

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

CV FCC	C PART 15 SUBPART C TEST REF	PORT
	FCC PART 15.247	TING
Report Reference No	·CTA24110401001	ATESTING
FCC ID	:::::::::::::::::::::::::::::::::	
Compiled by		
position+printed name+sig	^{nature):} File administrators Xudong Zhang	Xuclasting Technolo
Supervised by	-	T CONTRA DE
position+printed name+sig	nature): Project Engineer Zoey Cao	The I Haw E
Approved by (position+printed name+sig	nature): RF Manager Eric Wang	Evic Wang
Date of issue		CTIN
Testing Laboratory Name	Shenzhen CTA Testing Technology C	o., Ltd.
Address	Room 106, Building 1, Yibaolai Industria Fuhai Street, Baoʻan District, Shenzhen,	
Applicant's name	: ShenZhen DZinno Technology Co. ,Lt	d
TESTIN	1403, 14th Floor, Building 4, Phase 2, Ti	ian'an Yungu Industrial Park,
Address	: Gangtou Community, Bantian Street, Lo	nggang District, Shenzhen,
5	China	G
Test specification		TESTIN
-		1. \ F
Standard		P. Y
Standard Shenzhen CTA Testing Te This publication may be repr Shenzhen CTA Testing Tec material. Shenzhen CTA Te	FCC Part 15.247 chnology Co., Ltd. All rights reserved. roduced in whole or in part for non-commercial put hnology Co., Ltd. is acknowledged as copyright or sting Technology Co., Ltd. takes no responsibility g from the reader's interpretation of the reproduce	wner and source of the for and will not assume
Standard Shenzhen CTA Testing Te This publication may be repr Shenzhen CTA Testing Tec naterial. Shenzhen CTA Te iability for damages resulting placement and context.	chnology Co., Ltd. All rights reserved. roduced in whole or in part for non-commercial put hnology Co., Ltd. is acknowledged as copyright o sting Technology Co., Ltd. takes no responsibility g from the reader's interpretation of the reproduce	wner and source of the for and will not assume
Standard Shenzhen CTA Testing Te This publication may be repr Shenzhen CTA Testing Tech naterial. Shenzhen CTA Te- iability for damages resulting placement and context. Equipment description	chnology Co., Ltd. All rights reserved. roduced in whole or in part for non-commercial put hnology Co., Ltd. is acknowledged as copyright o sting Technology Co., Ltd. takes no responsibility g from the reader's interpretation of the reproduce	wner and source of the for and will not assume d material due to its
Standard Shenzhen CTA Testing Te This publication may be repu Shenzhen CTA Testing Tech material. Shenzhen CTA Te- iability for damages resulting placement and context. Equipment description Trade Mark	chnology Co., Ltd. All rights reserved. roduced in whole or in part for non-commercial put hnology Co., Ltd. is acknowledged as copyright o sting Technology Co., Ltd. takes no responsibility g from the reader's interpretation of the reproduce	wner and source of the for and will not assume d material due to its
Standard Shenzhen CTA Testing Te This publication may be repr Shenzhen CTA Testing Tech material. Shenzhen CTA Te- liability for damages resulting placement and context. Equipment description Trade Mark Manufacturer	chnology Co., Ltd. All rights reserved. roduced in whole or in part for non-commercial put hnology Co., Ltd. is acknowledged as copyright of sting Technology Co., Ltd. takes no responsibility g from the reader's interpretation of the reproduce : Smart Camera : N/A 	wner and source of the for and will not assume d material due to its
Standard Shenzhen CTA Testing Te This publication may be repr Shenzhen CTA Testing Tech material. Shenzhen CTA Te- iability for damages resulting placement and context. Equipment description Trade Mark Manufacturer Model/Type reference	chnology Co., Ltd. All rights reserved. roduced in whole or in part for non-commercial pur hnology Co., Ltd. is acknowledged as copyright or sting Technology Co., Ltd. takes no responsibility g from the reader's interpretation of the reproduce : Smart Camera 	wner and source of the for and will not assume d material due to its
Standard Shenzhen CTA Testing Te This publication may be repr Shenzhen CTA Testing Tech material. Shenzhen CTA Te- liability for damages resulting placement and context. Equipment description Trade Mark Manufacturer Model/Type reference Listed Models	chnology Co., Ltd. All rights reserved. roduced in whole or in part for non-commercial put hnology Co., Ltd. is acknowledged as copyright or sting Technology Co., Ltd. takes no responsibility g from the reader's interpretation of the reproduce : Smart Camera : N/A ShenZhen DZinno Technology Co. ,Ltd : CB211 : CD211, CY211	wner and source of the for and will not assume
Standard Shenzhen CTA Testing Te This publication may be repr Shenzhen CTA Testing Tech material. Shenzhen CTA Te liability for damages resulting placement and context. Equipment description Trade Mark Manufacturer Model/Type reference Listed Models Modulation	chnology Co., Ltd. All rights reserved. roduced in whole or in part for non-commercial put hnology Co., Ltd. is acknowledged as copyright or sting Technology Co., Ltd. takes no responsibility g from the reader's interpretation of the reproduce : Smart Camera : N/A ShenZhen DZinno Technology Co. ,Ltd : CB211 : CD211, CY211	wner and source of the for and will not assume d material due to its
Standard Shenzhen CTA Testing Te This publication may be repr Shenzhen CTA Testing Tech material. Shenzhen CTA Te- liability for damages resulting placement and context. Equipment description Trade Mark Manufacturer Model/Type reference Listed Models Modulation Frequency	chnology Co., Ltd. All rights reserved. roduced in whole or in part for non-commercial put hnology Co., Ltd. is acknowledged as copyright or sting Technology Co., Ltd. takes no responsibility g from the reader's interpretation of the reproduce : Smart Camera : N/A : ShenZhen DZinno Technology Co. ,Ltd : CB211 : CD211, CY211 : GFSK	wner and source of the for and will not assume d material due to its

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

CTA TESTING

CTA TESTING

CTA TESTING	TEST RE	PORT	
GA CTA	TESTIN		
Equipment under Test	: Smart Camera		
Model /Type	: CB211	GTA CTATESTIN	e ć
Listed Models	: CD211, CY211		
Applicant	: ShenZhen DZinno Te	chnology Co. ,Ltd	
Address		ing 4, Phase 2, Tian'an Yungu Indu 3antian Street, Longgang District, S	
Address		ing 4, Phase 2, Tian'an Yungu Indu 3antian Street, Longgang District, S	
Test R	esult	PASS	6
It is not permitted to	G	t result without the written permi	ission of the test

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

COM CTATESTING

Contents

	TESTING	Contents	
1	TEST STANDARDS		
C	ATA	IL SIG	
2	SUMMARY	STIN	
-		TA	<u>v</u>
0.4	Concerned Domestics	CU	-
2.1 2.2	General Remarks		5
2.2 2.3	Product Description* Equipment Under Test		5 0
2.3 2.4	Short description of the Equipment	under Test (EUT)	5 5
2.5	EUT operation mode		6
2.6	Block Diagram of Test Setup		6
2.7	Related Submittal(s) / Grant (s)		6
2.8	Modifications		6
	ATA		
•	TEAT ENVIRONMENT	-cSTIL	-
<u>3</u>	TEST ENVIRONMENT		<u></u>
		GA CTAT	STIN
3.1	Address of the test laboratory		7
3.2	Test Facility	COV	7
3.3	Environmental conditions		7
3.4 3.5	Summary of measurement results		0
3.5 3.6	Statement of the measurement unce Equipments Used during the Test	enamy	8 9
3.0	Equipments used during the rest		5
	TEST		
4	TEST CONDITIONS AND R	ESULTS	<u> 10</u>
		TESI	
4.1	AC Power Conducted Emission		10
4.2	Radiated Emissions and Band Edge	e	13
4.3	Maximum Peak Output Power	TATL	20
4.4	Power Spectral Density	GAG	21
4.5	6dB Bandwidth	e CTATESTING	23
4.6	Out-of-band Emissions		25
4.7	Antenna Requirement		29
5	TEST SETUP PHOTOS OF	THE EUT	30
	TING		
<u>6</u>	PHOTOS OF THE EUT	THE EUT	31
<u> </u>	CI	TING	
		TEST	
		CTA	
		(CP)	ES
		CTA'	
		GA CTATES. GA CTAT	
	CTATESTING		
	TESI		
	ATA		
	0.	-ESTIN	
	CTATES CACTA		
	Cou		

GA CTATESTING

CTA TESTING

CON CTATE

TEST STANDARDS 1

The tests were performed according to following standards:

CTA TESTING

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices COM CTATE KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission

GTA CTATESTING

COM CTA TESTING

GTA CTATESTING

CTA TESTING

Systems (DTS) Operating Under §15.247 CTATESTING

CTA TESTING

CTA TESTING

CTATESTING

<u>SUMMARY</u> 2

2.1 **General Remarks**

CTATES		
2.1 General Remarks		TESTIN
Date of receipt of test sample	Go	Nov. 04, 2024
Testing commenced on		Nov. 04, 2024
Testing concluded on	:	Nov. 09, 2024

2.2 Product Description*

Product Description:	Smart Camera
Model/Type reference:	CB211
Power supply:	DC 5.0V From external circuit
Adapter information	Model: EP-TA20CBC
(Auxiliary test supplied by	Input: AC 100-240V 50/60Hz
test Lab):	Output: DC 5V 1A
/ Hardware version:	D100AP MB VA
Software version:	6.0.26.10
Testing sample ID:	CTA241104010-1# (Engineer sample) CTA241104010-2# (Normal sample)
Bluetooth BLE	
Supported type:	Bluetooth low Energy
Modulation:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40
Channel separation:	2 MHz
Antenna type:	PCB antenna
Antenna gain:	0.88 dBi

2.3 Equipment Under Test

Power supply system utilised

CTA TESTING

	- The suppry system number					
	Power supply voltage	1.	Ο	230V / 50 Hz	0	120V / 60Hz
CIM	T	190	Ο	12 V DC	0	24 V DC
	TED			Other (specified in blank bel	ow	
	CIT			T	10	

DC 5.0V From external circuit

2.4 Short description of the Equipment under Test (EUT)

This is a Smart Camera. For more details, refer to the user's manual of the EUT.

CTA TESTING

CTATESTING

2.5 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing. There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

Channel	Frequency (MHz)
00	2402
01	2404
02	2406
19	2440
ESTIN	
37	2476
38	2478
39	2480

2.6 Block Diagram of Test Setup

EUT

G	DC 5.0V From adapter	
	GTA CTA TESTI	

Related Submittal(s) / Grant (s) 2.7

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

GTA CTATESTING

CTATEST

No modifications were implemented to meet testing criteria. CTA TESTING

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

CTA TE

CTA TESTING

3 TEST ENVIRONMENT

Address of the test laboratory 3.1

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China CTA TE

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	23 ° C
Humidity:	44 %
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing.

e main eenadoted teeting.				
Temperature:	24 ° C			
- G				
Humidity:	47 %			
Atmospheric pressure:	950-1050mbar			

CTATES

CTA TESTING

Autospheric pressure.	950-1050mbai	
Conducted testing:		TING
Temperature:	24 ° C	TESI
	- C	AT .
Humidity:	46 %	· · · · · · · · · · · · · · · · · · ·
	0	_
Atmospheric pressure:	950-1050mbar	

CTA TESTING

	Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
	§15.247(e)	Power spectral density	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
	§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
	§15.247(b)(3)	Maximum output Peak power	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
CTATE	§15.247(d)	Band edge compliance conducted	BLE 1Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Highest	complies
i Gin	§15.205	Band edge compliance radiated	BLE 1Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Highest	complies
	§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
	§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs	Lowest Middle Highest	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
G	§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs	-/-	BLE 1Mpbs	-/-	complies
	§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs	NG	BLE 1Mpbs	-/-	complies

3.4 Summary of measurement results

Remark:

1. The measurement uncertainty is not included in the test result.

We tested all test mode and recorded worst case in report 2.

Statement of the measurement uncertainty 3.5

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. ESTING Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.

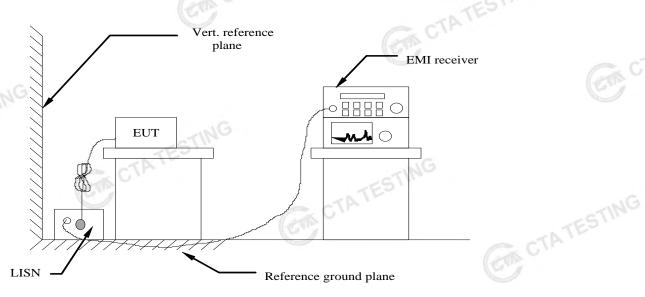
i leieallei l	ne best measurement capability for	Shelizhen CTA resulty r	ECHIOLOGY CO., LI	u
	Test	Range	Measurement Uncertainty	Notes
	Radiated Emission	9KHz~30MHz	3.02 dB	(1)
	Radiated Emission	30~1000MHz	4.06 dB	(1)
	Radiated Emission	1~18GHz	5.14 dB	(1)
	Radiated Emission	18-40GHz	5.38 dB	(1)
	Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
	Output Peak power	30MHz~18GHz	0.55 dB	(1)
- CTP	Power spectral density	SING	0.57 dB	(1)
	Spectrum bandwidth	STIT I	1.1%	(1)
	Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
	Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
	Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date	
	LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02	
	LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02	
	EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02	
16	EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02	
CTATE	Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02	
	Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/02	
	Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02	
	Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02	
	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02	
	Temperature and humidity meter	G Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02	
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16	
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12	
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16	
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2026/10/16	
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02	
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02	
	Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02	
-5	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02	
CTAIL	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02	
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02	
	Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02	
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02	
			5			TES	
		1		Vorcion	Colibration	Calibration	

Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test Software	G Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
RF Test Software Tonscend		TS®JS1120	3.1.46	N/A	N/A
CA C	Ge	TATESI		TESTING	


Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

GIA CTATE

TEST CONDITIONS AND RESULTS 4

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

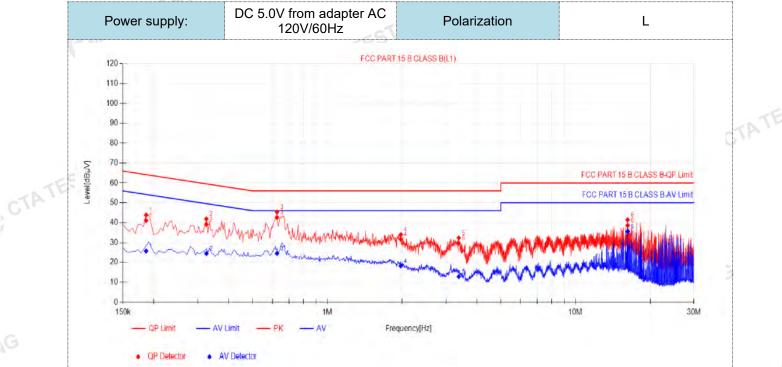
AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Eroquonov rango (MHz)	Limit (d	IBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* D		

Decreases with the logarithm of the frequency.

TEST RESULTS


Remark:

1. BLE 1Mpbs was tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs High channel

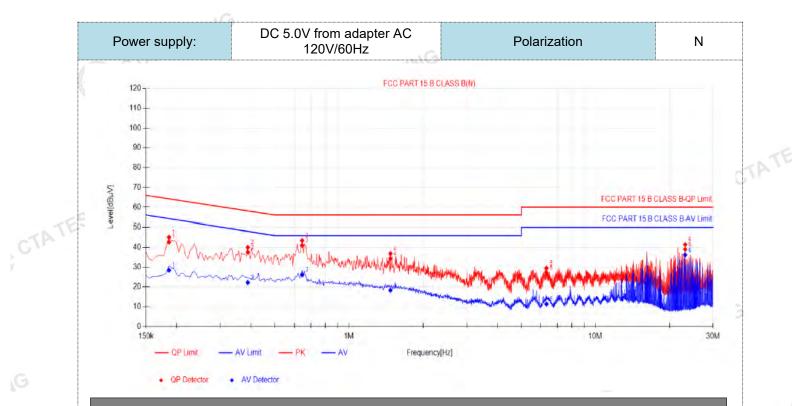
Page 11 of 47

CTA TESTING

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

Final Data List

GTA CTATESTING


1 11104	- D'atta Ele	~										
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
1	0.186	10.03	31.03	41.06	64.21	23.15	15.76	25.79	54.21	28.42	PASS	
2	0.3255	9.91	29.18	39.09	59.57	20.48	14.56	24.47	49.57	25.10	PASS	
3	0.627	10.01	32.57	42.58	56.00	13.42	14.53	24.54	46.00	21.46	PASS	
4	1.977	9.92	21.77	31.69	56.00	24.31	8.33	18.25	46.00	27.75	PASS	
5	3.3855	9.98	19.75	29.73	56.00	26.27	2.85	12.83	46.00	33.17	PASS	
6	16.2285	10.33	28.29	38.62	60.00	21.38	25.23	35.56	50.00	14.44	PASS	
Note:1).QP Value	e (dBµV)	= QP Re	ading (d	BµV)+ Fa	actor (dE	8)				(7)	

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V) CTA TESTING

CTA TESTING

Page 12 of 47

CTA TESTING

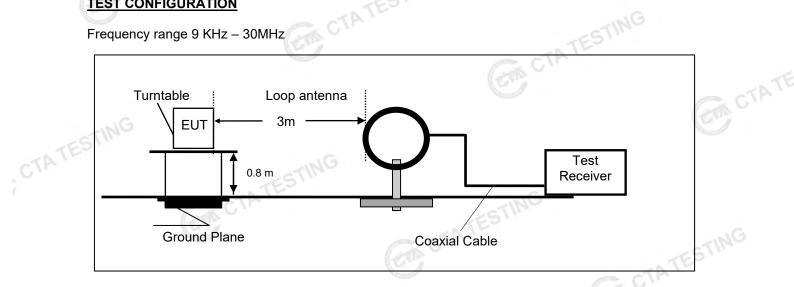
Final Data List

GTA TESTING

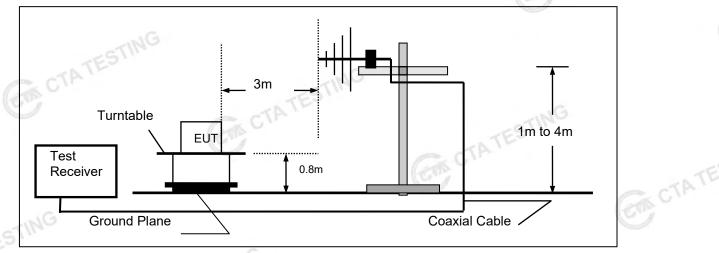
NO.	Freq. [MHz] 0.186	Factor [dB] 10.01	QP Reading[dB µ ^V] 32.73	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
		10.01	22.72								
_			32.13	42.74	64.21	21.47	18.43	28.44	54.21	25.77	PASS
2	0.3885	9.92	27.68	37.60	58.10	20.50	12.27	22.19	48.10	25.91	PASS
3	0.645	10.11	30.94	41.05	56.00	14.95	16.04	26.15	46.00	19.85	PASS
4	1.473	10.14	24.25	34.39	56.00	21.61	8.25	18.39	46.00	27.61	PASS
5	6.3285	10.31	16.83	27.14	60.00	32.86	1.06	11.37	50.00	38.63	PASS
6	23.127	10.65	28.43	39.08	60.00	20.92	25.52	36.17	50.00	13.83	PASS

Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

- Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
 - 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V) CTA TESTING


CTA TESTING

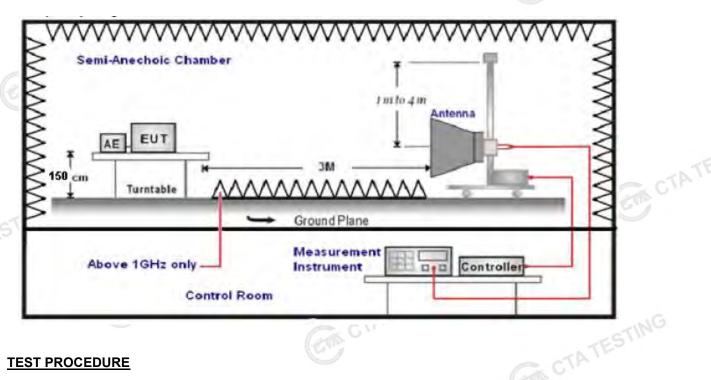
CTATESTING


4.2 Radiated Emissions and Band Edge TATESTING

TEST CONFIGURATION

Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz


Frequency range above 1GHz-25GHz

CTA TESTING

CTATESTING

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

Page 14 of 47

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and
- rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT. 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.
- The EUT minimum operation frequency was 32.768KHz and maximum operation 5. frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states: 6.

Test Frequency range	Test Antenna Type	Test Distance	
9KHz-30MHz	Active Loop Antenna	3	~ (
30MHz-1GHz	Ultra-Broadband Antenna	3	(CTP)
1GHz-18GHz	Double Ridged Horn Antenna	3	9
18GHz-25GHz	Horn Anternna	1	

Setting test receiver/spectrum as following table states: 7.

Test Frequency range	Test Receiver/Spectrum Setting	Detector	
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP	
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP	
30MHz-1GHz	QP		
	Peak Value: RBW=1MHz/VBW=3MHz,	TING	
1GHz-40GHz	Sweep time=Auto	Peak	
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,		
	Sweep time=Auto		

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows: CTATEST

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

CTATE

CTA TESTING

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

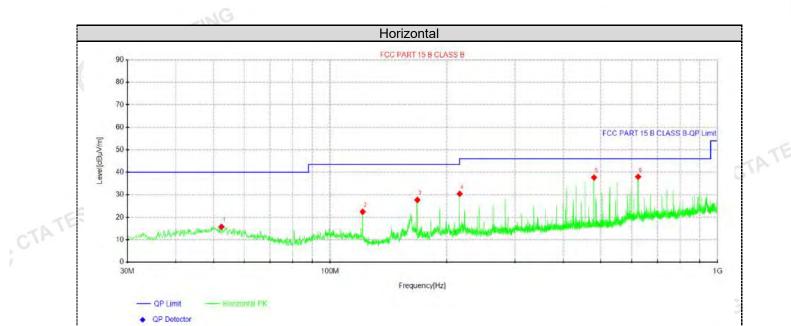
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark:

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. BLE 1Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found 3. except system noise floor in 9 KHz to 30MHz and not recorded in this report. CON CTATESTING

For 30MHz-1GHz


CTA TESTING

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

CTA TESTING

CTATE

CTA TESTING

Suspected Data List

CTA TESTING

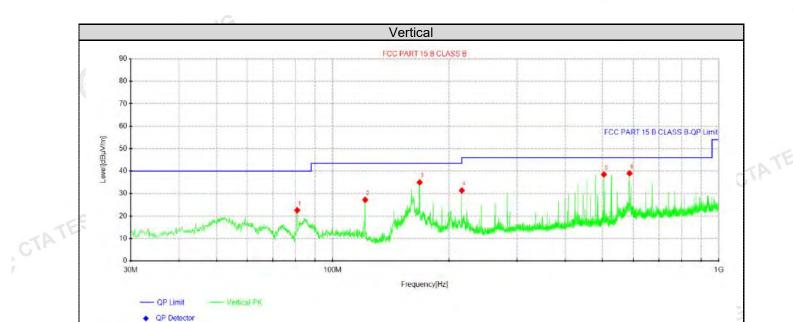
CTATESTING

	uspe	Cieu Dala	LISU							
N	10.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
	1	52.4312	27.09	15.76	-11.33	40.00	24.24	100	0	Horizontal
	2	121.422	36.91	22.46	-14.45	43.50	21.04	100	223	Horizontal
	3	167.982	42.87	27.70	-15.17	43.50	15.80	100	258	Horizontal
	4	215.997	43.02	30.44	-12.58	43.50	13.06	100	304	Horizontal
	5	480.08	47.00	37.68	-9.32	46.00	8.32	100	270	Horizontal
	6	624.003	43.73	38.01	-5.72	46.00	7.99	100	258	Horizontal

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)


Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

CTA TESTING

TATE

CIA

CTA TESTING

Suspected Data List

CTA TESTING

CTATESTING

Suspe		LISU							
NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	80.925	39.19	22.59	-16.60	40.00	17.41	100	139	Vertical
2	121.422	41.65	27.20	-14.45	43.50	16.30	100	255	Vertical
3	167.982	50.16	34.99	-15.17	43.50	8.51	100	314	Vertical
4	215.997	43.96	31.38	-12.58	43.50	12.12	100	127	Vertical
5	503.966	47.60	38.54	-9.06	46.00	7.46	100	314	Vertical
6	587.265	45.54	39.02	-6.52	46.00	6.98	100	359	Vertical

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

CTA TESTING

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

Page 18 of 47

For 1GHz to 25GHz

	1	NG	-	GFSK (abo	ve 1GHz)		-		
Freque	ncy(MHz)	:	24	2402		arity:	н	ORIZONTA	L
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	61.83	PK	74	12.17	66.10	32.33	5.12	41.72	-4.27
4804.00	45.00	AV	54	9.00	49.27	32.33	5.12	41.72	-4.27
7206.00	52.97	PK	74	21.03	53.49	36.6	6.49	43.61	-0.52
7206.00	43.36	AV	54	10.64	43.88	36.6	6.49	43.61	-0.52

	Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
CTA	Frequency (MHz)	Emis Lev (dBu ^v	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
10	4804.00	59.95	PK	74	14.05	64.22	32.33	5.12	41.72	-4.27
-	4804.00	42.97	AV	54	11.03	47.24	32.33	5.12	41.72	-4.27
	7206.00	51.37	PK	74	22.63	51.89	36.6	6.49	43.61	-0.52
	7206.00	41.74	AV	54	12.26	42.26	36.6	6.49	43.61	-0.52
-				•	100	1			TE	

Freque	ncy(MHz)	:	24	40	Pola	arity:	Н	IORIZONTA	AL.
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	61.06	PK	74	12.94	64.94	32.6	5.34	41.82	-3.88
4880.00	44.31	AV	54	9.69	48.19	32.6	5.34	41.82	-3.88
7320.00	52.25	PK	74	21.75	52.36	36.8	6.81	43.72	-0.11
7320.00	42.67	AV	54	11.33	42.78	36.8	6.81	43.72	-0.11
			00	P					

$ \begin{array}{ c c c c c c c } \hline Frequency (MHz): & 2440 & Polarity: & VERTICAL \\ \hline Frequency (MHz) & Emission \\ Level \\ (dBuV/m) & (dBuV/m) & (dB) & Margin \\ (dBuV/m) & (dB) & Value \\ (dBuV) & Value \\ (dBuV) & (dB) & Factor \\ (dB/m) & (dB) & (dB) & (dB) & Factor \\ (dB/m) & (dB) & (dB) & (dB) & Factor \\ (dB/m) & (dB) & (dB) & (dB) & Factor \\ (dB/m) & (dB) & (dB) & (dB) & Factor \\ (dB/m) &$										
Frequency (MHz) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Nature (dB) Factor (dBuV) Factor (dB/m) Factor (dB) amplifier (dB) Factor (dB/m) 4880.00 59.16 PK 74 14.84 63.04 32.6 5.34 41.82 -3.88 4880.00 42.63 AV 54 11.37 46.51 32.6 5.34 41.82 -3.88 7320.00 50.40 PK 74 23.60 50.51 36.8 6.81 43.72 -0.11	Freque	Frequency(MHz):			40	Pola	arity:	VERTICAL		
4880.00 42.63 AV 54 11.37 46.51 32.6 5.34 41.82 -3.88 7320.00 50.40 PK 74 23.60 50.51 36.8 6.81 43.72 -0.11		Le	vel			Value	Factor	Factor	amplifier	
7320.00 50.40 PK 74 23.60 50.51 36.8 6.81 43.72 -0.11	4880.00	59.16	PK	74	14.84	63.04	32.6	5.34	41.82	-3.88
	4880.00	42.63	AV	54	11.37	46.51	32.6	5.34	41.82	-3.88
7320.00 40.53 AV 54 13.47 40.64 36.8 6.81 43.72 -0.11	7320.00	50.40	PK	74	23.60	50.51	36.8	6.81	43.72	-0.11
STIL	7320.00	40.53	AV	54	13.47	40.64	36.8	6.81	43.72	-0.11
				GTH						

Freque	ncy(MHz)	:	2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Le [.] (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.51	PK	74	13.49	63.59	32.73	5.66	41.47	-3.08
4960.00	43.66	AV	54	10.34	46.74	32.73	5.66	41.47	-3.08
7440.00	51.50	PK	74	22.50	51.05	37.04	7.25	43.84	0.45
7440.00	42.13	PK	54	11.87	41.68	37.04	7.25	43.84	0.45

Freque	Frequency(MHz):			80	Pola	Polarity:		VERTICAL			
Frequency (MHz)	Emis Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
4960.00	58.13	PK	74	15.87	61.21	32.73	5.66	41.47	-3.08		
4960.00	41.62	AV	54	12.38	44.70	32.73	5.66	41.47	-3.08		
7440.00	49.51	PK	74	24.49	49.06	37.04	7.25	43.84	0.45		
7440.00	40.58	PK	54	13.42	40.13	37.04	7.25	43.84	0.45		
REMARKS	:					S			- CTP		
			Shenzhen	CTA Testing	Technology	Co., Ltd.					

CTATESTING

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

	Freque	ncy(MHz)	:	240	02	Pola	arity:	ŀ	IORIZONTA	L
	equency (MHz)	Emis Lev (dBu ^v	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correctio Factor (dB/m)
	390.00	62.21	PK	74	11.79	72.63	27.42	4.31	42.15	-10.42
2	390.00	43.53	AV	54	10.47	53.95	27.42	4.31	42.15	-10.42
	Freque	ncy(MHz)	:	2402 F		Pola	arity:		VERTICAL	
	equency (MHz)	Emis Lev (dBu ^v	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correctio Factor (dB/m)
25	390.00	59.90	PK	74	14.10	70.32	27.42	4.31	42.15	-10.42
2	390.00	41.15	AV	54	12.85	51.57	27.42	4.31	42.15	-10.42
	Freque	ncy(MHz)	:	248	80	Pola	arity:	ŀ	IORIZONTA	AL
	equency (MHz)	Emis Lev (dBu ^v	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correctio Factor (dB/m)
24	483.50	61.51	Ϋ́́ΡΚ	74	12.49	71.62	27.7	4.47	42.28	-10.11
24	483.50	42.95	AV	54	11.05	53.06	27.7	4.47	42.28	-10.11
	Freque	ncy(MHz)	:	248	80	Pola	arity:		VERTICAL	
	equency (MHz)	Emis Lev (dBu ^v	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correctio Factor (dB/m)
	483.50	59.27	PK	74	14.73	69.38	27.7	4.47	42.28	-10.11
24	483.50	41.08	AV	54	12.92	51.19	27.7	4.47	42.28	-10.11

GTA CTATESTING

4. -- Mean the PK detector measured value is below average limit.

5. The other emission levels were very low against the limit.

CTA TESTING

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

CTA TE

CTATESTING

Maximum Peak Output Power 4.3

Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

CTA TESTING

<u>st Results</u>		Con the second s	6.67	ATES
Туре	Channel	Output power (dBm)	Limit (dBm)	Result
10	00	0.46		
GFSK 1Mbps	19	1.64	30.00	Pass
CTAT	39	0.30		
Note: 1.The test res		ATESI	CTATESTING	

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

CTA TESTING

CTA TESTING

CTA TESTING

4.4 **Power Spectral Density**

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW \geq 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- CTA TESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration

CTATESTING EUT SPECTRUM ANALYZER

Test Results

Туре	Channel	Power Spectral Density	Limit (dBm/3KHz)	Result
		(dBm/3KHz)	, ,	
	00	-16.29		_
GFSK 1Mbps	19	-15.00	8.00	Pass
	39	-16.41	1.6	
GFSK 1Mbps Test plot as follows	39			Pas

CTA TESTING

CTA TESTING

Page 22 of 47

CTA TE

CTA TESTING

4.5 6dB Bandwidth

Limit

ESTING For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

Test Results		ANALYZE	R	CTATESTIN
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
GTING	00	0.676		
GFSK 1Mbps	19	0.660	≥500	Pass
C/n	39	0.632		
Test plot as follows:	GARG	TATE	CTA TESTIN	

GTA CTATESTING

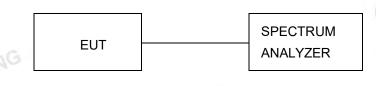
CTA TESTING

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

Page 24 of 47

CTA TESTING

Out-of-band Emissions 4.6


Limit

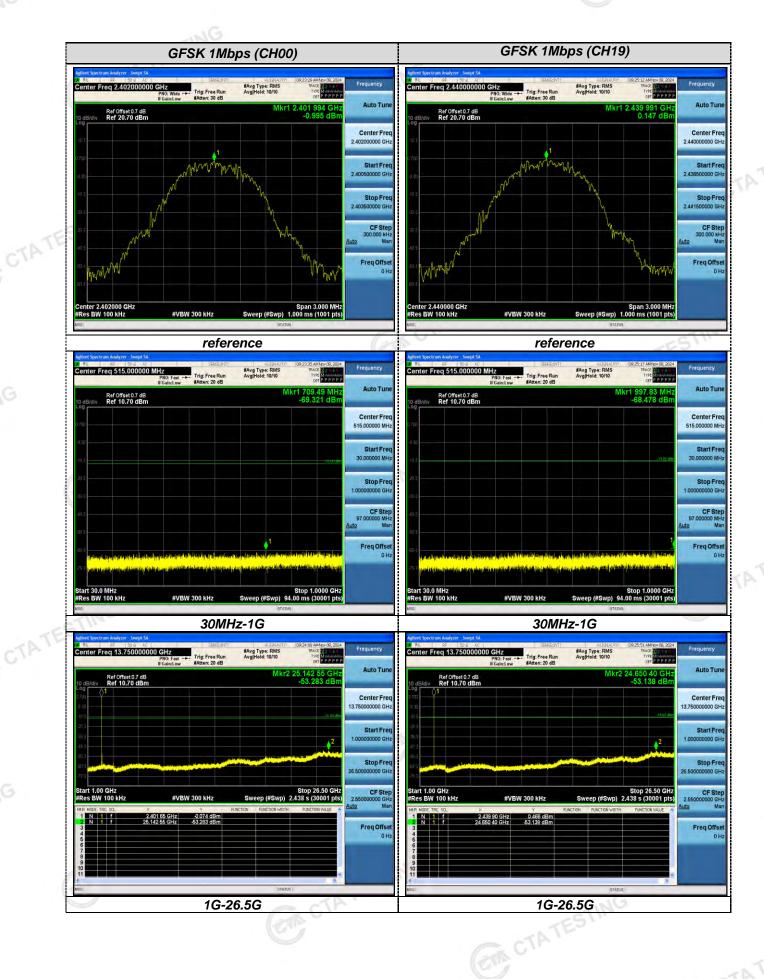
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector , and max hold. Measurements utilizing these setting are GTA CTATESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

Test Results


Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage CTATE measurement data.

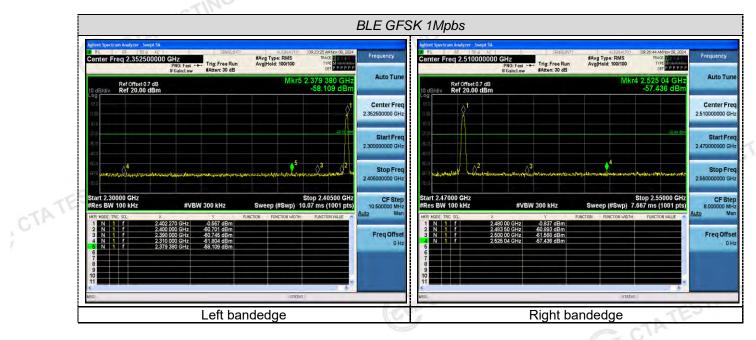
CTA TESTING

Test plot as follows:

CTA TESTING

Page 26 of 47

CTA TESTING


CTA TESTING

Page 28 of 47

CON CTATE

CTA TESTING

Band-edge Measurements for RF Conducted Emissions:

CTA TESTING

CTA TESTING

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

CTA TE

CTA TESTING

Antenna Requirement 4.7

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The gain of antenna was 0.88 dBi.

CTA TESTING

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTA TESTING

CTAT CTAT

GTA CTATESTING

CON CTATE

CON CTATE

Test Setup Photos of the EUT 5

CON CTATE

CON CTATE

<u>Photos of the EUT</u> 6

9:04-0750X

22

10 60

> 50 40 30

CTA TESTIN

TING

CTA TESTING

CON CTATE

CON CTATE

10 20 30 40 20 60 10 80 30 100 10 20 30 40 20 60 10 80 30 200 10 R: 04 4 0750X

R: 04 4-0750X

1/050 30 40 20 60 10 80 30100 10 50 30 40 20 60 10 80 30500 10 50 30 40 5 CTA TESTING

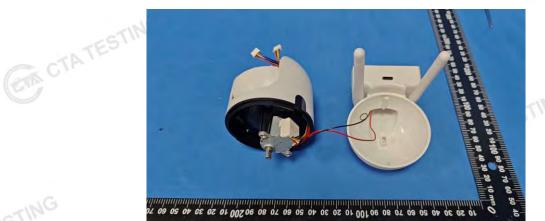
CON CTATE

CON CTATE

GA CTATE

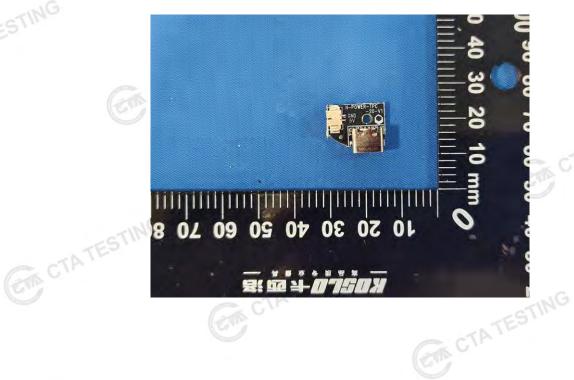
CON CTATE

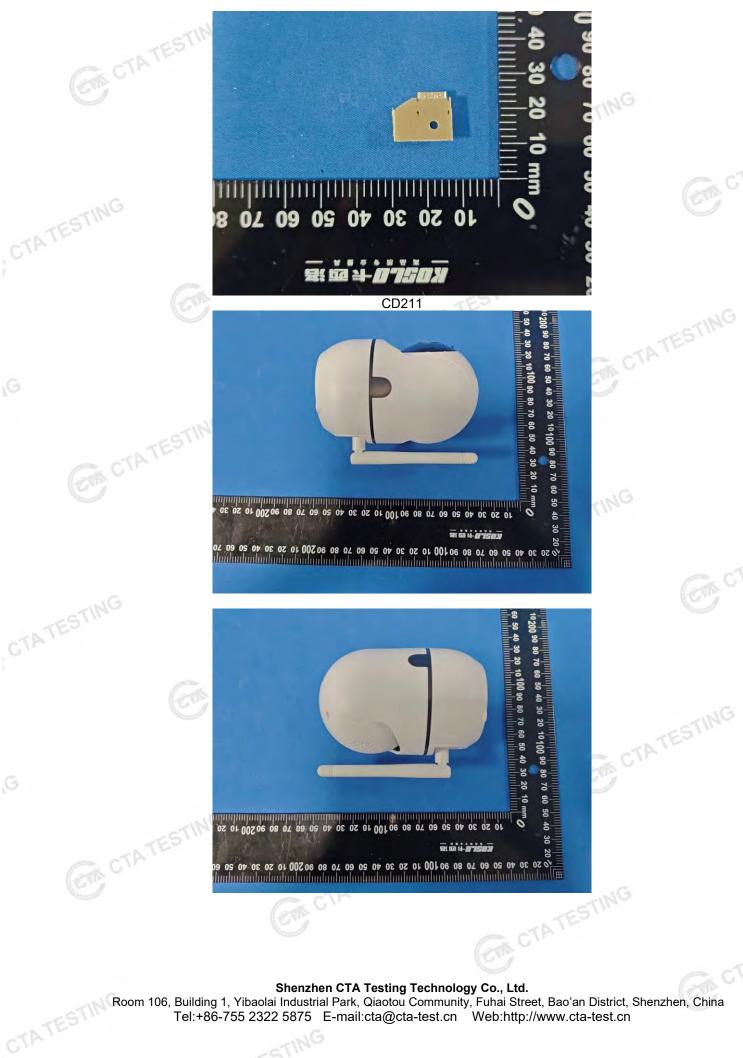
Page 35 of 47


CTATE

CTATE

CON CTATE

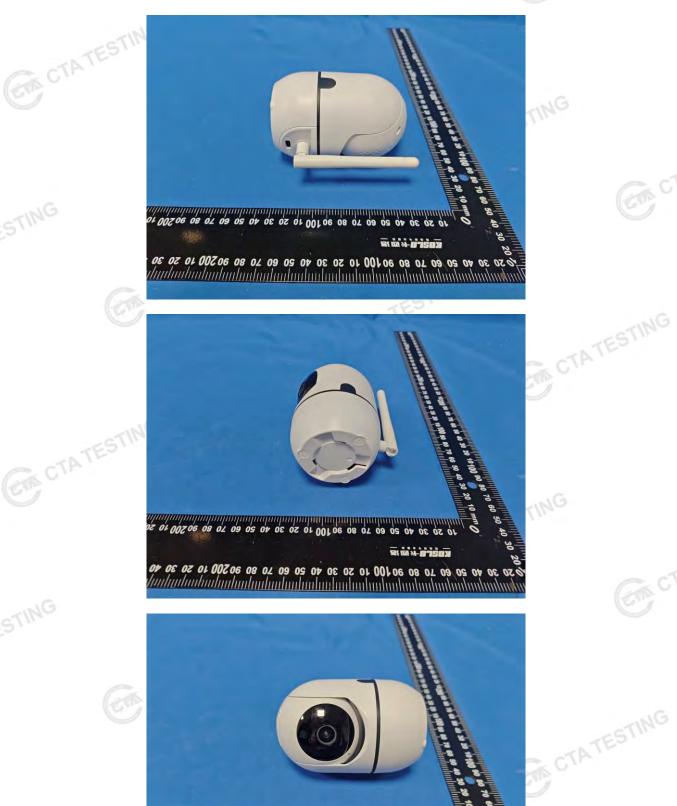

CON CTATE



RIM + OTSON so 30 40 20 60 10 80 30 100 10 50 30 40 20 60 10 80 30 500 10 50 30 40 20 60 10 80 30 30

2 \$20 30 40 20 40 20 40 30 40 10 50 30 40 20 90 10 50 80 30 500 10 50 30 40 20 20 50 50 50 50 50 50 50 50 50 50 50

Page 37 of 47


CON CTATE

CON CTATE

CTA TESTIN

CTATE

CON CTATE

40 20 30 40 20 60 20 80 30 100 10 20 30 40 20 60 10 80 30 70 40 R: 00 4-0750X

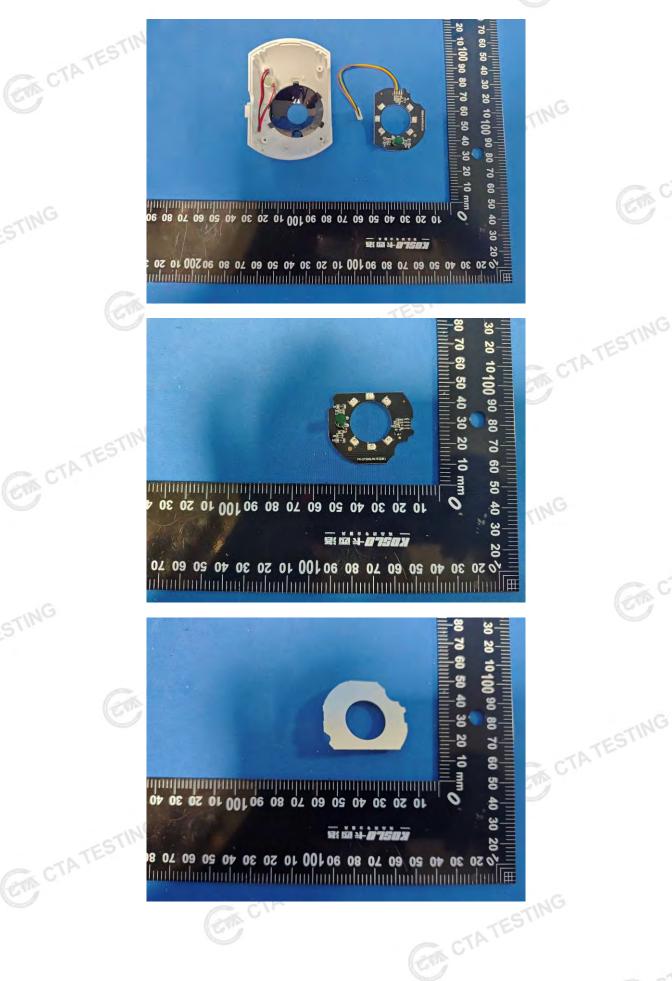
10 50 30 40 20 20 50 30 100 10 50 30 40 20 20 10 50 80 30 500 10 50 30 CTA TESTING

CON CTATE

CTATE

Page 40 of 47

GIN CTATE


CON CTATE

Page 41 of 47

GTA CTATE

CTATE

CON CTATE

CON CTATE

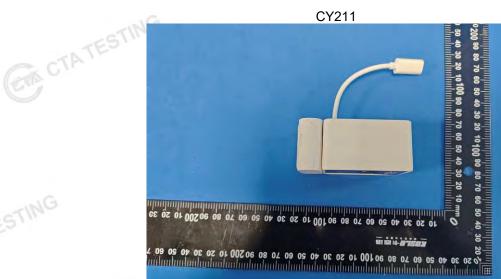
Page 43 of 47

TING

COM CTATE

CON CTATE

CTA TESTING

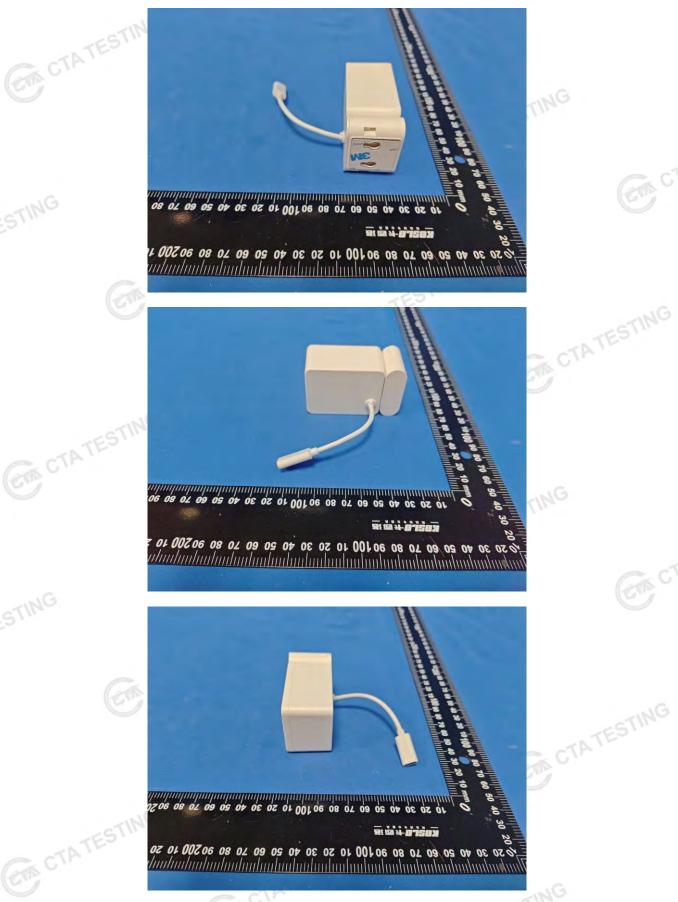

TING

CTATES

Report No.: CTA24110401001

CTA TESTIN

CY211



Rich + OTSOX

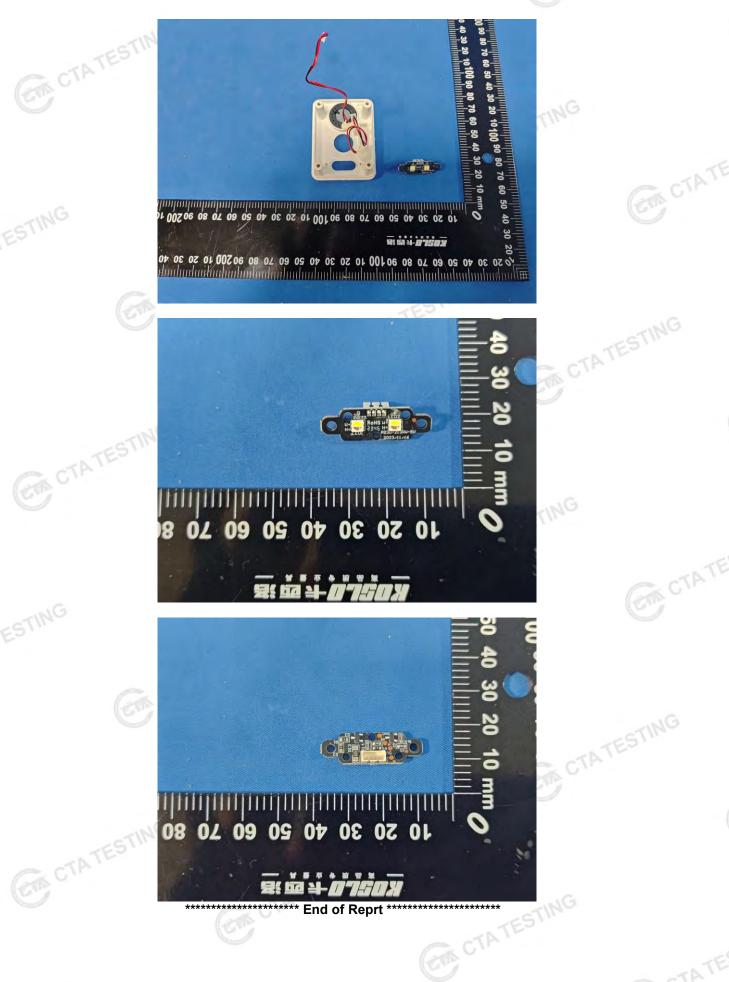
os os es es es es es as 100 10 so 30 es es es es so as os 200 10 so

CTATE

CON CTATE

RIGH 4-0750X

 $\sqrt{6}$ so so to 20 to 20 so so 100 to so so to 20 to CTA TESTING


Page 45 of 47

CTATE

CON CTATE

