

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao' an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No......: CTA24091400702 FCC ID......: 2BLDP-CB201

Compiled by

(position+printed name+signature)...: File administrators Jinghua Xiao

Supervised by

(position+printed name+signature)..: Project Engineer Xudong Zhang

Approved by

(position+printed name+signature)... RF Manager Eric Wang

Date of issue...... Sep. 24, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name......ShenZhen DZinno Technology Co. ,Ltd.

1403,14th Floor, Building 4, Phase 2, Tian'an Yungu Industrial Park,

Address Gangtou Community, Bantian Street, Longgang District, Shenzhen,

China

Test specification:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Smart Camera

Trade Mark: N/A

Manufacturer ShenZhen DZinno Technology Co. ,Ltd.

Model/Type reference.....CB201

CB202, CB203, CD201, CD202, CD203, CD204, CD205, CD206,

CD207, CD208, CD209, CY201, CY202, CY203, CY204, CY205,

CB208, CB209, CH201, CH202, CH203, CH204, CH205, CH206,

CTATESTING

CTATE

CH207, CH208, CH209

Modulation: GFSK

Frequency...... From 2402MHz to 2480MHz

Ratings DC 5.0V From external circuit

Result..... PASS

Page 2 of 34 Report No.: CTA24091400702

TEST REPORT

Equipment under Test Smart Camera

CB201 Model /Type

CTATESTING CB202, CB203, CD201, CD202, CD203, CD204, CD205, CD206, Listed Models

CD207, CD208, CD209, CY201, CY202, CY203, CY204, CY205, CY206, CY207, CY208, CY209, CB204, CB205, CB206, CB207, CB208, CB209, CH201, CH202, CH203, CH204, CH205, CH206,

CH207, CH208, CH209

Applicant ShenZhen DZinno Technology Co. ,Ltd.

Address 1403,14th Floor, Building 4, Phase 2, Tian'an Yungu Industrial Park,

Gangtou Community, Bantian Street, Longgang District, Shenzhen,

China

Manufacturer ShenZhen DZinno Technology Co. ,Ltd.

Address 1403,14th Floor, Building 4, Phase 2, Tian'an Yungu Industrial Park,

Gangtou Community, Bantian Street, Longgang District, Shenzhen,

China

China	CIR	TE
Test Result:	PASS	CTA .

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test CTATES laboratory.

Contents

		Co Co	ontents	
	1.10	TEST STANDARDS	NG	4
	2	SUMMARY	ING	5
	_	COMMAN.	TE51	
	2.1	General Remarks	CTA TEC	5
	2.2	Product Description		5
	2.3	Equipment Under Test		5
	2.4	Short description of the Equipment und	ler Test (EUT)	5 6
	2.5	EUT operation mode		6
	2.6	Block Diagram of Test Setup		6
	2.7	Related Submittal(s) / Grant (s)		6
CIL	2.8	Modifications		6
	<u>3</u>	TEST ENVIRONMENT	aTING	7
				. (
	3.1	Address of the test laboratory	CTATES	7
	3.2	Test Facility		7
	3.3	Environmental conditions	ntu CTATES	7
	3.4	Summary of measurement results		8
	3.5	Statement of the measurement uncertain	ntv	8
	3.6	Equipments Used during the Test	inty	9
	3.0	Equipments used during the rest		9
	<u>4</u>	TEST CONDITIONS AND RES	ULTS	11
	111	(P	ING	
			3711	
	4.1	AC Power Conducted Emission	CTA TESTING	11
	4.2	Radiated Emissions and Band Edge		14
	4.3	Maximum Peak Output Power		20
	4.4	Power Spectral Density		21
	4.5	6dB Bandwidth		24
	4.6	Out-of-band Emissions		27
	4.7	Antenna Requirement		32
	5	TEST SETUP PHOTOS OF TH	<u> E EUT</u>	33
	_	. C.		
CTATE	•	BUOTOO OF THE SUIT		
	<u>6</u>	PHOTOS OF THE EUT		34
			CTATESTING CTATEST	
			-67	
			CTATEST CTATEST	

Report No.: CTA24091400702 Page 4 of 34

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

KDB558074 D01 V03r05: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

CTATE

SUMMARY

2.1 General Remarks

2.1 General Remarks			
Date of receipt of test sample	:	Sep. 14, 2024	ING
Testing commenced on		Sep. 14, 2024	TATES!"
Testing concluded on	:	Sep. 24, 2024	C/L

2.2 Product Description

Target and the land	C. N.	
Testing concluded on	: Sep. 24, 2024	
2.2 Product Descrip	tion	
Product Description:	Smart Camera	
Model/Type reference:	CB201	
Power supply:	DC 5.0V From external circuit	
Adapter information (Auxiliary test supplied by test Lab):	Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A	
Testing sample ID:	CTA240914007-1# (Engineer sample), CTA240914007-2# (Normal sample)	
Hardware version:	D054AP_MB_VB	
Software version:	6.0.24.10	
Bluetooth BLE		
Supported type:	Bluetooth low Energy	
Modulation:	GFSK	
Operation frequency:	2402MHz to 2480MHz	
Channel number:	40	
Channel separation:	2 MHz	
Antenna type:	PIFA antenna	
Antenna gain:	1.05 dBi	

2.3 Equipment Under Test

Power supply system utilised

2.3 Equipment Under To	est				
Power supply system uti	lised				
Power supply voltage	: (0	230V / 50 Hz	С	120V / 60Hz
	(0	12 V DC	С	24 V DC
			Other (specified in bla	ank below	()

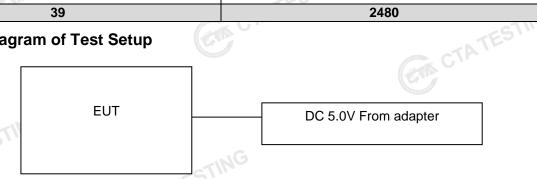
DC 5.0V From external circuit

2.4 Short description of the Equipment under Test (EUT)

This is a Smart Camera.

For more details, refer to the user's manual of the EUT. CTATE

Page 6 of 34 Report No.: CTA24091400702


2.5 **EUT** operation mode

The Applicant provides communication tools software (Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

Operation Frequency:

	- por amount of a control of a	
	Channel	Frequency (MHz)
	00	2402
	01	2404
	02	2406
	TING	
CTATE	19	2440
, G ,	TESTIN	i.
,	37	2476
	38	2478
	39	2480

2.6 Block Diagram of Test Setup

Related Submittal(s) / Grant (s) 2.7

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, CTATE Subpart C Rules.

Modifications 2.8

No modifications were implemented to meet testing criteria. CTATESTING

Report No.: CTA24091400702 Page 7 of 34

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 **Test Facility**

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 **Environmental conditions**

During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

Temperature:		25 ° C
Alle-		TES
Humidity:	170, 110	45 %
Atmospheric pressure:	73 000 111110	950-1050mbar

AC Main Conducted testing:

Temperature:	25 ° C	
NG		
Humidity:	46 %	
-10		
Atmospheric pressure:	950-1050mbar	

Atmospheric pressure.	JJO TOJOTIDAI
Conducted testing:	
Temperature:	25 ° C
	CIA
Humidity:	44 %
Atmospheric pressure:	950-1050mbar

Report No.: CTA24091400702 Page 8 of 34

Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
§15.247(e)	Power spectral density	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Middle☑ Highest	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	complies
§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.247(b)(1)	Maximum output power	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.247(d)	Band edge compliance conducted	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Highest	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Highest	complies
§15.205	Band edge compliance radiated	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Highest	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Highest	complies
§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Middle☑ Highest	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs 2 Mpbs	-/-	BLE 1Mpbs	-/-	complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs 2 Mpbs	1NG -/-	BLE 1Mpbs	-/-	complies
2. We tested a	ement uncertainty is ll test mode and reco	rded worst ca	se in report	CTP	TESTING	

- 1. The measurement uncertainty is not included in the test result.
- 2. We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

u	ie best measurement capability for Shenzhert CTA Testing Technology Co., Ltd					
	Test	Range	Measurement Uncertainty	Notes		
	Radiated Emission	9KHz~30MHz	3.02 dB	(1)		
	Radiated Emission	30~1000MHz	4.06 dB	(1)		
	Radiated Emission	1~18GHz	5.14 dB	(1)		
	Radiated Emission	18-40GHz	5.38 dB	(1)		
	Conducted Disturbance	nducted Disturbance 0.15~30MHz				
	Output Peak power	r 30MHz~18GHz		(1)		
	Power spectral density	STIME	0.57 dB	(1)		
	Spectrum bandwidth	TES /	1.1%	(1)		
	Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)		
	Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)		
	Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)		

Report No.: CTA24091400702 Page 9 of 34

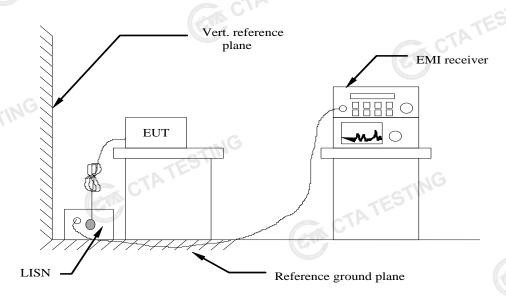
(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
	LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
	EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
CTATE	EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
	Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/02
	Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
	Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
	Universal Radio Communication	CMW500	R&S	CTA-302	2024/08/03	2025/08/02
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2024/10/16
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
CTATE	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
	Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02
	Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02
	CTATE	GM C	BBV9719	CTA	TESTING	

Report No.: CTA24091400702 Page 10 of 34

Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date	
EMI Test Software	MI Test Software Tonscend		5.0.0.2	N/A	N/A	
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A	
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A	
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A	


CTATESTING

Report No.: CTA24091400702 Page 11 of 34

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

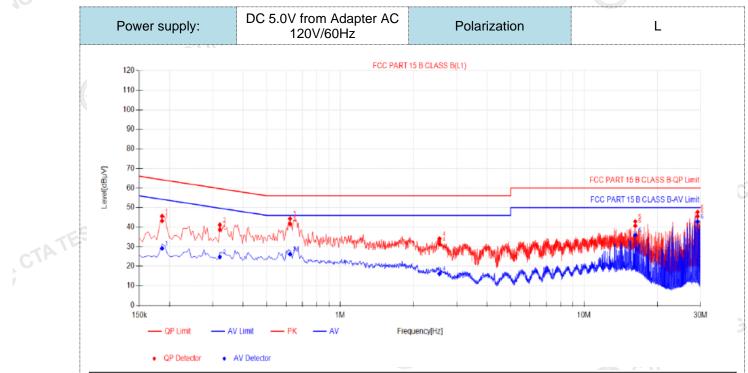
TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

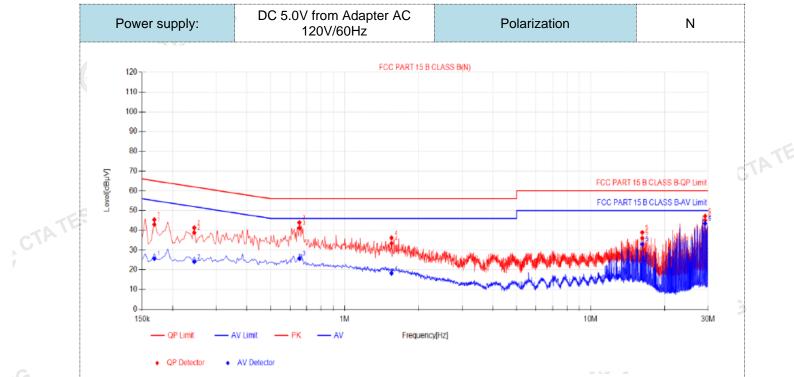

eak Average
6* 56 to 46*
46
50
_

TEST RESULTS

Remark:

- 1. Both modes of BLE 1Mpbs and 2Mpbs were tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs was reported as below:
- 1. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:.

Page 12 of 34 Report No.: CTA24091400702


Final Data List											
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	ΑV Reading [dBμV]	ΑV Value [dBμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict
1	0.186	10.03	33.13	43.16	64.21	21.05	19.09	29.12	54.21	25.09	PASS
2	0.321	9.92	28.77	38.69	59.68	20.99	14.86	24.78	49.68	24.90	PASS
3	0.6225	10.01	31.56	41.57	56.00	14.43	16.19	26.20	46.00	19.80	PASS
4	2.553	10.09	21.26	31.35	56.00	24.65	6.03	16.12	46.00	29.88	PASS
5	16.2285	10.33	30.36	40.69	60.00	19.31	25.58	35.91	50.00	14.09	PASS
6	29.238	10.60	34.97	45.57	60.00	14.43	32.18	42.78	50.00	7.22	PASS
2). Fac 3). QP).QP Value ctor (dB)=in: Margin(dB) Margin(dB)	sertion lo = QP Lin	ss of LISI nit (dBµV)	N (dB) + (Cable los llue (dBµ	s (dB) V)		42.70			

CTATESTING

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ CTATES

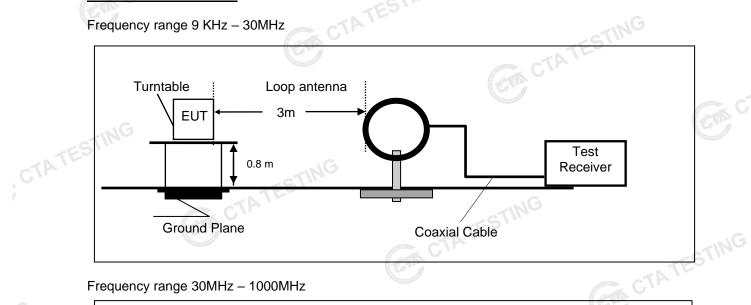
CTA TESTING

Page 13 of 34 Report No.: CTA24091400702

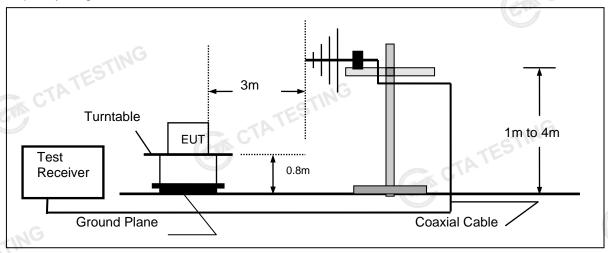
Final	l Data Lis	st										
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dΒμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict	
1	0.168	10.08	32.85	42.93	65.06	22.13	15.55	25.63	55.06	29.43	PASS	
2	0.2445	10.01	28.78	38.79	61.94	23.15	14.06	24.07	51.94	27.87	PASS	
3	0.654	10.10	31.06	41.16	56.00	14.84	15.62	25.72	46.00	20.28	PASS	
4	1.5495	10.14	23.23	33.37	56.00	22.63	8.11	18.25	46.00	27.75	PASS	
5	16.2285	10.45	25.59	36.04	60.00	23.96	22.50	32.95	50.00	17.05	PASS	
6	29.238	10.82	34.23	45.05	60.00	14.95	32.63	43.45	50.00	6.55	PASS	
Note:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB)											10T	
2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)												
3). QPN	Margin(dB)	= QP Lin	nit (dBuV)	- QP Va	ılue (dBu	V)						
4 11 4	/largin(dB)				, .	•						

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V)

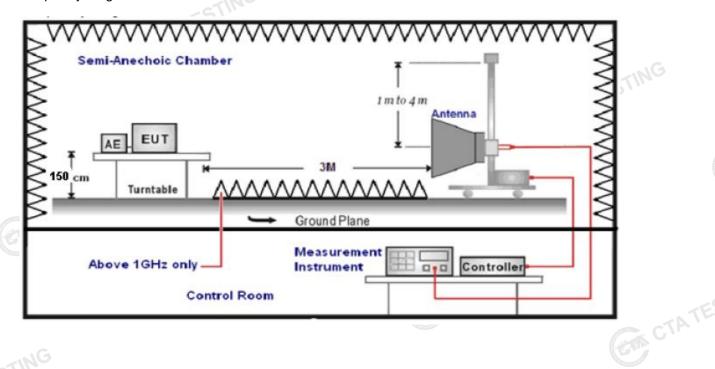
CTATE


CTATESTING

Page 14 of 34 Report No.: CTA24091400702


4.2 Radiated Emissions and Band Edge

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Report No.: CTA24091400702 Page 15 of 34

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.

6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

	The state of the s
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

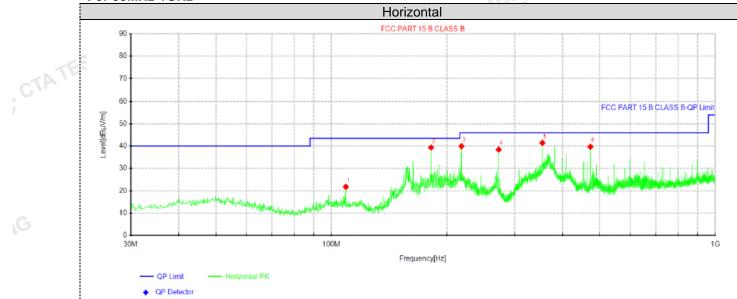
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
3	001(04000/F/KH-)) - 401(00/0)	
	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
3	20log(30)+ 40log(30/3)	30
3	40.0	100
3	43.5	150
3	46.0	200
3	54.0	500
		Guy
	3 3	3 43.5 3 46.0


Report No.: CTA24091400702 Page 16 of 34

TEST RESULTS

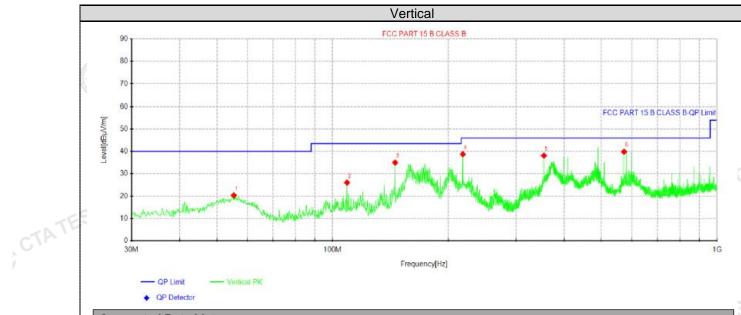
Remark:

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. Both modes of BLE 1Mpbs and 2Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

Susp	ected Data	List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolovity
NO.	[MHz]	[dBµ∨]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	109.055	35.07	21.79	-13.28	43.50	21.71	100	223	Horizontal
2	181.805	53.82	39.39	-14.43	43.50	4.11	100	282	Horizontal
3	218.18	52.51	39.98	-12.53	46.00	6.02	100	95	Horizontal
4	272.742	50.05	38.48	-11.57	46.00	7.52	100	107	Horizontal
5	354.465	52.08	41.44	-10.64	46.00	4.56	100	130	Horizontal
6	472.805	49.09	39.74	-9.35	46.00	6.26	100	17	Horizontal

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)


2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)

CTA TESTING

Report No.: CTA24091400702 Page 17 of 34

Susp	ected Data	cted Data List											
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity				
NO.	[MHz]	[dBµ∨]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Folality				
1	55.3412	31.97	20.34	-11.63	40.00	19.66	100	105	Vertical				
2	109.055	39.31	26.03	-13.28	43.50	17.47	100	360	Vertical				
3	145.43	50.56	35.02	-15.54	43.50	8.48	100	231	Vertical				
4	218.18	51.26	38.73	-12.53	46.00	7.27	100	219	Vertical				
5	354.586	48.76	38.12	-10.64	46.00	7.88	100	254	Vertical				
6	572.715	47.38	39.87	-7.51	46.00	6.13	100	290	Vertical				

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTATESTING

CTATESTING

CON CTATE

Report No.: CTA24091400702

For 1GHz to 25GHz

GFSK (above 1GHz)

Freque	ncy(MHz)):	24	02	Polarity:		HORIZONTAL			
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	62.32	PK	74 G	11.68	66.59	32.33	5.12	41.72	-4.27	
4804.00	45.81	AV	54	8.19	50.08	32.33	5.12	41.72	-4.27	
7206.00	53.23	PK	74	20.77	53.75	36.6	6.49	43.61	-0.52	
7206.00	43.11	AV	54	10.89	43.63	36.6	6.49	43.61	-0.52	

	Freque	Frequency(MHz):			2402 Polar		rity: VERTICAL			
7	Frequency (MHz)			Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
	4804.00	60.41	PK	74	13.59	64.68	32.33	5.12	41.72	-4.27
	4804.00	43.47	AV	54	10.53	47.74	32.33	5.12	41.72	-4.27
	7206.00	51.30	PK	74	22.70	51.82	36.6	6.49	43.61	-0.52
	7206.00	40.50	AV	54	13.50	41.02	36.6	6.49	43.61	-0.52

							48.4			
Freque	Frequency(MHz):		2440		Pola	Polarity:		HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4880.00	61.50	PK	74	12.50	65.38	32.6	5.34	41.82	-3.88	
4880.00	45.17	AV	54	8.83	49.05	32.6	5.34	41.82	-3.88	
7320.00	52.72	PK	74	21.28	52.83	36.8	6.81	43.72	-0.11	
7320.00	42.26	AV	54	11.74	42.37	36.8	6.81	43.72	-0.11	

Freque	Frequency(MHz):		2440		Polarity:		VERTICAL		
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	59.95	PK	74	14.05	63.83	32.6	5.34	41.82	-3.88
4880.00	43.28	AV	54	10.72	47.16	32.6	5.34	41.82	-3.88
7320.00	51.09	PK	74	22.91	51.20	36.8	6.81	43.72	-0.11
7320.00	40.43	AV	54	13.57	40.54	36.8	6.81	43.72	-0.11

Freque	Frequency(MHz):		2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.96	PK	74	13.04	64.04	32.73	5.66	41.47	-3.08
4960.00	44.60	AV	54	9.40	47.68	32.73	5.66	41.47	-3.08
7440.00	52.05	PK	74	21.95	51.60	37.04	7.25	43.84	0.45
7440.00	41.74	PK	54	12.26	41.29	37.04	7.25	43.84	0.45

Frequency(MHz):		2480		Polarity:		VERTICAL			
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	58.99	PK	74	15.01	62.07	32.73	5.66	41.47	-3.08
4960.00	42.93	AV	54	11.07	46.01	32.73	5.66	9 41.47	-3.08
7440.00	50.26	PK	74	23.74	49.81	37.04	7.25	43.84	0.45
7440.00	40.00	PK	54	14.00	39.55	37.04	7.25	43.84	0.45

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
 Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier

Report No.: CTA24091400702

- Margin value = Limit value- Emission level.
- -- Mean the PK detector measured value is below average limit.
- The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

GFSK

Frequency(MHz):		24	02	Pola	Polarity: HORIZONTAL			۱L	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	62.00	PK	74	12.00	72.42	27.42	4.31	42.15	-10.42
2390.00	43.71	AV	54	10.29	54.13	27.42	4.31	42.15	-10.42
Frequency(MHz):		24	02	Pola	rity:		VERTICAL	1	
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.07	PK	574	13.93	70.49	27.42	4.31	42.15	-10.42
2390.00	41.51	AV	54	12.49	51.93	27.42	4.31	42.15	-10.42
Freque	Frequency(MHz):		2480		P olarity:		HORIZONTAL		
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
	Le	vel		D ALASTIN	Value	Factor	Factor	amplifier	Factor
(MHz)	Le _' (dBu	vel V/m)	(dBuV/m)	(dB)	Value (dBuV)	Factor (dB/m)	Factor (dB)	amplifier (dB)	Factor (dB/m)
(MHz) 2483.50 2483.50	Le [,] (dBu 61.20	vel V/m) PK AV	(dBuV/m)	(dB) 12.80 10.98	Value (dBuV) 71.31 53.13	Factor (dB/m) 27.7	Factor (dB) 4.47	amplifier (dB) 42.28	Factor (dB/m) -10.11 -10.11
(MHz) 2483.50 2483.50	Lev (dBu 61.20 43.02	vel V/m) PK AV :	(dBuV/m) 74 54	(dB) 12.80 10.98	Value (dBuV) 71.31 53.13	Factor (dB/m) 27.7 27.7	Factor (dB) 4.47	amplifier (dB) 42.28 42.28	Factor (dB/m) -10.11 -10.11
(MHz) 2483.50 2483.50 Freque Frequency	Lev (dBu 61.20 43.02 ncy(MHz) Emis Lev	vel V/m) PK AV :	(dBuV/m) 74 54 24 Limit	(dB) 12.80 10.98 80 Margin	Value (dBuV) 71.31 53.13 Pola Raw Value	Factor (dB/m) 27.7 27.7 arity: Antenna Factor	Factor (dB) 4.47 4.47 Cable Factor	amplifier (dB) 42.28 42.28 VERTICAL Preamplifier	Factor (dB/m) -10.11 -10.11 Correction Factor

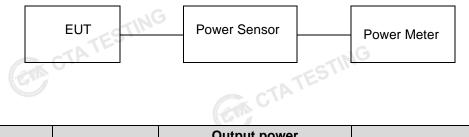
REMARKS:

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier Margin value = Limit value- Emission level.

 -- Mean the PK detector measured value is below average limit. 2.
- 3. 4.

Page 20 of 34 Report No.: CTA24091400702

Maximum Peak Output Power


Limit CTP

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

CTATESTING Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

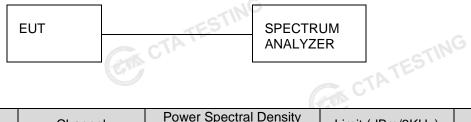
Test Configuration

Test Results

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	-1.84		
GFSK 1Mbps	19	-1.46	30.00	Pass
TATES	39	-1.60		
N. G.	00	-1.78		
GFSK 2Mbps	19	-1.33	30.00	Pass
	39	-1.41	TATES	

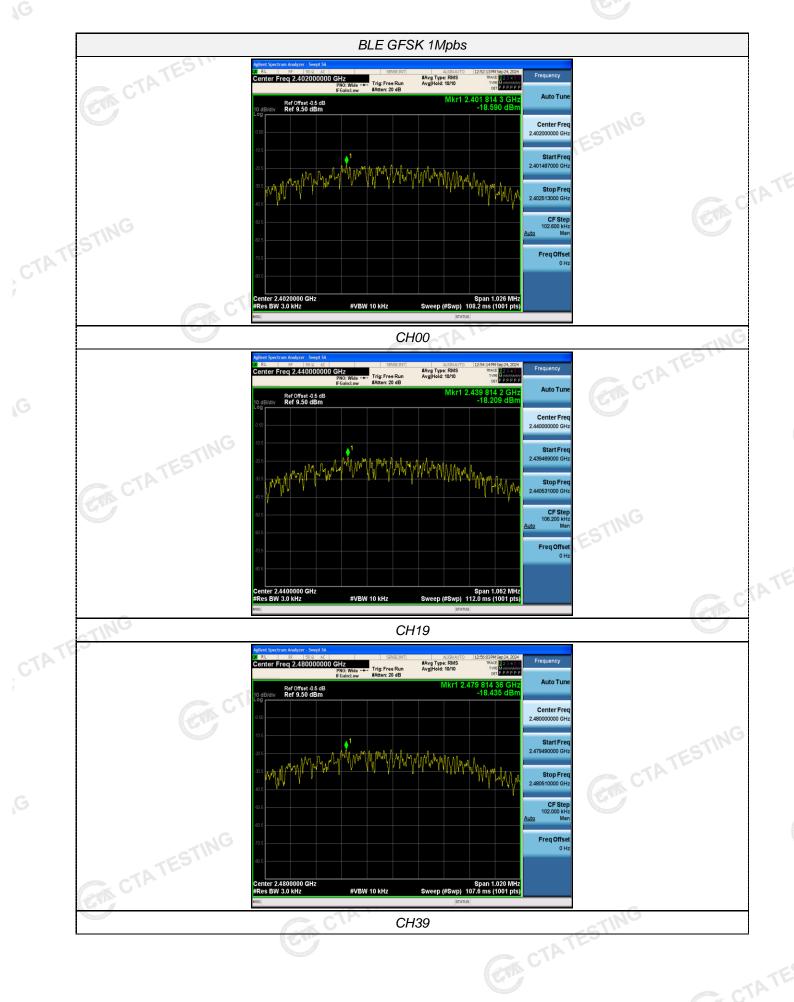
Page 21 of 34 Report No.: CTA24091400702

Power Spectral Density 4.4

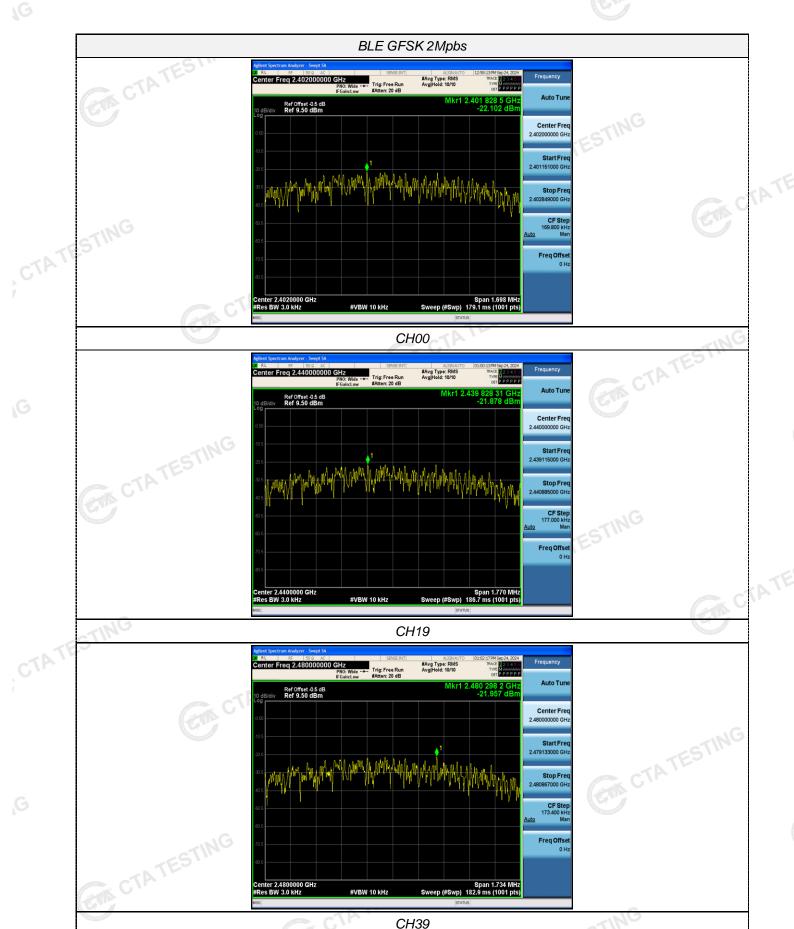

Limit

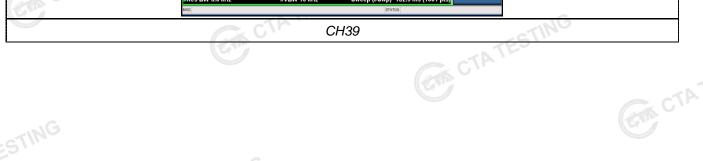
For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure


- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- Set the VBW ≥ 3× RBW.
- CTA TESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration


Test Results


	Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
	ING	00	-18.59		The state of the s
GFSK 1Mbps	19	-18.21	8.00	Pass	
		39	-18.44		
		00	-22.10		
1	GFSK 2Mbps	19	-21.88	8.00	Pass
	S.C.	39	-21.96		
	Test plot as follows		CTATE!		CTATESTING
G					0,,

CH39

CH39

Page 24 of 34 Report No.: CTA24091400702

4.5 6dB Bandwidth

<u>Limit</u>

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

	CTATE		TATESTI
Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
00	0.684		
19	0.708	≥500	Pass
39	0.680		
00	1.132		
19	1.180	≥500	Pass
39	1.156	-IN	G
(CIN)		CTATES!	
	00 19 39 00 19	Channel (MHz) 00 0.684 19 0.708 39 0.680 00 1.132 19 1.180	Channel (MHz) Limit (KHz) 00 0.684 19 0.708 ≥500 39 0.680 00 1.132 19 1.180 ≥500

BLE GFSK 1Mpbs #Avg Type: RMS Avg|Hold: 100/100 Trig: Free Run #Atten: 30 dB Ref Offset -0.5 dB Ref 19.50 dBm CTATE CTATESTING Freq Offse CH00 CTATE #Avg Type: RMS Avg|Hold: 100/100 00 GHz PNO: Wide → Trig: Free Run #Atten: 30 dB Ref Offset -0.5 dB Ref 19.50 dBm CTA TESTING Center Free Freq Offse CH19 #Avg Type: RMS Avg|Hold: 100/100 Ref Offset -0.5 dB Ref 19.50 dBm CTA TESTING Stop Free 2.482000000 GH: CF Ster 400.000 kH #VBW 300 kHz CTA TESTING Freq Offse

CH39

STING

TESTING

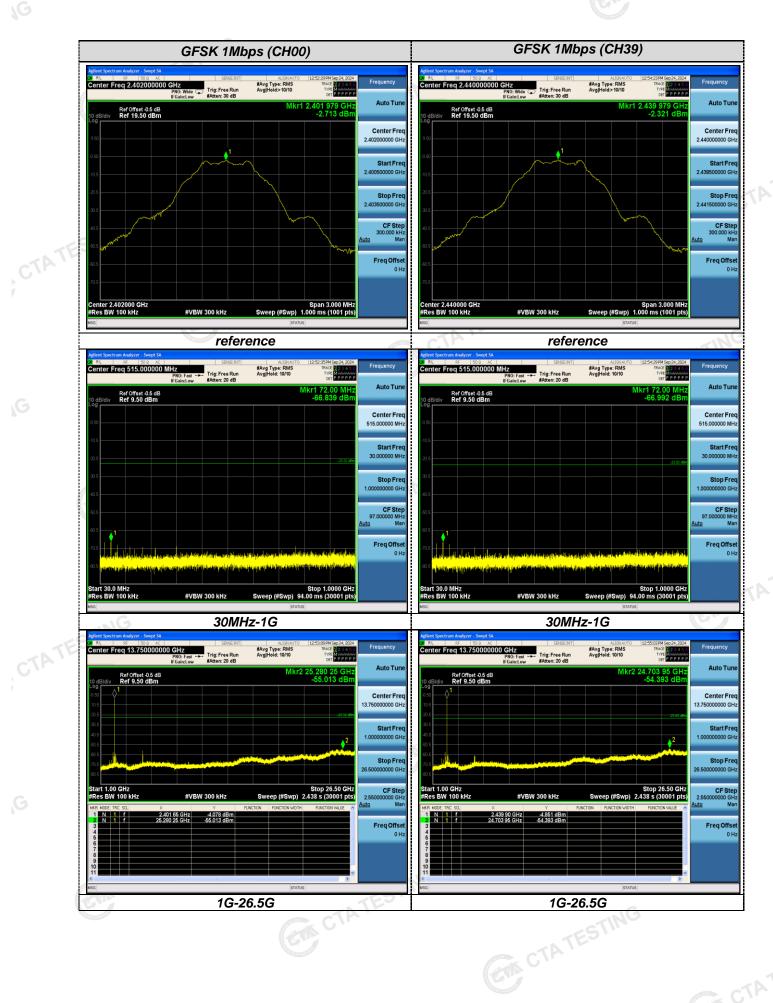
Report No.: CTA24091400702 Page 27 of 34

Out-of-band Emissions

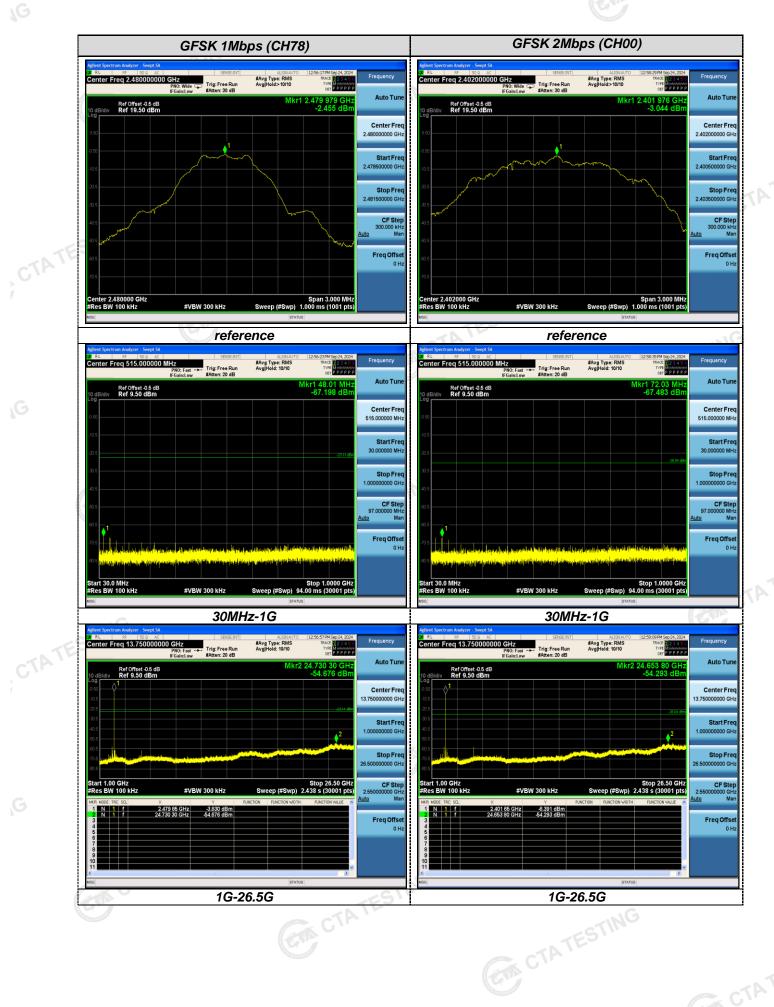
Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

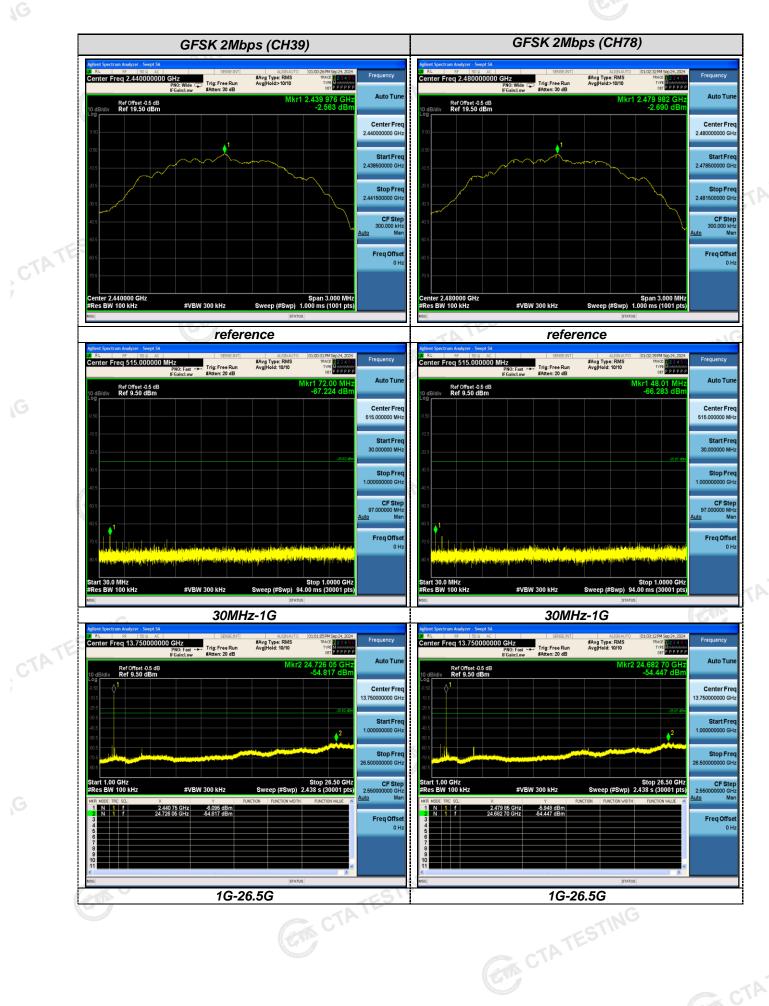
Test Procedure

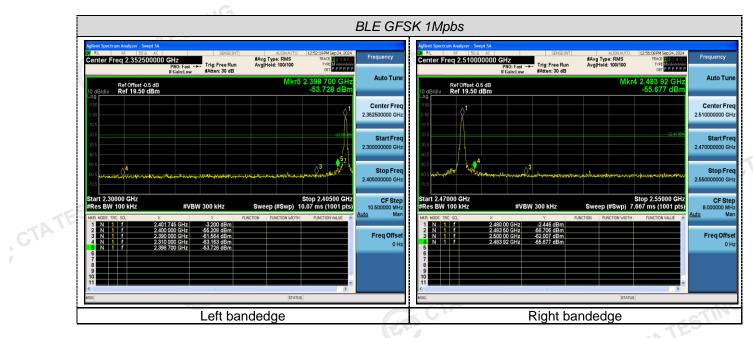

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTATESTING made of the in-band reference level, bandedge and out-of-band emissions.

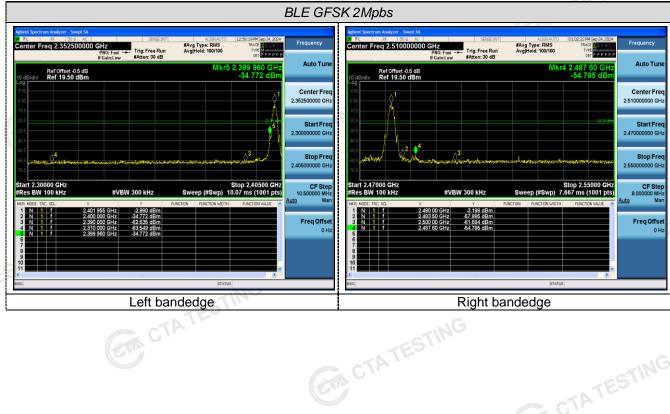
Test Configuration



Test Results Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.


Test plot as follows: CTATESTING





Report No.: CTA24091400702 Page 31 of 34

Band-edge Measurements for RF Conducted Emissions:

Report No.: CTA24091400702 Page 32 of 34

4.7 Antenna Requirement

Standard Applicable

For intentional device, according to RSS-Gen 6.8:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result:

The maximum gain of antenna was 1.05 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility.

Report No.: CTA24091400702 Page 33 of 34

5 Test Setup Photos of the EUT

TESTING

Page 34 of 34 Report No.: CTA24091400702

Photos of the EUT 6

Reference to the test report No.CTA24091400701.

***** End of Report ***********

CTATESTING CTATI