

Shenzhen Most Technology Service Co., Ltd.

No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China.

TEST REPORT

FCC Rules Part 15.249

Compiled by

(position+printed name+signature)..: File administrators Alisa Luo

Supervised by

(position+printed name+signature)..: Test Engineer Sunny Deng

Approved by

(position+printed name+signature)..: Manager Yvette Zhou

Date of issue...... Oct. 24,2024

Representative Laboratory Name.: Shenzhen Most Technology Service Co., Ltd.

Nanshan, Shenzhen, Guangdong, China.

Applicant's name...... Ningbo Luckibuy Imp & Exp Co., Ltd

Business District, Ningbo, China

Test specification/ Standard..... FCC Rules Part 15.249

TRF Originator...... Shenzhen Most Technology Service Co., Ltd.

Shenzhen Most Technology Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Most Technology Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Most Technology Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description...... SOLAR NOCTURNAL PREDATOR LIGHTS

Trade Mark..... N/A

Model/Type reference..... 2405098

Listed Models TSC-P26-2329-2 / P26-2329-2/2441874 /

TSC-P26-23PDQ / P26-23PDQ

Modulation Type.....: FSK

Operation Frequency.....: 5814.7MHz

Hardware Version...... TSC-P26-2329-2

Software Version.....

Rating...... DC 3.7V by Battery

Result..... PASS

Report No.: MTEB24100232–R Page 2 of 23

TEST REPORT

Equipment under Test : SOLAR NOCTURNAL PREDATOR LIGHTS

Model /Type : 2405098

Address

Listed Models TSC-P26-2329-2 / P26-2329-2/2441874 /

TSC-P26-23PDQ / P26-23PDQ

Remark Only the product model name is different, the others are the same.

Applicant : Ningbo Luckibuy Imp & Exp Co., Ltd

Address : 16F, Guangbo Panorama Building, No. 252 Tianda Alley, South

Business District, Ningbo, China

Manufacturer : Bestek (Vietnam) Technology Co.,Ltd

. Nguyen Ai Quoc Street, Nhon Trach III industrial Park - Phase

2. Hiep Phuoc Town, Nhon Trach District, Dong Nai Province,

Vietnam

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1. REVISION HISTORY	4
2. TEST STANDARDS	5
3. SUMMARY	6
3.1. General Remarks	
3.2. Product Description	
3.3. Equipment Under Test	
3.4. Short description of the Equipment under Test (EUT)	
3.5. EUT operation mode	
3.6. Block Diagram of Test Setup	
3.7. Test Item (Equipment Under Test) Description*	
3.8. Auxiliary Equipment (AE) Description	
3.9 Antenna Information*	
3.10. EUT configuration	
3.11. Modifications	
4. TEST ENVIRONMENT	8
4.1. Address of the test laboratory	
4.2. Environmental conditions	
4.3. Test Description4.3. Test Description4.4. Statement of the measurement uncertainty	
4.5. Equipments Used during the Test	
4.0. Equipments Osed during the rest	
5. TEST CONDITIONS AND RESULTS	11
5.1. AC Power Conducted Emission	
5.2. Radiated Emission	
5.3. Band Edge Compliance of RF Emission	
5.4. 20dB Bandwidth	
5.5. Antenna Requirement	21
6. TEST SETUP PHOTOS OF THE EUT	22
7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	23

Report No.: MTEB24100232–R Page 4 of 23

1. Revision History

Revision	Issue Date	Revisions	Revised By
00	2024.10.24	Initial Issue	Alisa Luo

Report No.: MTEB24100232–R Page 5 of 23

2. TEST STANDARDS

The tests were performed according to following standards:

The tests were performed according to following standards:

FCC Rules Part 15.249: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHZ, and 24.0-24.25 GHz..

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

Report No.: MTEB24100232–R Page 6 of 23

3. SUMMARY

3.1. General Remarks

Date of receipt of test sample		2024.10.10
Testing commenced on	:	2024.10.11
Testing concluded on	:	2024.10.24

3.2. Product Description

Product Name:	SOLAR NOCTURNAL PREDATOR LIGHTS	
Model/Type reference:	2405098	
Power Supply:	DC 3.7V by Battery	
Testing sample ID:	MTYP07050	
Modulation:	FSK	
Operation frequency:	5814.7MHz	
Channel number:	1	
Antenna type:	PCB Antenna	
Antenna gain:	2.3dBi	

3.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank below))

DC 3.7V by Battery

3.4. Short description of the Equipment under Test (EUT)

This is a SOLAR NOCTURNAL PREDATOR LIGHTS For more details, refer to the user's manual of the EUT.

3.5. EUT operation mode

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .

CH01
5814.7

Report No.: MTEB24100232–R Page 7 of 23

3.6. Block Diagram of Test Setup

EUT

3.7. Test Item (Equipment Under Test) Description*

Short designation	EUT Name	EUT Description	Serial number	Hardware status	Software status
EUT A	1	1	1	1	1
EUT B	1	1	1	/	/

^{*:} declared by the applicant. According to customers information EUTs A and B are the same devices.

3.8. Auxiliary Equipment (AE) Description

AE short designation	EUT Name (if available)	EUT Description	Serial number (if available)	Software (if used)
AE 1	-	1	1	1
AE 2	-	1	1	1

3.9 Antenna Information*

Short designation	Antenna Name	Antenna Type	Frequency Range	Serial number	Antenna Peak Gain
Antenna 1		PCB Antenna	5814.7MHz- 5814.7MHz		2.3dBi
Antenna 2	1	1	1	1	1

^{*:} declared by the applicant.

3.10. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- - Supplied by the lab

ADAPTER	M/N:	
	Manufacturer:	

3.11. Modifications

No modifications were implemented to meet testing criteria.

Report No.: MTEB24100232–R Page 8 of 23

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Shenzhen Most Technology Service Co., Ltd.

No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China. The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 0031192610

Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

A2LA-Lab Cert. No.: 6343.01

Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

4.2. Environmental conditions

Radiated Emission:

vadiated Effission.	
Temperature:	23 ° C
Humidity:	48 %
Atmospheric pressure:	950-1050mbar

Conducted testing:

2.144.5154.155491	
Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

Report No.: MTEB24100232–R Page 9 of 23

4.3. Test Description

FCC and IC Requirements		
15.203	Antenna Requirement	PASS
15.207	AC Power Conducted Emission	N/A
15.215(c)	20dB Bandwidth	PASS
15.209	Field strength of fundamental	PASS
15.205(a), 15.209(a), 15.249(a), 15.249(c)	Radiated Spurious Emissions	PASS
15.249(d)	Band Edge Spurious	PASS

Remark:

- 1. The measurement uncertainty is not included in the test result.
- 2. NA = Not Applicable; NP = Not Performed

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Most Technology Service Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

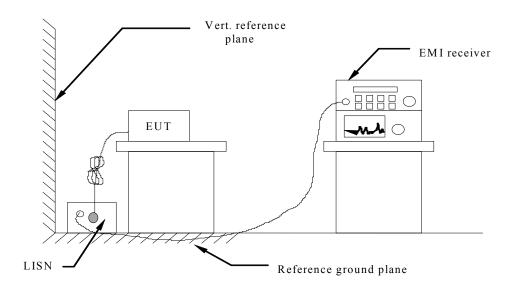
Hereafter the best measurement capability for Shenzhen Most Technology Service Co., Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.5. Equipments Used during the Test

					F:	
Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware versions	Last Cal.
1.	L.I.S.N.	R&S	ENV216	100093	1	2024/03/15
2	Three-phase artificial power network	Schwarzback Mess	NNLK8129	8129178	1	2024/03/15
3.	Receiver	R&S	ESCI	100492	V3.0-10-2	2024/03/15
4	Receiver	R&S	ESPI	101202	V3.0-10-2	2024/03/15
5	Spectrum analyzer	Agilent	9020A	MT-E306	A14.16	2024/03/15
6	Bilong Antenna	Sunol Sciences	JB3	A121206	1	2024/08/15
7	Horn antenna	HF Antenna	HF Antenna	MT-E158	1	2024/03/15
8	Loop antenna	Beijing Daze	ZN30900B	/	1	2024/03/15
9	Horn antenna	R&S	OBH100400	26999002	1	2024/03/15
10	Wireless Communication Test Set	R&S	CMW500	1	CMW-BASE- 3.7.21	2024/03/15
11	Spectrum analyzer	R&S	FSP	100019	V4.40 SP2	2024/03/15
12	High gain antenna	Schwarzbeck	LB-180400KF	MT-E389	1	2024/03/15
13	Preamplifier	Schwarzbeck	BBV 9743	MT-E390	1	2024/03/15
14	Pre-amplifier	EMCI	EMC051845S E	MT-E391	/	2024/03/15
15	Pre-amplifier	Agilent	83051A	MT-E392	1	2024/03/15
16	High pass filter unit	Tonscend	JS0806-F	MT-E393	1	2024/03/15
17	RF Cable(below1GHz)	Times	9kHz-1GHz	MT-E394	1	2024/03/15
18	RF Cable(above 1GHz)	Times	1-40G	MT-E395	1	2024/03/15
19	RF Cable (9KHz-40GHz)	Tonscend	170660	N/A	1	2024/03/15
20	Power meter	R&S	NRVS	100444	/	2024/03/15


Note: 1. The Cal.Interval was one year.

Report No.: MTEB24100232–R Page 11 of 23

5. TEST CONDITIONS AND RESULTS

5.1. AC Power Conducted Emission

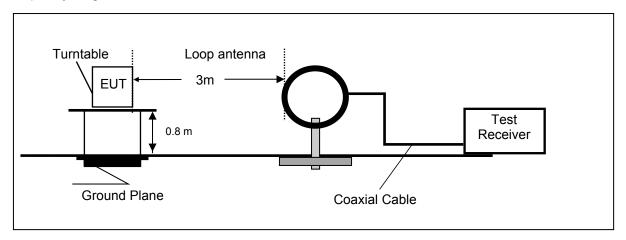
TEST CONFIGURATION

TEST PROCEDURE

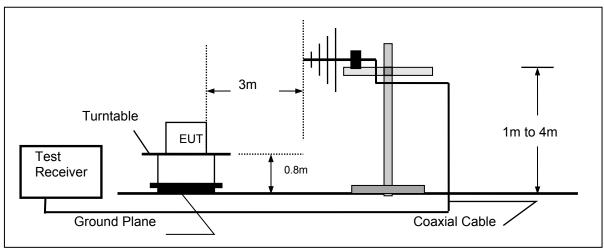
- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC15V power, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

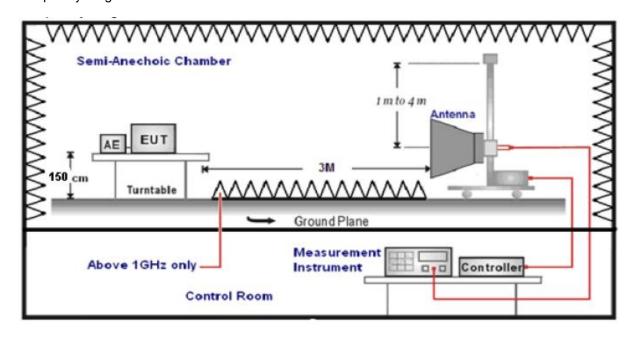
For unintentional device, according to RSS Gen 8.8 and § 15.207(a) Line Conducted Emission Limits is as following:


Frequency range (MHz)	Limit (dBuV)		
Frequency range (wiriz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	
* Decreases with the logarithm of the frequency.			

Report No.: MTEB24100232–R Page 12 of 23


5.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Report No.: MTEB24100232–R Page 13 of 23

1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.

- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission

Unwanted emissions that fall into restricted bands shall comply with the limits specified in RSS-Gen; and Unwanted emissions that do not fall within the restricted frequency bands shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen.

Report No.: MTEB24100232–R Page 14 of 23

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (μV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

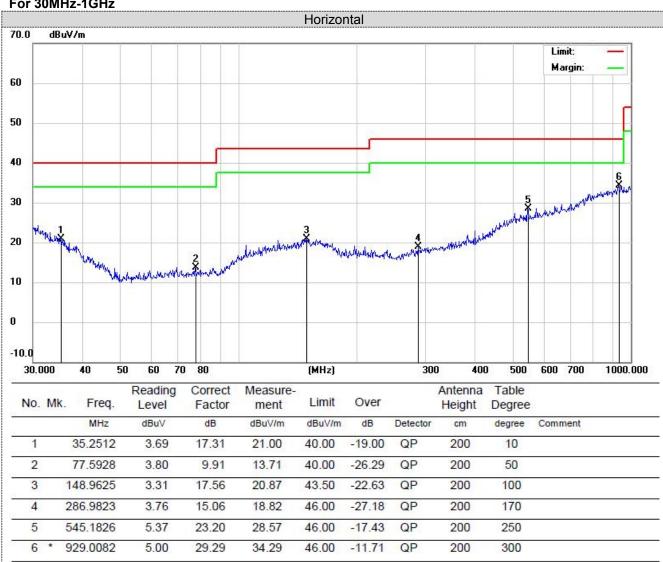
15.249(a)Limit:

Fundamental frequency	Field strength of fundamental		Field strength of harmonics	
	mV/m	dBuV/m	uV/m	dBuV/m
902-928 MHz	50	94	500	54
2400-2483.5 MHz	50	94	500	54
5725-5875 MHz	50	94	500	54
24.0-24.25 GHz	250	108	2500	68

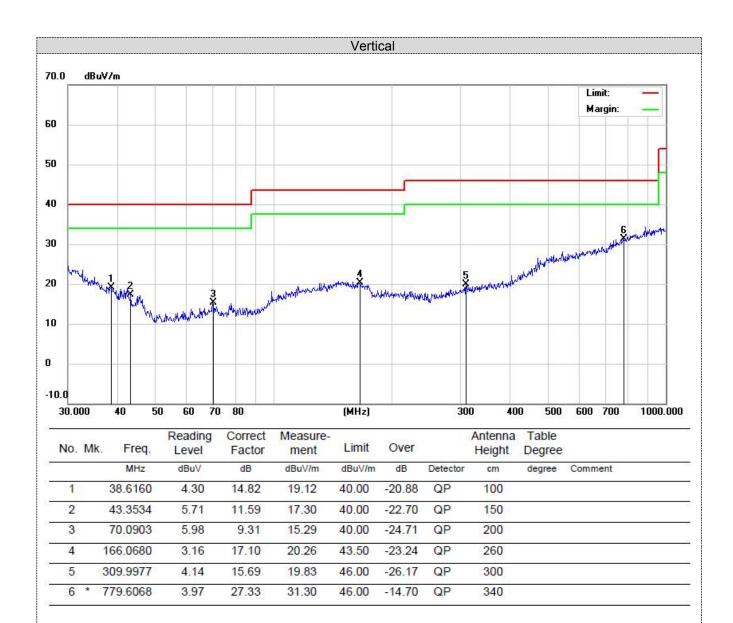
According to RSS-210 B.10:

The field strength of fundamental and harmonic emissions, measured at 3 m, shall not exceed 50 mV/m and 0.5 mV/m respectively.

The field strength limits shall be measured using an average detector, except for the fundamental emission in the frequency band 902-928 MHz, which is based on measurements using an International Special Committee on Radio Interference(CISPR)quasi-peak detector.


Emissions radiated outside of the specified frequency bands, except for harmonic emissions, shall be attenuated by at least 50 dB below the level of the fundamental emissions or to the general field strength limits listed in RSS-Gen, whichever is less stringent.

TEST RESULTS


Remark:

- 1. For below 1GHz testing recorded worst at FSK middle channel.
- 2. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

^{*:} Maximum data x:Over limit !:over margin

^{*:}Maximum data x:Over limit !:over margin

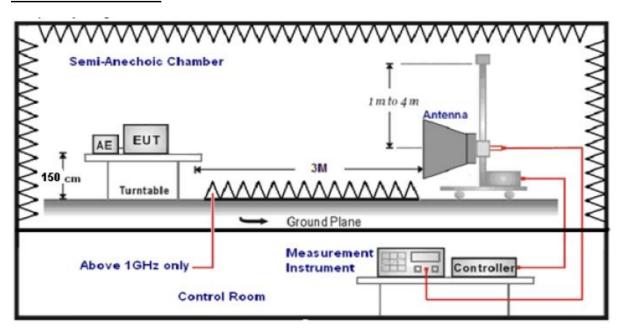
Frequency	Antenna	Reading	Correct Factor	Results	Limits	Det.
(MHz)	Pol.	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	Mode
2438	Н	34.26	-2.13	32.13	74	Peak
2438	V	31.82	-2.13	29.69	74	Peak
2438	Н	29.16	-2.13	27.03	54	AVG
2438	V	29.85	-2.13	27.72	54	AVG
5814.7	Н	86.24	4.08	90.32	114	Peak
5814.7	V	87.85	4.08	91.93	114	Peak
5814.7	Н	87.59	4.08	91.67	94	AVG
5814.7	V	85.77	4.08	89.85	94	AVG
11629.4	Н	42.29	6.65	48.94	74	Peak
11629.4	V	42.30	6.65	48.95	74	Peak
11629.4	Н	43.89	6.65	50.54	54	AVG
11629.4	V	39.67	6.65	46.32	54	AVG

Notes:

^{1).} Measuring frequencies from 9 KHz- 10#harmonic (ex.10GHz), No emission found between lowest internal used/generated frequency to 30 MHz.

2).Radiated emissions measured in frequency range from 9 KHz- 10th harmonic (ex. 10GHz) were made with an instrument using Peak detector mode.

3)Result = Reading + Correct Factor


Report No.: MTEB24100232-R Page 18 of 23

5.3. Band Edge Compliance of RF Emission

TEST REQUIREMENT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed...
- 5. The distance between test antenna and EUT was 3 meter:
- 6. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz,	Peak
	Sweep time=Auto	

LIMIT

Below -20dB of the highest emission level in operating band.

Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

Report No.: MTEB24100232-R Page 19 of 23

TEST RESULTS

Results of Band Edges Test (Radiated)

Polar (H/V)	Frequency	Meter Reading	Correctio n Factor	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
٧	5725	54.29	3.75	58.04	74	15.96	PK
V	5725	37.5	3.75	41.25	54	12.75	AV
Н	5725	55.07	3.75	58.82	74	15.18	PK
Н	5725	40.53	3.75	44.28	54	9.72	AV
V	5850	54.68	4.08	58.76	74	15.24	PK
V	5850	39.06	4.08	43.14	54	10.86	AV
Н	5850	54.54	4.08	58.62	74	15.38	PK
Н	5850	40.31	4.08	44.39	54	9.61	AV

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m) Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier Margin value = Limit value- Emission level.
 --- Mean the PK detector measured value is below average limit.
- 1. 2. 3. 4.

Report No.: MTEB24100232–R Page 20 of 23

5.4. 20dB Bandwidth

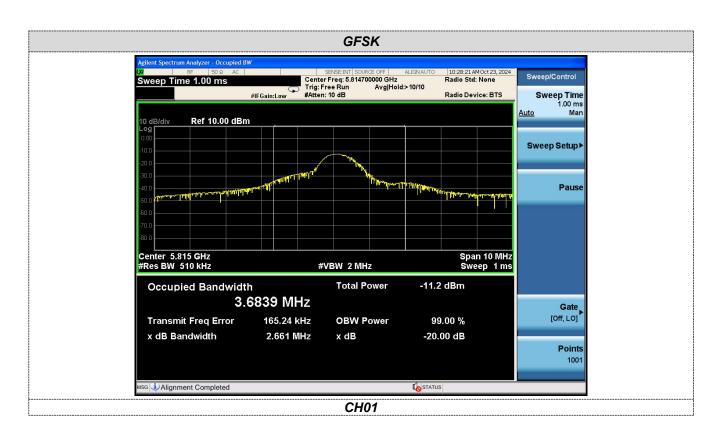
Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.


Test Configuration

Test Results

Modulation	Channel	20dB bandwidth (MHz)	Result
FSK	CH01	2.661	Pass

Test plot as follows:

Report No.: MTEB24100232–R Page 21 of 23

5.5. Antenna Requirement

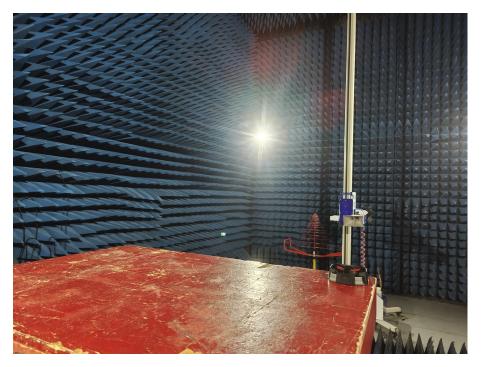
Standard Applicable

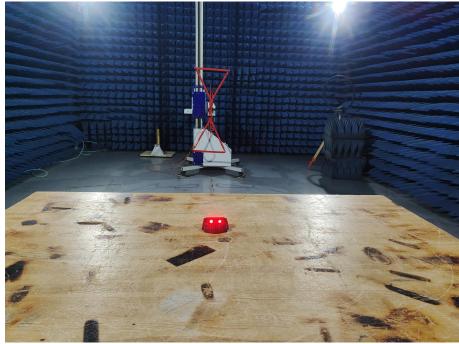
For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.


Antenna Connected Construction


The directional gains of antenna used for transmitting is 2.3dBi, and the antenna is PCB Antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

Results: Compliance.

Report No.: MTEB24100232–R Page 22 of 23

6. Test Setup Photos of the EUT

Report No.: MTEB24100232-R	Page 23 of 23
7. External and Internal Photos of the I	<u>EUT</u>
See related photo report.	

.....End of Report.....