factor Assessment

f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:23J02Z80102

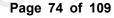
CTATES_

Page 8 of 9

In Collaboration with S P E A G CALIBRATION LABORATORY

> Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:3805


Other Probe Parameters		
Sensor Arrangement	Triangular	
Connector Angle (°)	127.3	
Mechanical Surface Detection Mode	enabled	
Optical Surface Detection Mode	disable	
Probe Overall Length	337mm	
Probe Body Diameter	10mm	
Tip Length	9mm	
Tip Diameter	2.5mm	
Probe Tip to Sensor X Calibration Point	1mm	
Probe Tip to Sensor Y Calibration Point	1mm	
Probe Tip to Sensor Z Calibration Point	1mm	
Recommended Measurement Distance from Surface	1.4mm	

Certificate No:23J02Z80102

CTATE^S

Page 9 of 9

CAICT
Contrast and Contrast of Contrast

CTATES

CTA TEST

CALIBRATION LABORATORY

e

In Collaboration with

p

S

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn <u>http://www.caict.ac.cn</u>

a

Glossary:

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: 23J02Z80217

Page 2 of 3

Page 75 of 109

In Collaboration with S e p а q CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn <u>http://www.caict.ac.cn</u>

DC Voltage Measurement

A/D - Converter Resolution nominal
High Range:1LSB = 6.1μV , full range = -100...+300 mV
Low Range:1LSB = 61nV , full range = -1.....+300 mVDASY measurement parameters:Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z	
High Range	402.650 ± 0.15% (k=2)	403.231 ± 0.15% (k=2)	402.697 ± 0.15% (k=2)	
Low Range	3.92127 ± 0.7% (k=2)	3.97784 ± 0.7% (k=2)	$3.93537 \pm 0.7\%$ (k=2)	

Connector Angle

Connector Angle to be used in DASY system	293° ± 1 °
,	

Certificate No: 23J02Z80217

Page 3 of 3