		E	. (.
	V1.0		Report No.: DACE240914014RL001
		RF TEST RI	EPORT DIE
	shenzhei	nshidishangyidian	zikejiyouxiangongsi
	Pro	duct Name: LED A	quarium Light
		Test Model(s).: I	Hertz RL
NE			
	Report Reference No.	: DACE240914014RL001	
	FCC ID	: 2BLUT-HERTZRL	
	Applicant's Name	: shenzhenshidishangyidia	nzikejiyouxiangongsi
	Address	403, A6 Building, Zhuao 2 518132 Guangdong CN	Zhizaoyuan, Guxingshequ, Xixiang,Shenzhen
		ono roz oddingdolig ort	
	Testing Laboratory	: Shenzhen DACE Testing	Technology Co., Ltd.
	Address		Building H, Hongfa Science & Technology Park, In Subdistrict, Bao'an District, Shenzhen,
	Test Specification Standard	: 47 CFR Part 15.247	
	Date of Receipt	: September 14, 2024	
.6	Date of Test	: September 14, 2024 to C	ctober 23, 2024
	Data of Issue	: October 23, 2024	
	Result	: Pass	
	Testing Technology Co., Ltd. T Co., Ltd. personnel only, and s report only apply to the tested	his document may be altered or hall be noted in the revision sec sample	t the written approval of Shenzhen DACE revised by Shenzhen DACE Testing Technology tion of the document. The test results in the
	102, Building H1, & 1/F., Building H, Hongfa So Web: http://www.dace-lab.com		iyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China nail: service@dace-lab.com Page 1 of 51
	· •		

Report No.: DACE240914014RL001

Ce.

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	DACE240914014RL001	October 23, 2024
	- XC	6	
		J.	

NOTE1:

)DE

DAG

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

NE

AC

)AC

Compiled by: Keren Huang

Keren Huang / Test Engineer October 23, 2024

Supervised by: Ben Tang

Ben Tang / Project Engineer October 23, 2024

Approved by:

Machael Mrs

Machael Mo / Manager October 23, 2024

 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 2 of 51

NE

e

CONTENTS

V1.0	V	Report No.: DACE240914014R
DAE	CONTENTS	
I TEST SUMMARY		
	RESULT	
	VICE (EUT) ST MODES	
	PPORT UNITS	
2.5 EQUIPMENTS USED D	DURING THE TEST	
	MEASUREMENT UNCERTAINTY	
	ESTING LABORATORY	
BEVALUATION RESULTS (E	VALUATION)	
	ENT	
3.1.1 Conclusion:		
4 RADIO SPECTRUM MATTE	ER TEST RESULTS (RF)	
	ON AT AC POWER LINE	
4.1.1 E.U.T. Oper	ration:	<u></u>
4.1.2 Test Setup I	Diagram:	
4.1.3 Test Data:		
4.2 OCCUPIED BANDWIDT	тн	
	ration:	
	Diagram:	
	ED OUTPUT POWER	
•	ration:	
	Diagram:	
	ENSITY	
	Diagram:	
	ESTRICTED FREQUENCY BANDS	
	ration:	
	Diagram:	
4.6 BAND EDGE EMISSION	NS (RADIATED)	
	ation:	
	Diagram:	
4.6.3 Test Data:		
	ENCY BANDS (BELOW 1GHZ)	
	ration:	
4.7.2 Test Data:		
	ENCY BANDS (ABOVE 1GHZ)	
· · · ·	ration:	
4.8.2 Test Data:		

6 PHOTOS OI APPENDIX	P PHOTOS F THE EUT			
2. 99%	BANDWIDTH OCCUPIED BANDWIDTH			3
4. PEAK	Y CYCLE COUTPUT POWER ER SPECTRAL DENSITY			4
6. BAND	DEDGE			4
		V		
			G	

.

TEST SUMMARY 1

1.1 Test Standards

DAG

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

.2 Summary of rest Result					
Item	Standard	Method	Requirement	Result	
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass	
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass	
Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(2)	Pass	
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(3)	Pass	
Power Spectral Density	47 CFR Part 15.247	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(e)	Pass	
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass	
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass	
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass	
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass	

1.2 Summary of Test Result

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 5 of 51

		200 200	
	V1.0	Report No.: DACE240914014R	L001
2	GENERAL INF		
2.1	Client Information		
	Applicant's Name	enzhenshidishangyidianzikejiyouxiangongsi	
	Address	03, A6 Building, Zhuao Zhizaoyuan, Guxingshequ, Xixiang,Shenzhen 8132 Guangdong CN	
	Manufacturer	enzhenshidishangyidianzikejiyouxiangongsi	
	Address	93, A6 Building, Zhuao Zhizaoyuan, Guxingshequ, Xixiang,Shenzhen 8132 Guangdong CN	
2.2	Description of Dev	EUT)	
	Product Name: 🛛 💙	Aquarium Light	
	Model/Type reference:	z RL	
	Series Model:		
	Trade Mark:	Bloom	

(Remark:The Antenna Gain is supplied by the customer.DACE is not responsible for This data and the related calculations associated with it)

AC120V60Hz

PCB Antenna 2.21dBi

40 GFSK

V1.0

V1.0

2402MHz to 2480MHz

Operation Frequency each of channel						
Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
2402 MHz	11	2422 MHz 🔹	21	2442 MHz	31	2462 MHz
2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz
	Frequency 2402 MHz 2404 MHz 2406 MHz 2408 MHz 2410 MHz 2412 MHz 2414 MHz 2416 MHz 2418 MHz	FrequencyChannel2402 MHz112404 MHz122406 MHz132408 MHz142410 MHz152412 MHz162414 MHz172416 MHz182418 MHz19	FrequencyChannelFrequency2402 MHz112422 MHz2404 MHz122424 MHz2406 MHz132426 MHz2408 MHz142428 MHz2410 MHz152430 MHz2412 MHz162432 MHz2414 MHz172434 MHz2416 MHz182436 MHz2418 MHz192438 MHz	FrequencyChannelFrequencyChannel2402 MHz112422 MHz212404 MHz122424 MHz222406 MHz132426 MHz232408 MHz142428 MHz242410 MHz152430 MHz252412 MHz162432 MHz262414 MHz172434 MHz272416 MHz182436 MHz282418 MHz192438 MHz29	FrequencyChannelFrequencyChannelFrequency2402 MHz112422 MHz212442 MHz2404 MHz122424 MHz222444 MHz2406 MHz132426 MHz232446 MHz2408 MHz142428 MHz242448 MHz2410 MHz152430 MHz252450 MHz2412 MHz162432 MHz262452 MHz2414 MHz172434 MHz272454 MHz2416 MHz182436 MHz282456 MHz2418 MHz192438 MHz292458 MHz	FrequencyChannelFrequencyChannelFrequencyChannel2402 MHz112422 MHz212442 MHz312404 MHz122424 MHz222444 MHz322406 MHz132426 MHz232446 MHz332408 MHz142428 MHz242448 MHz342410 MHz152430 MHz252450 MHz352412 MHz162432 MHz262452 MHz362414 MHz172434 MHz272454 MHz372416 MHz182436 MHz282456 MHz382418 MHz192438 MHz292458 MHz39

Note:

Power Supply:

Operation Frequency:

Number of Channels:

Modulation Type: Antenna Type:

Antenna Gain: Hardware Version:

Software Version:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 6

Page 6 of 51

DAG

)DE

Se

-

Test channel	Frequency (MHz)
Test channel	BLE
Lowest channel	2402MHz
Middle channel	2440MHz
Highest channel	2480MHz

Description of Test Modes 2.3

DΔC

No	Title	Description
TM1	Lowest channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.
TM2	Middle channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.
ТМ3	Highest channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.

)De

)DE

)De

DAG

Description of Support Units 2.4

DAG

)De

DAG

-

)DE

The EUT was tested as an independent device.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

)DE

2.5 Equipments Used During The Test

DΔG

	•				
Conducted Emission a	at AC power line	200			5
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
loop antenna	EVERFINE	LLA-2	80900L-C	2024-02-19	2025-02-18
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	1	2024-03-25	2025-03-24
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	/	16
Cable	SCHWARZ BECK	1	/	2024-03-20	2025-03-19
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Attenuation	561-G071	2023-12-12	2024-12-11
50ΩCoaxial Switch	Anritsu	MP59B	M20531	/	/
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2024-06-12	2025-06-11
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2024-12-11
L.I.S.N	SCHWARZ BECK	NSLK 8126	05055	2024-06-14	2025-06-13
Pulse Limiter	CYBERTEK	EM5010A	/	2023-09-27	2024-09-26
Pulse Limiter	CYBERTEK	EM5010A	/	2024-09-27	2025-09-26
EMI test software	EZ -EMC	EZ	V1.1.42	/	1
					6

6

Occupied Bandwidth Maximum Conducted Output Power **Power Spectral Density** Emissions in non-restricted frequency bands

-							
Equipment	Manufacturer	Model No 🐁	Inventory No	Cal Date	Cal Due Date		
RF Test Software	TACHOY	RTS-01	V1.0.0	/	1		
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10		
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	/	1		
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11		
Signal Generator	Keysight	N5181A	MY48180415	2023-11-09	2024-11-08		
Signal Generator	Keysight	N5182A	MY50143455	2023-11-09	2024-11-08		
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-12	2024-12-11		

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Report No.: DACE240914014RL001

1

Band edge emissions (Radiated)						
Emissions in frequence	. ,	GHz)			e	
Emissions in frequence	•					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
EMI Test software	Farad	EZ -EMC	V1.1.42	/	/	
Positioning Controller		MF-7802		1	1	
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04	
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04	
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13	
Cable(LF)#2	Schwarzbeck	/	/	2024-02-19	2025-02-18	
Cable(LF)#1	Schwarzbeck	/	1	2024-02-19	2025-02-18	
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-03-20	2025-03-19	
Cable(HF)#1	Schwarzbeck	SYV-50-3-1		2024-03-20	2025-03-19	
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11	
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11	
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11	
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2024-06-12	2025-06-11	
Test Receiver	R&S	ESCI 3	1166.5950K03 -101431-Jq	2024-06-13	2025-06-12	
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12	
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023-05-21	2025-05-20	

DAE

DE

DAE

DΔC

2

3

DAG

V1.0

DAG

)DE

5

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

Page 9 of 51

)DE

DAC

Statement Of The Measurement Uncertainty 2.6

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
Occupied Bandwidth	±3.63%
RF conducted power	±0.733dB
RF power density	±0.234%
Conducted Spurious emissions	±1.98dB
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB
Noto: (1) This upportainty represents on expanded u	incortainty expressed at approximately the OE%

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
Identification of the Respons	ible Testing Location
Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
FCC Registration Number:	0032847402
Designation Number:	CN1342
Test Firm Registration Number:	778666
A2LA Certificate Number:	6270.01

2.8 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

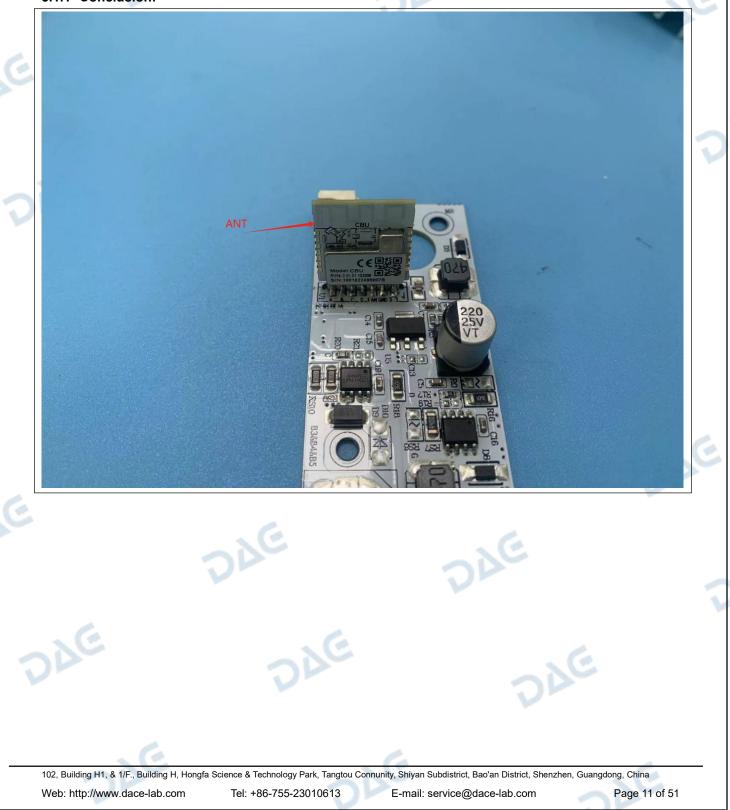
(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

3 Evaluation Results (Evaluation)


3.1 Antenna requirement

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

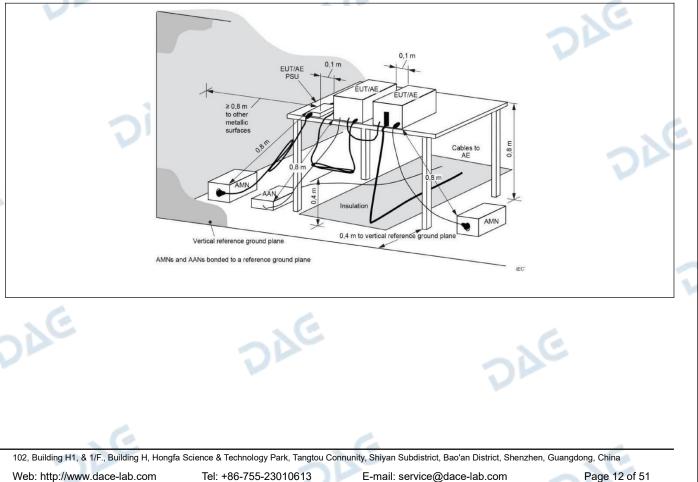
Test Requirement:

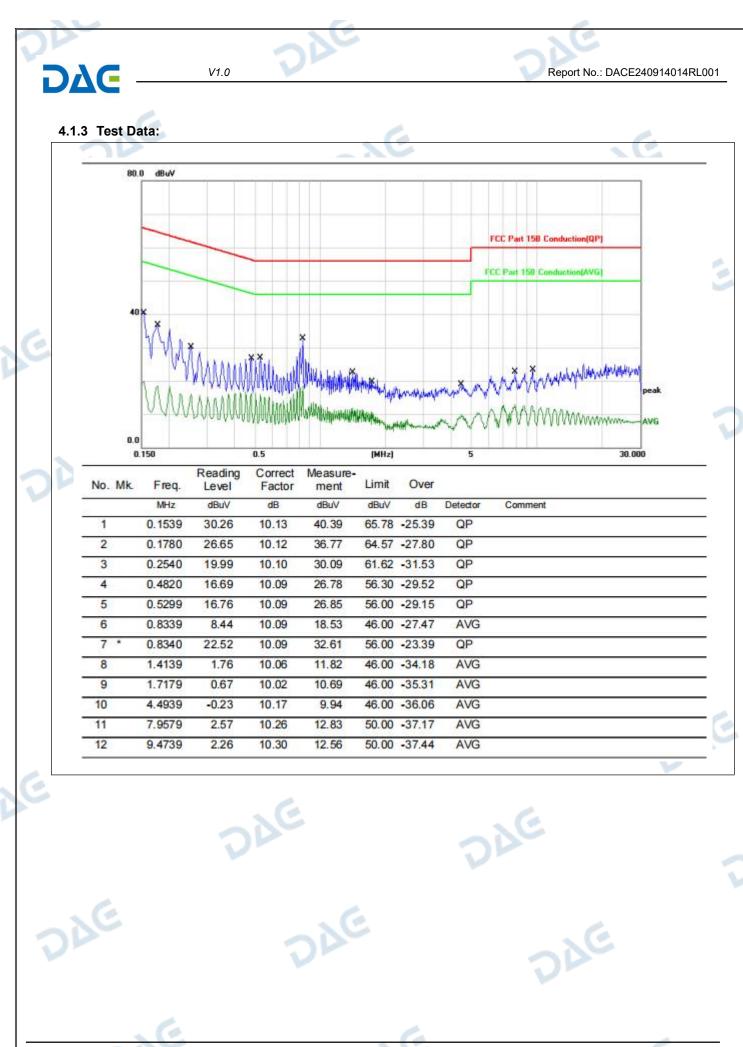
DΔG

Report No.: DACE240914014RL001

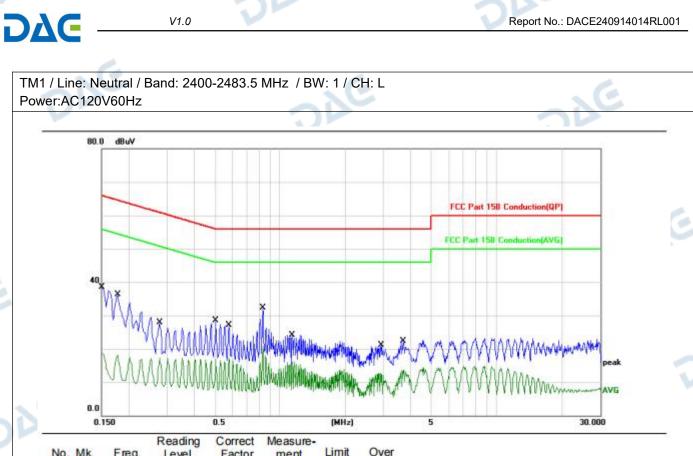
4 Radio Spectrum Matter Test Results (RF)

4.1 Conducted Emission at AC power line


<i>v</i>							
Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).						
Test Limit:	Frequency of emission (MHz) Conducted limit (dBµV)						
	Quasi-peak Average 🕥						
	0.15-0.5 66 to 56* 56 to 46*						
	0.5-5 56 46						
	5-30 60 50						
	*Decreases with the logarithm of the frequency.						
Test Method:	ANSI C63.10-2013 section 6.2						
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices						


4.1.1 E.U.T. Operation:

DΔC


Operating Environment:								
Temperature:	23.8 °C		Humidity:	47 %	Atmospheric Pressure:	102 kPa		
Pretest mode: T					V			
Final test mode:		TM1						

4.1.2 Test Setup Diagram:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

No. M	k	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0	.1499	28.42	10.13	38.55	66.00	-27.45	QP		
2	0	.1779	7.97	10.12	18.09	54.58	-36.49	AVG		
3	0	.2779	17.73	10.10	27.83	60.88	-33.05	QP		
4	0	.2779	7.11	10.10	17.21	50.88	-33.67	AVG		
5	0.	.5060	18.50	10.09	28.59	56.00	-27.41	QP		
6	0	.5819	6.92	10.09	17.01	46.00	-28.99	AVG		
7 *	0	.8339	22.11	10.09	32.20	56.00	-23.80	QP		
8	0	.8339	10.86	10.09	20.95	46.00	-25.05	AVG		
9	1	.1379	14.00	10.10	24.10	56.00	-31.90	QP		
10	1	.1379	6.09	10.10	16.19	46.00	-29.81	AVG		
11	2	.9300	11.11	10.06	21.17	56.00	-34.83	QP		
12	3	7379	3.50	10.12	13.62	46.00	-32.38	AVG		

)AC

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 E-mail: service@dace-lab.com Web: http://www.dace-lab.com

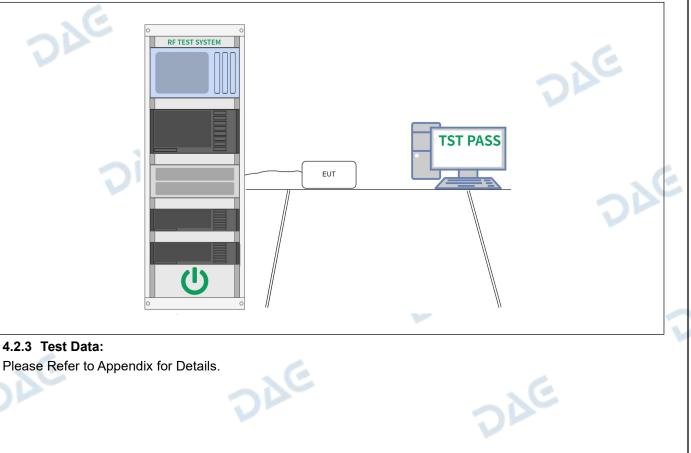
NE

1

)DE

Report No.: DACE240914014RL001

4.2 Occupied Bandwidth


DΔG

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.2.1 E.U.T. Operation:

Operating Environment:							
Temperature:	23.8 °C	_	Humidity:	47 %	Atmospheric Pressure:	102 kPa	
Pretest mode:		TM1,	TM2, TM3			6	
Final test mode: TM1, TM2, TM3			TM2, TM3				
4.0.0 To at 0.1							

4.2.2 Test Setup Diagram:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 15 of 51

DAG

Report No.: DACE240914014RL001

4.3 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power Note:
1e	Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at Core 0, Core 1,, Core i were first measured separately, as shown in the section above(this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm. Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total
DAC	the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used. For correlated unequal antenna gain Directional gain = 10*log[(10G1/20 + 10G2/20 + + 10GN/20)2 / NANT] dBi For completely uncorrelated unequal antenna gain Directional gain = 10*log[(10G1/10 + 10G2/10 + + 10GN/10)/ NANT] dBi Sample Multiple antennas Calculation: Core 0 + Core 1 +Core i. = MIMO/CDD (i is the number of antennas) (#VALUE! mW + mW) = #VALUE! mW = dBm Sample e.i.r.p. Calculation: e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

6

4.3.1 E.U.T. Operation:

Operating Environment:								
Temperature:	23.8 °C		Humidity:	47 %	1	Atmospheric Pressure:	102 kPa	~ ~
Pretest mode:		TM1,	TM2, TM3				•	NC
Final test mode	TM1,	TM2, TM3						

e

-

)De

,AC

4.3.2 Test Setup Diagram:

NE

 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 16 of 51

Se

	port No.: DACE2409140	014RL001
A ST Details	DAE	
A.3. Test Data Please Refer to Appendix for Details.	2	De
	J E	
DIE DIE D		

Report No.: DACE240914014RL001

4.4 Power Spectral Density

DΔC

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission
4.4.1 E.U.T. Operation:	LC.

6

4.4.1 E.U.T. Operation:

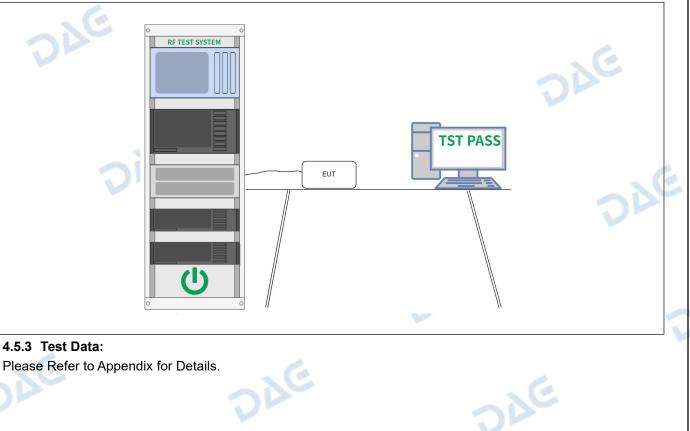
Operating Environment:								
Temperature:	23.8 °C		Humidity:	47 %	Atmospheric Pressure:	102 kPa		
Pretest mode:	TM1,	TM2, TM3						
Final test mode: TM			TM2, TM3					

4.4.2 Test Setup Diagram:

4.4.2 Test Setup Diagr			
6	RF TEST SYSTEM		
DAC		TST PASS	DAE
Di			DAG
4.4.3 Test Data: Please Refer to Append	x for Details.	DAC	
102 Building H1 & 1/E Building H I	Hongfa Science & Technology Park, Tangtou Connunity, Shiya	n Subdistrict, Bao'an District, Shenzhen, G	uanodong China
Web: http://www.dace-lab.com		l: service@dace-lab.com	Page 18 of 51

Report No.: DACE240914014RL001

4.5 Emissions in non-restricted frequency bands


Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

4.5.1 E.U.T. Operation:

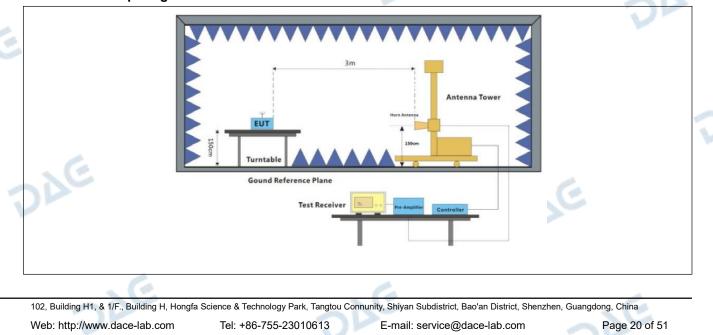
DAG

Operating Envir	onment:					
Temperature:	23.8 °C		Humidity:	47 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1,	TM2, TM3			6
Final test mode: TM1, TM2, TM3						
1 5 0 To at 0 at						

4.5.2 Test Setup Diagram:

Report No.: DACE240914014RL001

4.6 Band edge emissions (Radiated)


DγG

	nissions (Radiated)		6
Test Requirement:	restricted bands, as def	7(d), In addition, radiated emission ined in § 15.205(a), must also c d in § 15.209(a)(see § 15.205(c)	omply with the radiated
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
20	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
1e	radiators operating und 54-72 MHz, 76-88 MHz these frequency bands and 15.241. In the emission table at The emission limits sho employing a CISPR qua 110–490 kHz and above	a paragraph (g), fundamental err er this section shall not be locate , 174-216 MHz or 470-806 MHz is permitted under other section pove, the tighter limit applies at t wn in the above table are based asi-peak detector except for the e 1000 MHz. Radiated emission nents employing an average def	ed in the frequency bands . However, operation within s of this part, e.g., §§ 15.231 he band edges. I on measurements frequency bands 9–90 kHz, limits in these three bands
Test Method:	ANSI C63.10-2013 sect KDB 558074 D01 15.24	ion 6.10 7 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sect	tion 6.10.5.2	.C.
4.6.1 E.U.T. Operation	n:		200

4.6.1 E.U.T. Operation:

Operating Envir	onment:							
Temperature:	23.8 °C		Humidity:	47 %	Atmospheri	c Pressure:	102 kPa	
Pretest mode:		TM1,	TM2, TM3		6			
Final test mode:		TM1,	TM2, TM3		200			-

4.6.2 Test Setup Diagram:

DΔG V1.0 Report No.: DACE240914014RL001 4.6.3 Test Data: TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L 110.0 dBuV/m 100 90 80 FCC Part 15C (F 70 60 FCC Part 15C (AV) 50 40 30 AVG 20 10 0.0 2310.000 2320.000 2330.000 2340.000 2350.000 2370.000 2380.000 2390.000 2400.000 2410.000 (MHz) Factor Frequency Reading Level Limit Margin Height Azimuth Detector No. P/F Remark (deg.) (cm) (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 2310.000 34.99 P 1 -3.63 31.36 74.00 -42.64 peak 150 P 2310.000 23.84 -3.63 -33.79 2 20.21 54.00 AVG 150 37.11 P 3 2390.000 -3.42 33.69 74.00 -40.31 150 peak P 4 * 2390.000 26.14 -3.42 22.72 54.00 -31.28 AVG 150

DAG

)De

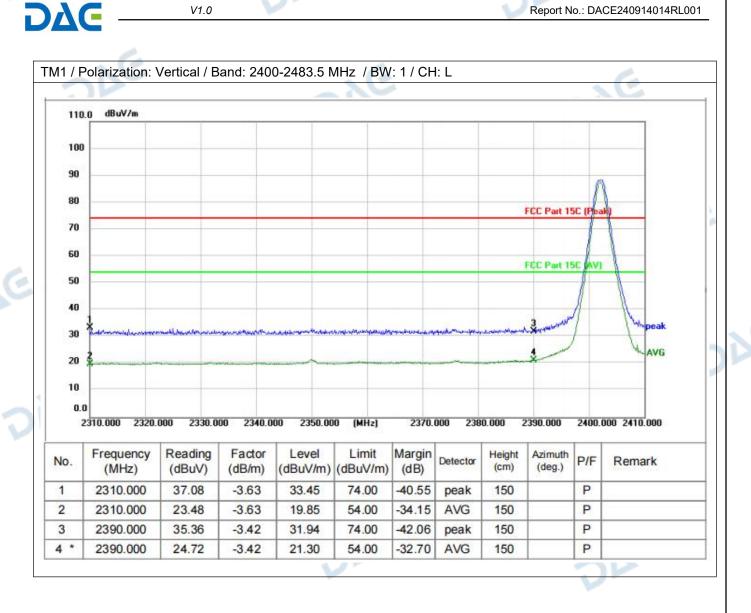
DAG

1

٧

DAE

DAG


)DE

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)DE

NE

Report No.: DACE240914014RL001

DAE

DAG

4

DAG

DAG

2AC

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

Page 22 of 51

)De

DΔC V1.0 Report No.: DACE240914014RL001 TM3 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H dBuV/m 110.0 100 90 80 FCC Part 15C (Peak) 70 60 FCC Part 15C (AV) 50

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	2483.500	54.22	-3.17	51.05	74.00	-22.95	peak	150		P	
2 *	2483.500	49.65	-3.17	46.48	54.00	-7.52	AVG	150		P	
3	2500.000	36.66	-3.13	33.53	74.00	-40.47	peak	150		P	
4	2500.000	24.36	-3.13	21.23	54.00	-32.77	AVG	150	1	P	

(MHz)

DAG

2480.000

2477.500

2482.500

DAG

2485.000

40 30

20 10 0.0 2475.000

\$

1

DAG

DAG

2490.000

2492.500

)AC

DAG

2495.000

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

AVG

DE

2497.500 2500.000

DΔG V1.0 Report No.: DACE240914014RL001 TM3 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H 110.0 dBuV/m 100 90 80 FCC Part 15C (Peak) 70 60 FCC Part 15C (AV) 50 40 30 20 AVG 10

Frequency Reading Factor Level Limit Margin Height Azimuth Detector P/F No. Remark (MHz) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB)(cm) (deg.) P 2483.500 50.40 -3.17 47.23 74.00 -26.77 150 1 peak 46.20 2 * 2483.500 -3.17 43.03 54.00 -10.97 AVG Ρ 150 3 2500.000 34.86 -3.13 31.73 74.00 -42.27 peak 150 P 4 2500.000 23.90 -3.13 20.77 54.00 -33.23 AVG 150 P

(MHz)

2485.000

DAE

DAG

2475.000 2477.500 2480.000 2482.500

0.0

٧

4

DAG

DAE

2490.000

2492.500

24C

DAG

2495.000

2497.500 2500.000

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

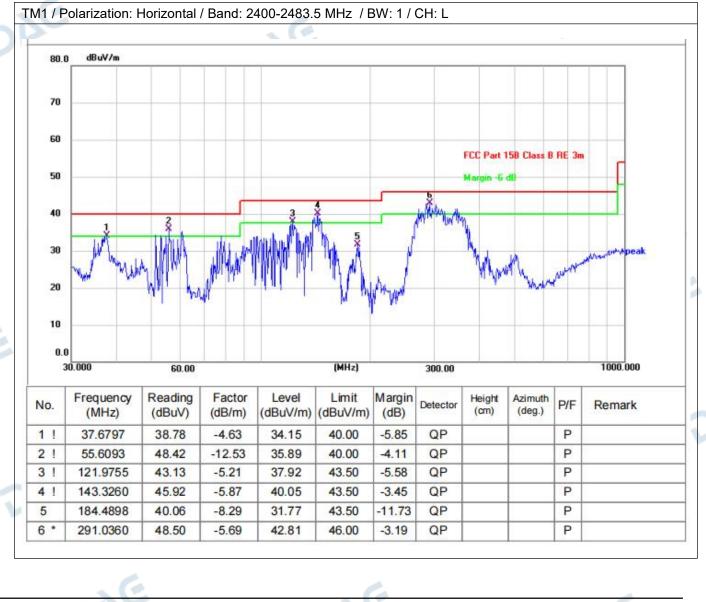
DAG

)De

DΔC

4.7 Emissions in frequency bands (below 1GHz)

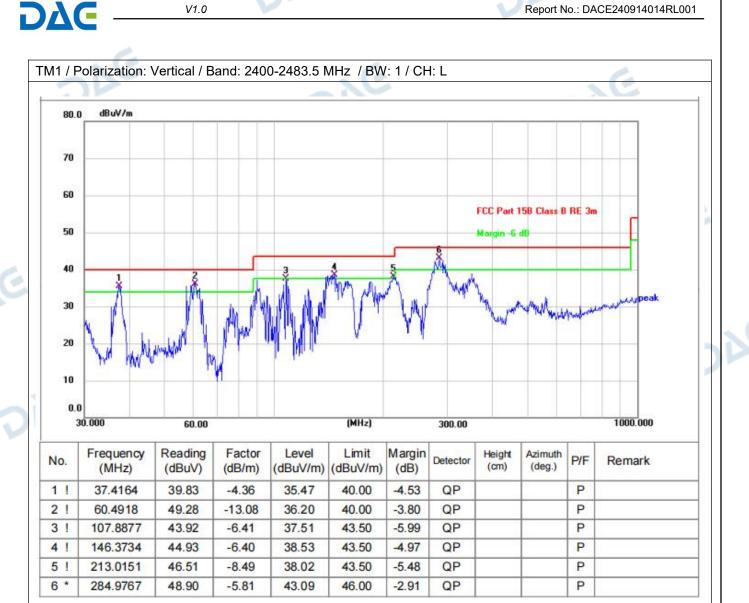
Test Requirement:	restricted bands, as defi	(d), In addition, radiated emissi ned in § 15.205(a), must also c I in § 15.209(a)(see § 15.205(c)	omply with the radiated				
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
Test Method:	and 15.241. In the emission table ab The emission limits show employing a CISPR qua 110–490 kHz and above are based on measurem ANSI C63.10-2013 sect	 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. ANSI C63.10-2013 section 6.6.4 					
20	KDB 558074 D01 15.24	7 Meas Guidance v05r02					
Procedure:	above the ground at a 3 360 degrees to determine b. For above 1GHz, the above the ground at a 3 degrees to determine the c. The EUT was set 3 or which was mounted on a d. The antenna height is determine the maximum polarizations of the anter e. For each suspected of the antenna was tuned to below 30MHz, the anter was turned from 0 degree f. The test-receiver syste Bandwidth with Maximu g. If the emission level of specified, then testing cor reported. Otherwise the tested one by one using reported in a data sheet h. Test the EUT in the lo i. The radiation measure Transmitting mode, and	of the EUT in peak mode was 10 ould be stopped and the peak v emissions that did not have 10 peak, quasi-peak or average n	amber. The table was rotate diation. a rotating table 1.5 meters The table was rotated 360 on. ference-receiving antenna, enna tower. meters above the ground to h horizontal and vertical rement. d to its worst case and then ters (for the test frequency of er) and the rotatable table naximum reading. ction and Specified OdB lower than the limit ralues of the EUT would be dB margin would be re- nethod as specified and the mel, the Highest channel. axis positioning for nich it is the worst case.				
.C.	Remark: 1) For emission below 1GHz, through pre-scan found the worst case is the lowest						


102, Building H ig H, Hongfa Science & Technology ark, Tangtou Connunity, Shiyan Sul District, Shen: ١g ng, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG -	V1.0	Report No.: DACE240914014RL0
240	2) The field strength is ca Preamplifier. The basic e Final Test Level =Receiv Preamplifier Factor 3) Scan from 9kHz to 25 was very low. The points found when testing, so o spurious emissions from	case is recorded in the report. alculated by adding the Antenna Factor, Cable Factor & equation with a sample calculation is as follows: er Reading + Antenna Factor + Cable Factor "C GHz, the disturbance above 12.75GHz and below 30MHz marked on above plots are the highest emissions could be nly above points had been displayed. The amplitude of the radiator which are attenuated more than 20dB below ported. Fundamental frequency is blocked by filter, and only wn

4.7.1 E.U.T. Operation:

Operating Environment:							
Temperature:	23.8 °C	~	Humidity:	47 %	Atmospheric Pressure:	102 kPa	
Pretest mode:		TM1			. 6		
Final test mode: TM1							


4.7.2 Test Data:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com

Report No.: DACE240914014RL001

)DE

)AC

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)De

DAG

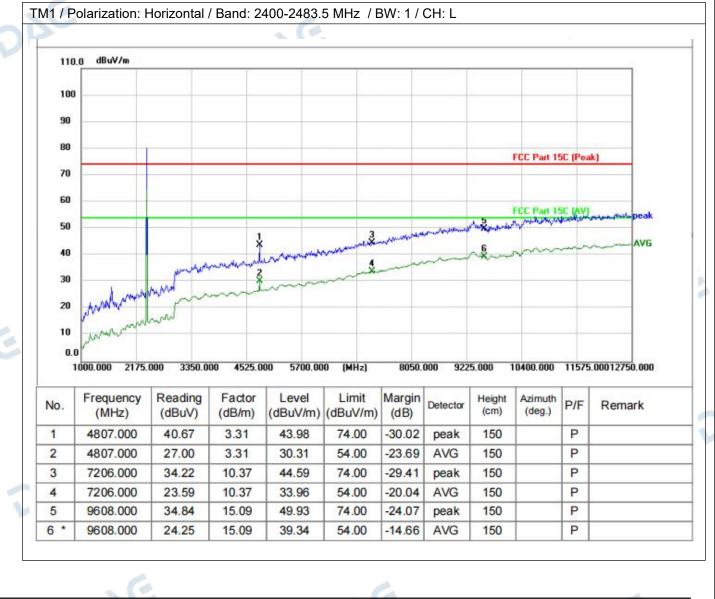
Page 27 of 51

DΔC

Report No.: DACE240914014RL001

4.8 Emissions in frequency bands (above 1GHz)

Test Requirement:		ssions which fall in the restricted mply with the radiated emission (c)).`					
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
Test Method:	and 15.241. In the emission table ab The emission limits show employing a CISPR qua 110–490 kHz and above are based on measurem ANSI C63.10-2013 section	 these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. ANSI C63.10-2013 section 6.6.4 					
22	KDB 558074 D01 15.247 Meas Guidance v05r02						
Procedure:	above the ground at a 3 360 degrees to determine b. For above 1GHz, the above the ground at a 3 degrees to determine the c. The EUT was set 3 or which was mounted on the d. The antenna height is determine the maximum polarizations of the anter e. For each suspected et the antenna was tuned to below 30MHz, the anter was turned from 0 degree f. The test-receiver syste Bandwidth with Maximum g. If the emission level of specified, then testing of reported. Otherwise the tested one by one using reported in a data sheet h. Test the EUT in the lo i. The radiation measure Transmitting mode, and j. Repeat above procedu	of the EUT in peak mode was 10 bould be stopped and the peak va emissions that did not have 10 peak, quasi-peak or average m	mber. The table was rotate diation. rotating table 1.5 meters The table was rotated 360 on. erence-receiving antenna, nna tower. neters above the ground to n horizontal and vertical rement. I to its worst case and then ers (for the test frequency er) and the rotatable table aximum reading. ction and Specified dB lower than the limit alues of the EUT would be dB margin would be re- nethod as specified and the rel, the Highest channel. axis positioning for ich it is the worst case.				
	Remark: 1) For emission below 1GHz, through pre-scan found the worst case is the lowest						

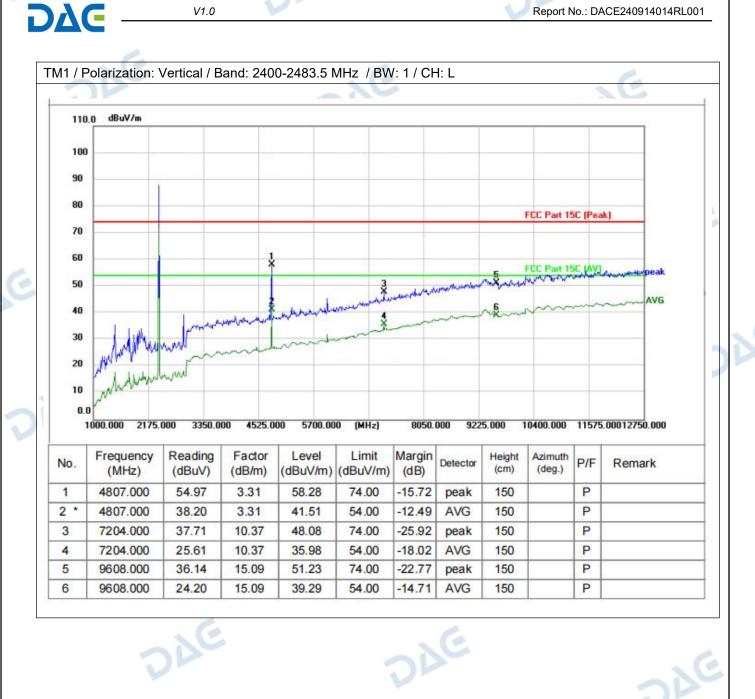

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

	V1.0	Report No.: DACE240914014RL00
D76 —		
DAG	Preamplifier. The basic equation	s recorded in the report. Ted by adding the Antenna Factor, Cable Factor & on with a sample calculation is as follows: ading + Antenna Factor + Cable Factor ¨C
6	3) Scan from 9kHz to 25GHz, t was very low. The points mark found when testing, so only ab	the disturbance above 12.75GHz and below 30MHz ed on above plots are the highest emissions could be ove points had been displayed. The amplitude of adiator which are attenuated more than 20dB below
DE		Fundamental frequency is blocked by filter, and only

4.8.1 E.U.T. Operation:

Operating Environment:								
Temperature:	23.8 °C		Humidity:	47 %	Atmospheric Pressure:	102 kPa		
Pretest mode: TM1, TM2, TM3								
Final test mode: T			TM2, TM3	M3				

4.8.2 Test Data:



102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com

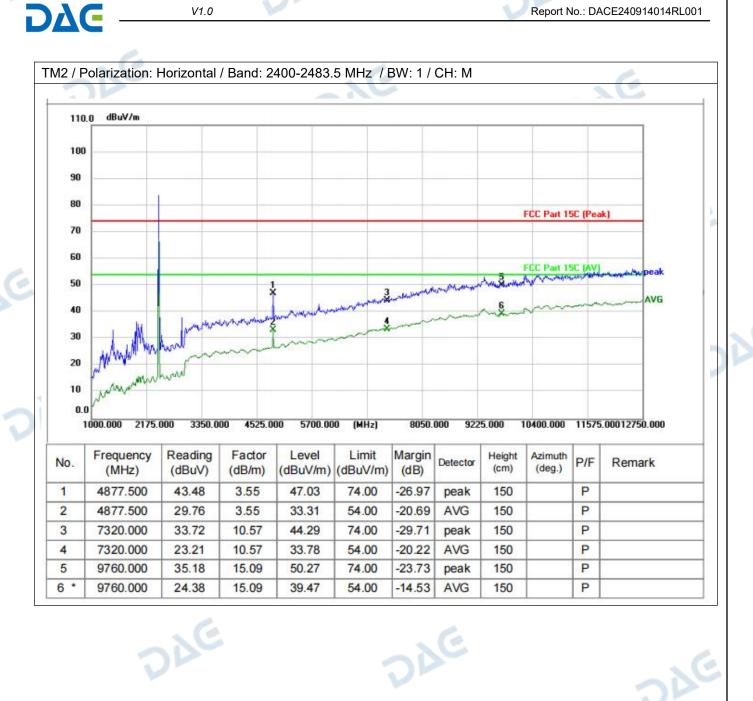
Page 29 of 51

Report No.: DACE240914014RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)ÀC

DAG


DAG

Page 30 of 51

)AC

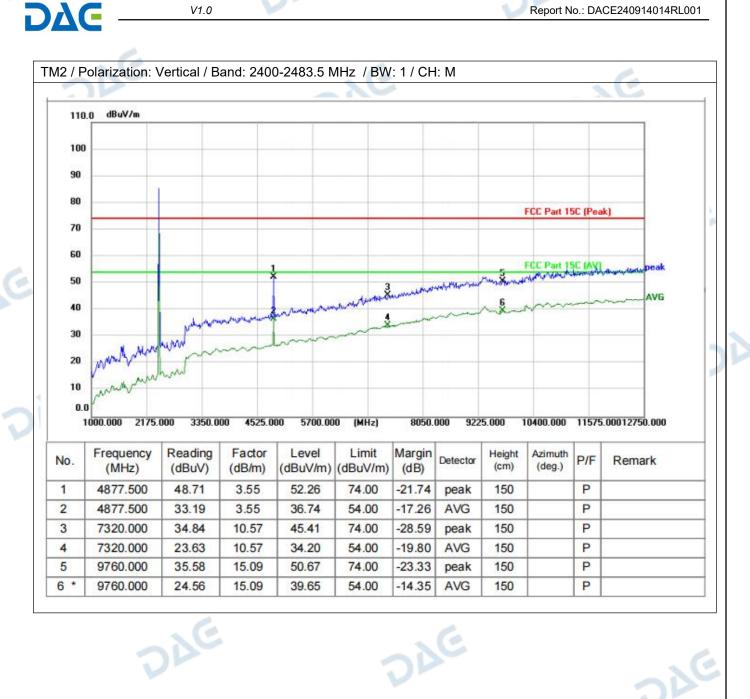
DAG

Report No.: DACE240914014RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)AC


DAG

Page 31 of 51

)AC

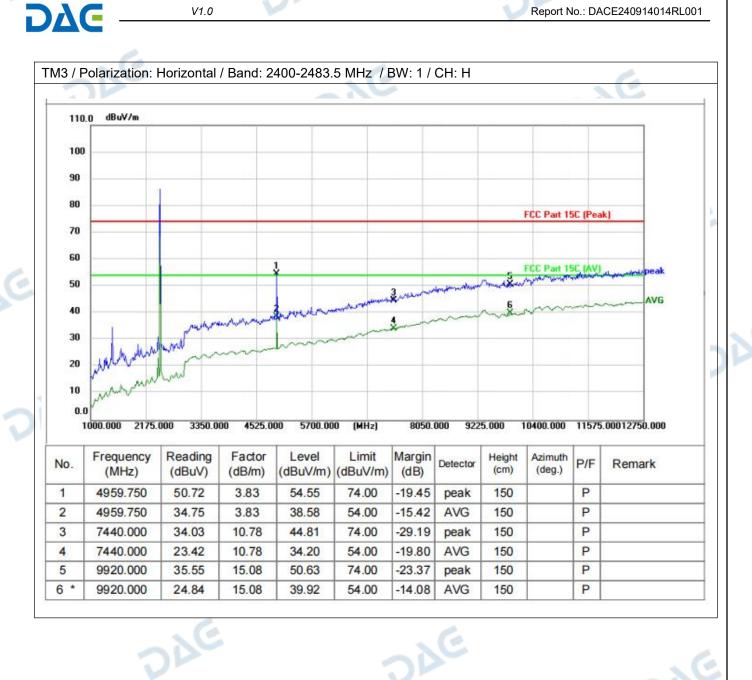
DAG

Report No.: DACE240914014RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

DAG


DAG

Page 32 of 51

)AC

DAG

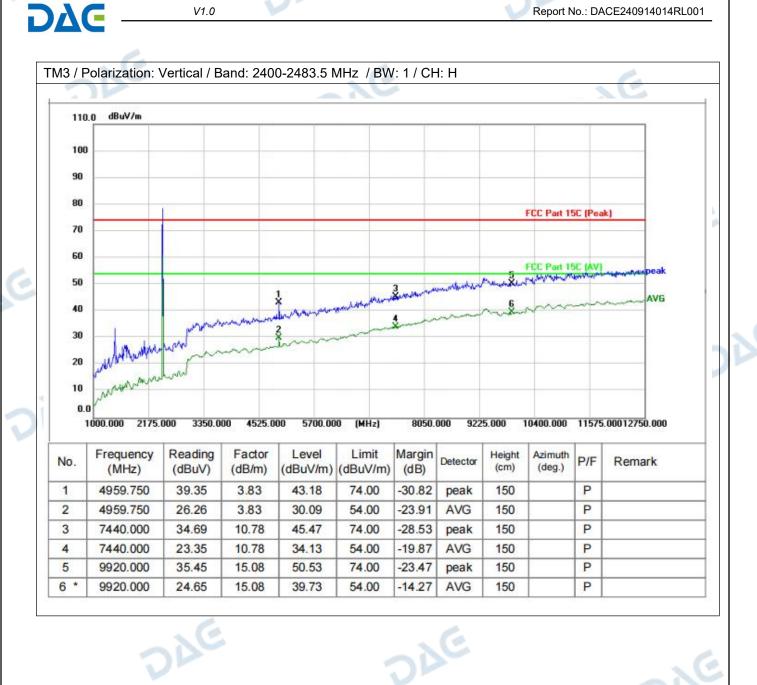
Report No.: DACE240914014RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

DAG

DAG


Page 33 of 51

)AC

DAG

NE

Report No.: DACE240914014RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)ÀC

)AC

DAG

Page 34 of 51

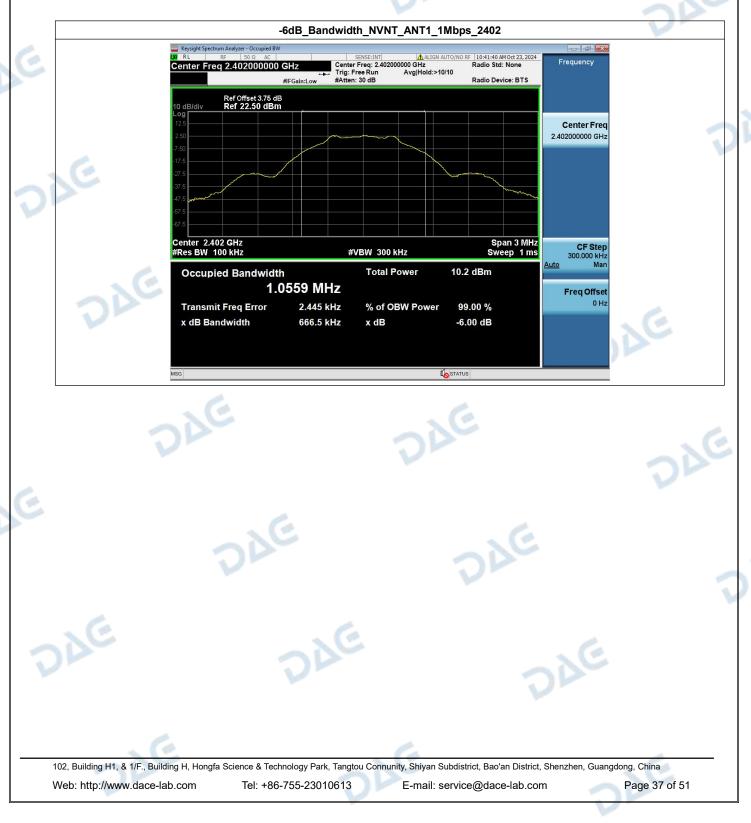
)AC

DAG

NE

Report No.: DACE240914014RL001

-


HT240914007--Hertz RL--BLE--FCC FCC_BLE (Part15.247) Test Data

1. -6dB Bandwidth

V1.0

DΔC

Condition	Antenna	Rate	Frequency (MHz)	-6dB BW(kHz)	limit(kHz)	Result
NVNT	ANT1	1Mbps	2402.00	666.52	500	Pass
NVNT ///	ANT1	1Mbps	2440.00	844.79	500	Pass
NVNT 🔰	ANT1	1Mbps	2480.00	665.77	500	Pass

DAC V1.0 Report No.: DACE240914014RL001 -6dB_Bandwidth_NVNT_ANT1_1Mbps_2440 6 Frequency Center Freq 2.440000000 GHz #IFGain:Low Ref Offset 3.72 dB Ref 18.44 dBm **Center Freq** 2.440000000 GHz Span 3 MHz Sweep 1 ms Center 2.44 GHz #Res BW 100 kHz CF Step 300.000 kHz #VBW 300 kHz Ma Auto Occupied Bandwidth Total Power 11.1 dBm 1.3984 MHz Freq Offset 0 Hz 56.514 kHz % of OBW Power 99.00 % Transmit Freq Error x dB Bandwidth 844.8 kHz x dB -6.00 dB . **STATUS** -6dB_Bandwidth_NVNT_ANT1_1Mbps_2480 Keysight Spectrum Analyzer - Occupied BW - - - - X i SENSE:INTI (▲ ALIGN AUTO/NO RF Center Freq: 2.480000000 GHz - Trig: Free Run Avg|Hold: 10/10 #Atten: 30 dB 10:32:59 AM Oct 23, 2024 Radio Std: None Frequency Center Freq 2.480000000 GHz ø #IFGain:Low Radio Device: BTS Ref Offset 3.85 dB Ref 22.70 dBm **Center Freq** 2.48000000 GHz Center 2.48 GHz #Res BW 100 kHz Span 3 MHz Sweep 1 ms CF Step 300.000 kHz #VBW 300 kHz Auto Occupied Bandwidth Total Power 10.6 dBm 1.8934 MHz Freq Offset 151.84 kHz 0 Hz Transmit Freq Error % of OBW Power 99.00 % -6.00 dB x dB Bandwidth 665.8 kHz x dB **STATUS** DAG NE DAG 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

Tel: +86-755-23010613

Page 38 of 51

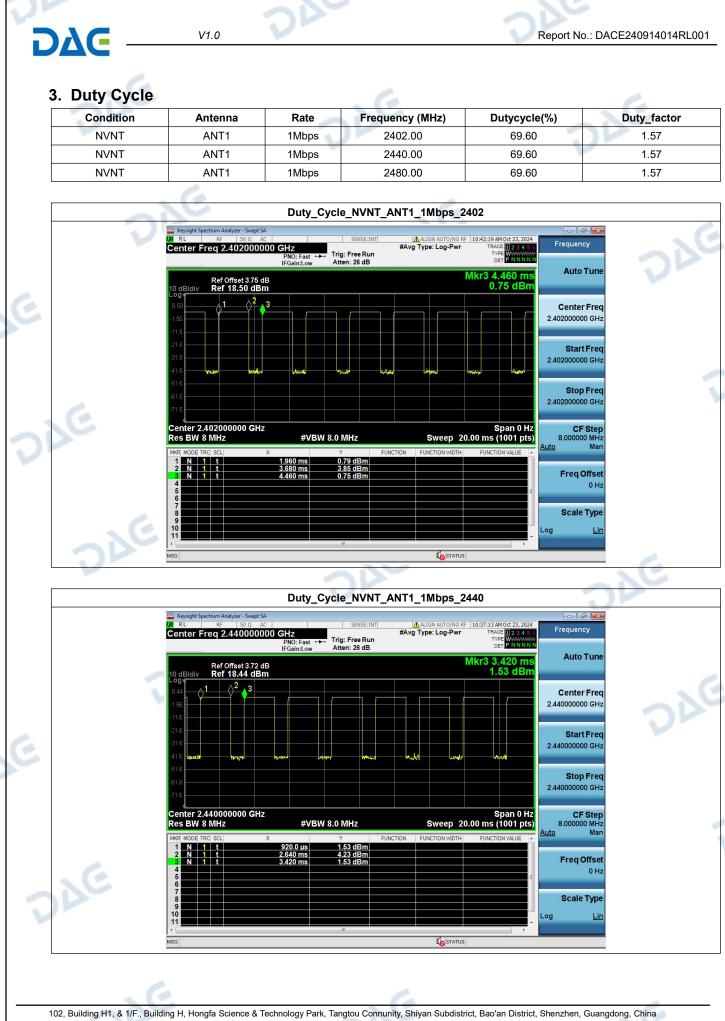
V1.0

Report No.: DACE240914014RL001

2. 99% Occupied Bandwidth

DΔC

Condition	Antenna	Rate	Frequency (MHz)	99%%BW(MHz)
NVNT	ANT1	1Mbps	2402.00	1.041
NVNT	ANT1	1Mbps	2440.00	1.158
NVNT	ANT1	1Mbps	2480.00	1.649


Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

DAG —	V1.0	76		eport No.: DACE240	914014RL001
- LE		upied_Bandwidth_NVNT_A	NT1_1Mbps_2480	6	
	Keysight Spectrum Analyzer - Occupied BW R RL RF 50 Ω AC Center Freq 2.480000000 GHz #IFGa	Center Freq: 2.48000000 GHz Trig: Free Run Avg Hold:: in:Low #Atten: 30 dB	N AUTO/NO RF 10:33:19 AM Oct 23, 2024 Radio Std: None •10/10 Radio Device: BTS	Frequency	
	Ref Offset 3.85 dB 10 dB/div Ref 14.70 dBm Log			Center Freq	
2	-5.30 -15.3 -25.3			2.480000000 GHz	
	-45.3 -65.3				
e	-65.3 -75.3 Center 2.48 GHz		Span 3 MHz		
C	#Res BW 30 kHz Occupied Bandwidth	#VBW 100 kHz Total Power	Sweep 3.2 ms	CF Step 300.000 kHz uto Man	
	Transmit Freq Error 1	7 MHz 10.76 kHz % of OBW Powe		Freq Offset 0 Hz	
6	x dB Bandwidth	2.044 MHz x dB	-26.00 dB		
200	ASG	~	STATUS	6	
				AC	
102 Duilding H1 & 1/E Duilding	<u> </u>	gy Park, Tangtou Connunity, Shiyan	Subdistrict. Bao'an District. S	ibenzhen Guanadona Ch	ina

D

Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 41 of 51

V1.0	Report No.: DACE240914014RL001
Duty_Cycle_NVNT_ANT1_	
g RL RF 50 Ω AC #AC Center Freq 2.480000000 GHz #Avg T PN0: Fast ↔ Trig: Free Run IFGain:Low Atten: 30 dB	ALIGN AUTO/NO RF 10:33:38 AM Oct 23, 2024 ype: Log-Pwr TRACE 12 3 4 5 6 DFT PNNNNNN DFT PNNNNNN Auto Tune
Ref Offset 3.85 dB 10 dB/div Ref 22.70 dBm 12.7 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Mkr3 4.900 ms 2.97 dBm Center Freq
7.30	2.48000000 GHz
77.3 Many Anthe Constant	2.48000000 GHz Stop Freq
	Span 0 Hz CF Step Sweep 20.00 ms (1001 pts) 8.000000 MHz
	FUNCTION WIDTH FUNCTION VALUE A Auto Man
4	■ 0 Hz Scale Type
10 11 11 11 11 11 11 11 11 11 11 11 11 1	Log Lin
DAG	DAC
	Duty_Cycle_NVNT_ANT1_ Kypight Spectrum Analyzer - Swegt SA SENSE:INT #W Rt Ref SENSE:INT #W If

Report No.: DACE240914014RL001

V1.0

4. Peak Output Power

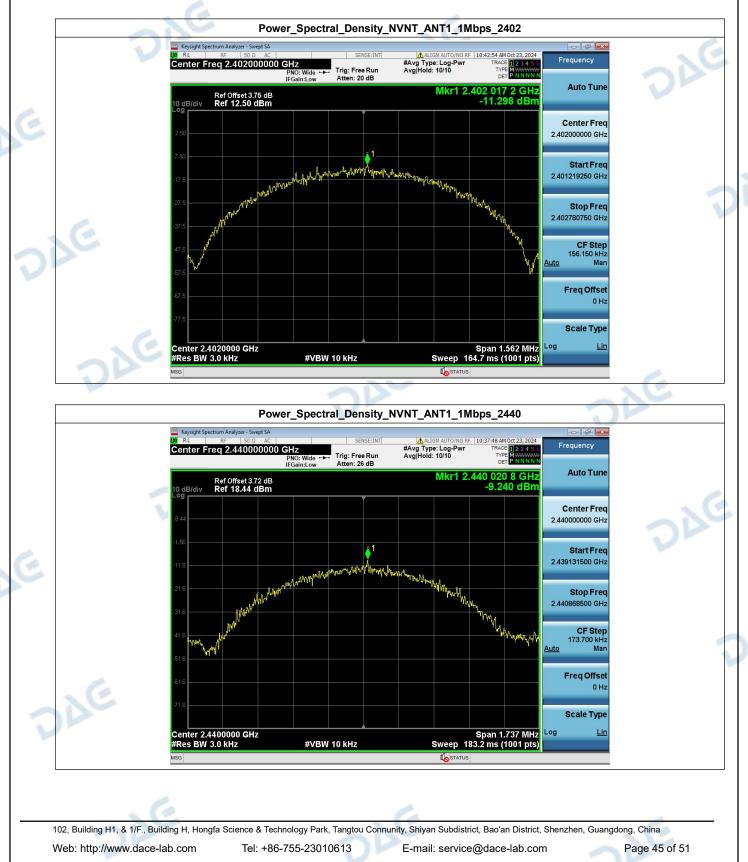
DΔC

Condition	Antenna	Rate	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1Mbps	2402.00	3.65	2.31	1000	Pass
NVNT	ANT1	1Mbps	2440.00	4.26	2.67	1000	Pass
NVNT	ANT1	1Mbps	2480.00	3.36	2.17	1000	Pass

C

ectrum Analyzer - Swept SA RF 50 Ω AC Preq 2.480000000 GHz PNO: Fast →→ IFGain:Low Ref Offset 3.85 dB Ref 22.70 dBm	#Avg Type: L : Free Run Avg Hold: 10 n: 30 dB	Mkr1 2.479 802 GHz	Frequency	
		Mkr1 2.479 802 GHz		
		3.362 dBm	Auto Tune	
	<u>1</u>		Center Freq 2.480000000 GHz	
Munnum		<u>וורעריאייראייאיאאאאאאאאאאאאאאאאאאאאאאאאא</u>	Start Freq 2.477000000 GHz	xe
			Stop Freq 2.483000000 GHz	2h
			CF Step	
			<u>Auto</u> Man	
			0 Hz	-
480000 GHz 3.0 MHz #VBW 8.0 N	лHz Sw	Span 6.000 MHz reep 1.000 ms (1001 pts)		
20-			. 6	
			AC	
	DA E DAE	3.0 MHz #VBW 8.0 MHz Sw	ASOOOD GH2 3.0 MH2 #VEW 8.0 MH2 WEW 8.0 MH2 Correct Co	24800000 CHz CF Step data de la de

V1.0


Report No.: DACE240914014RL001

5. Power Spectral Density

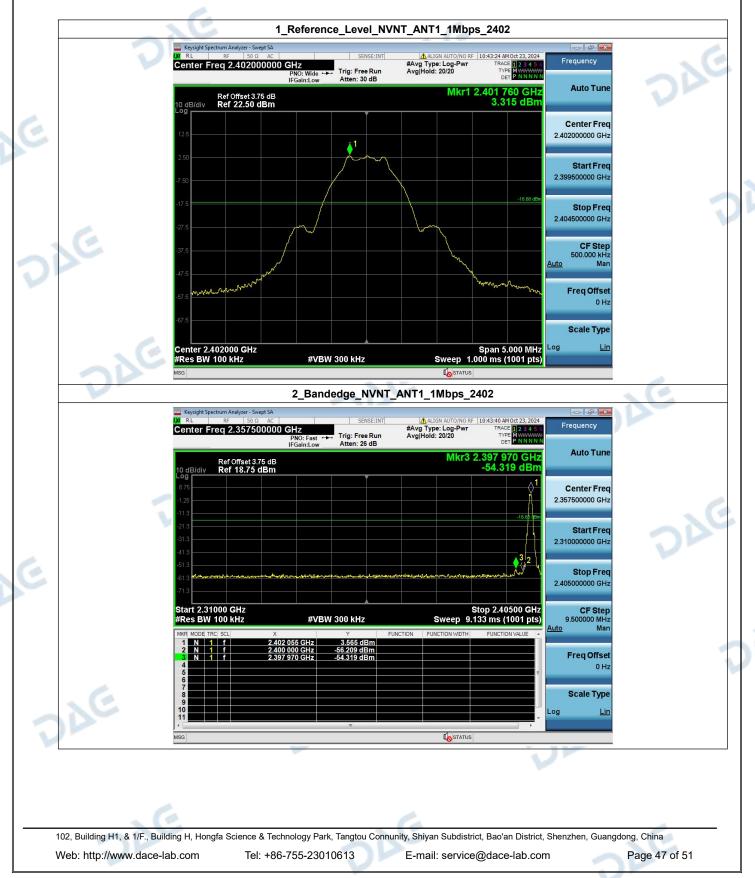
DΔC

Condition	Antenna	Rate	Frequency (MHz)	Power Spectral Density(dBm)	Limit(dBm/3kHz)	Result
NVNT	ANT1	1Mbps	2402.00	-11.30	8	Pass
NVNT	ANT1	1Mbps	2440.00	-9.24	8	Pass
NVNT	ANT1	1Mbps	2480.00	-11.73	8	Pass

C

DAC -	Κeysight Spectrum Analyzer - Swept SA Mail Second	SE:INT ANG AUTO/NO RF 10:34:14 AM Oct 23, 2024 #Avg Type: Log-Pwr TRACE 2 2 4 1 5 NYPE Avg Hold: 10/10 TYPE I DET PINNINN	Frequency	
	Ref Offset 3.85 dB 10 dB/div Ref 16.70 dBm 6.70	Mkr1 2.480 029 7 GHz -11.734 dBm	Auto Tune Center Freq 2.48000000 GHz Start Freq 2.478763250 GHz Stop Freq 2.481236750 GHz	C
E	333 433 533 533 533 533 533 533	Span 2.474 MHz Sweep 260.9 ms (1001 pts)	Auto Man Freq Offset 0 Hz Scale Type	1
	DA	5)AC	

V


Report No.: DACE240914014RL001

V1.0

6. Bandedge

DΔC

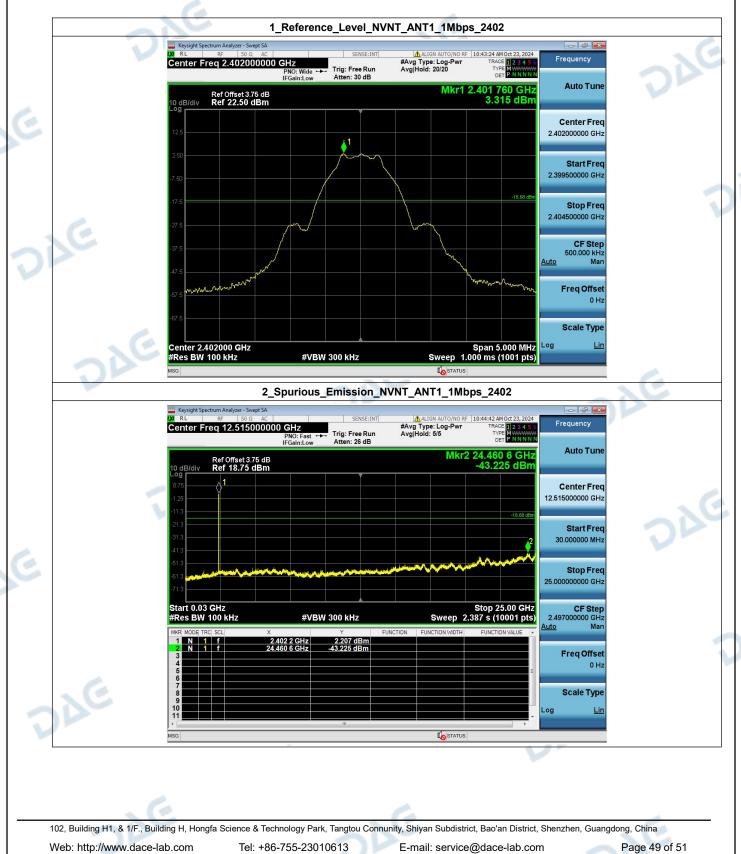
Condition	Antenna	Rate	TX_Frequency (MHz)	Max. Mark Frequency (MHz)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	1Mbps	2402.00	2397.970	-54.319	-16.685	Pass
NVNT	ANT1	1Mbps	2480.00	2484.350	-56.709	-16.915	Pass

Page 48 of 51

Tel: +86-755-23010613

E-mail: service@dace-lab.com

V1.0


Report No.: DACE240914014RL001

7. Spurious Emission

DΔG

Condition	Antenna	Rate	TX_Frequency(MHz)	Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	1Mbps	2402.00	-43.225	-16.685	Pass
NVNT	ANT1	1Mbps	2440.00	-43.031	-16.242	Pass
NVNT	ANT1	1Mbps	2480.00	-43.310	-16.915	Pass

C



Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 50 of 51

