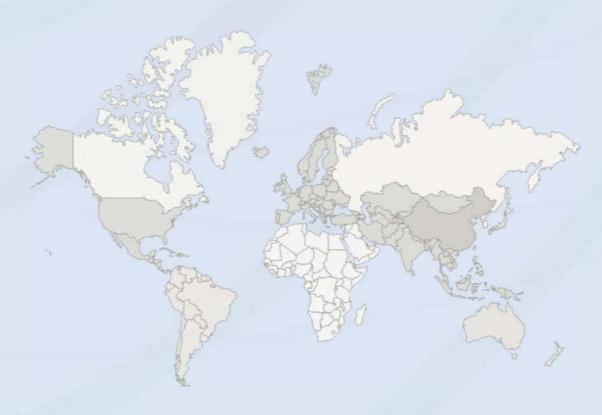


FCC TEST REPORT


Applicant's name: Shenzhenshi Zhongzhimei Keji Youxiangongsi

2D-227F,2nd Floor, Block 213, Tai Ran Science and

Address..... Technology Park, Tai Ran Sixth Road, Tian An

Community, Shatou Street, Futian District, Shenzhen,

China

DONGGUAN NEW TESTING CENTRE CO., LTD

China, 523808

TABLE OF CONTENTS

1.	SUMMARY OF TEST RESULTS	4
2.	GENERAL TEST INFORMATION	4
3.	POWER LINE CONDUCTED EMISSION TEST	7
4.	RADIATED EMISSION TEST	11
5.	OUTPUT POWER	20
6.	-6DB BANDWIDTH	26
7.	BAND EDGES MEASUREMENT	32
8.	CONDUCTED SPURIOUS EMISSION	39
9.	CONDUCTED OUTPUT POWER SPECTRAL DENSITY	63
10.	ANTENNA REQUIREMENT	69
11.	TEST SETUP PHOTOGRAPH	70
12	PHOTOS OF THE FUT	72

TEST REPORT DECLARE

FCC ID	:	2BLC2-2868
Equipment under Test	:	Wifi Digital Clock
Model /Type	:	2868w1
Listed Models	:	2868w1,2868w2,2868w3,2868b1,2868b2,2868b3 Note: Only LED and Shell are different.
Trade Mark	:	JAAMIRA
Applicant	:	Shenzhenshi Zhongzhimei Keji Youxiangongsi
Address	:	2D-227F,2nd Floor, Block 213, Tai Ran Science and Technology Park, Tai Ran Sixth Road, Tian An Community, Shatou Street, Futian District, Shenzhen, China
Manufacturer	:	Shenzhenshi Zhongzhimei Keji Youxiangongsi
Address	•	2D-227F,2nd Floor, Block 213, Tai Ran Science and Technology Park, Tai Ran Sixth Road, Tian An Community, Shatou Street, Futian District, Shenzhen, China
Test Laboratory	:	Dongguan New Testing Centre Co., Ltd
Address	:	1F & 3F, No. 1 the 1st North Industry Road Songshan Lake Science & Technology Park Dongguan, People's Republic of China 523808

Test Standard Used:

FCC Rules and Regulations Part 15 Subpart C: 15.247, ANSI C63.10:2020.

We Declare:

The equipment described above is tested by Dongguan New Testing Centre Co., Ltd and in the configuration tested the equipment complied with the standards specified above. The test results are contained in this test report and Dongguan New Testing Centre Co., Ltd is assumed of full responsibility for the accuracy and completeness of these tests.

After test and evaluation, our opinion is that the equipment provided for test compliance with the requirement of the above FCC standards.

Report No.:	NTC-ER2409026	NTC-ER2409026				
Date of Test:	Sept 10 2024 to Sept 20 2024	Date of Report.: Sept 26, 2024				

Prepared By:

Togler chen

Approved By:

Report No.: NTC-ER2409026

Dave Gao/LAB Manager

Taylor Chen/Engineer

Note: This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Dongguan New Testing Centre Co., Ltd

1. Summary of test results

Description of Test Item	Standard	Results
Antenna Requirement	Section 15.247(c)	PASS
Conduction Emissions	Section 15.207(a)	PASS
Radiated Emissions	Section 15.247(d)	PASS
Carrier Frequencies Separated	Section 15.247(a)(1)	PASS
Dwell Time	Section 15.247(a)(1) (iii)	PASS
Maximum Peak Output Power	Section 15.247(b)	PASS
Band edge	Section 15.247(d)	PASS
Conducted Spurious Emissions	Section 15.247(d)	PASS

2. General test information

Description of EUT

	_	
EUT* Name	:	Wifi Digital Clock
Test model	:	2868w1
EUT function description	:	Please reference user manual of this device
Power supply	• •	DC 5V From Type-C or DC 3.3V From Battery
Supported type:	• •	802.11b/802.11g/802.11n(H20)
Modulation Technology:	:	802.11b: DSSS
		802.11g/n: OFDM
		802.11b :1/2/5.5/11 Mbps
Transmit Data Rate:	:	802.11g :6/9/12/18/24/36/48/54 Mbps
		802.11n(HT20): 7.2/14.4/21.7/28.9/43.3/57.8/65/72.2 Mbps
Channel Separation:	:	5 MHz
Antenna Type	:	PCB Antenna
Gain:	:	Max 2.21dBi
Hardware Version:	:	V1.0
Software Version:	:	V1.0

Note: 1, EUT is the ab. of equipment under test.

Page 5 Report No.: NTC-ER2409026

Frequency list:

Test frequencies are lowest channel: 2412 MHz, middle channel: 2437 MHz and highest channel: 2462 MHz for 802.11b/g/n(HT20)

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437		

Description of test modes

No.	TEST Mode DESCRIPTION		
1	Low channel TX		
2	Middle channel TX		
3	High channel TX		
4	Keeping TX mode		

Note:

Transmit by 802.11b with Date rate (1/2/5.5/11)

Transmit by 802.11g with Date rate (6/9/12/18/24/36/48/54)

Transmit by 802.11n (20MHz) with Date rate (6.5/13/19.5/26/39/52/58.5/65)

Note:

- 1. The EUT has been set to operate continuously on the lowest, middle and highest operation frequency Individually, and the EUT is operating at its maximum duty cycle>or equal 98%
- 2. All modes under which configure applicable have been tested and the worst mode test data recording in the test report, if no other mode data.
- 3. For Radiated Emission, 3 axis were chosen for testing for each applicable mode.

2.1. Detail models

Model	Rating	Note
2868w1	DC 3.3V	
2868w2	DC 3.3V	
2868w3	DC 3.3V	N/A
2868b1	DC 3.3V	,, .
2868b2	DC 3.3V	
2868b3	DC 3.3V	

Note: Only LED and Shell are different

2.2. Test Peripheral List

No.	Equipment	Manufacturer	Model No.	Serial No.	Note
1	Notebook	Lenovo	ThinkPadE450	PF-0LRXDH	

2.3. Block diagram EUT configuration for test

For EUT Tx mode:	
AC Mains —	— EUT

2.4. Test environment conditions

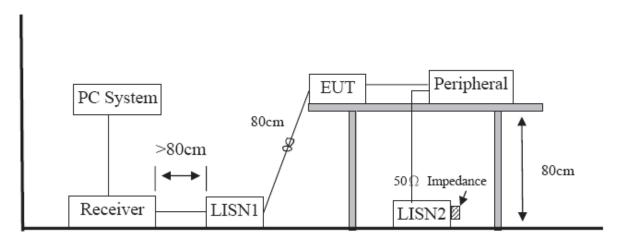
During the measurement the environmental conditions were within the listed ranges:

Temperature range:	21-24°C
Humidity range:	40-75%
Pressure range:	86-106kPa

2.5. Measurement uncertainty

Test Item	Uncertainty
Uncertainty for Conduction emission test	3.20 dB
Uncertainty for Radiation Emission test	4.60 dB (Polarize: V)
(30MHz – 1GHz)	4.60 dB (Polarize: H)
Uncertainty for Radiation Emission test (1GHz – 18GHz)	4.82 dB (Polarize: V)
	4.52 dB (Polarize: H)
Bandwidth	±1.2%
Stop Transmitting Time Test	±0.5%
Uncertainty for frequency error	5.8 x 10-8

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.



3. Power Line Conducted Emission Test

3.1. Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Test Receiver	R&S	ESPI	100146	2024-05-14	1 Year
2	LISN	R&S	ENV216	3650.6550.06	2024-05-14	1 Year
3	LISN	R&S	ENV4200	1107.2387.04	2024-05-14	1 Year
4	RF Cable	HUBER	SUCOFLEX100	30722/4E	2023-05-22	2 Year
5	MEASUREMENT SOFTWARE	FARAD	EZ-EMC(VER:1. 1.4.2)	N/A	N/A	N/A

3.2. BLOCK DIAGRAM OF TEST SETUP

3.3. Power Line Conducted Emission Limits (Class B)

	Fred	quency	Quasi-Peak Level dB(μV)	Average Level dB(μV)
150kHz	~	500kHz	66 ~ 56*	56 ~ 46*
500kHz	~	5MHz	56	46
5MHz	~	30MHz	60	50

Note 1: * Decreasing linearly with logarithm of frequency.

Note 2: The lower limit shall apply at the transition frequencies.

Page 8 Report No.: NTC-ER2409026

3.4. Test Procedure

The EUT and Support equipment, if needed, were put placed on a non-metallic table, 80cm above the ground plane.

Configuration EUT to simulate typical usage as described in clause 2.3 and test equipment as described in clause 3.2 of this report.

All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10. All support equipment power received from a second LISN.

Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

The Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.

During the above scans, the emissions were maximized by cable manipulation.

The test mode(s) described in clause 2.3 were scanned during the preliminary test. After the preliminary scan, we found the test mode producing the highest emission level.

The EUT configuration and worse cable configuration of the above highest emission levels were recorded for reference of the final test.

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.

A scan was taken on both power lines, Neutral and Line, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

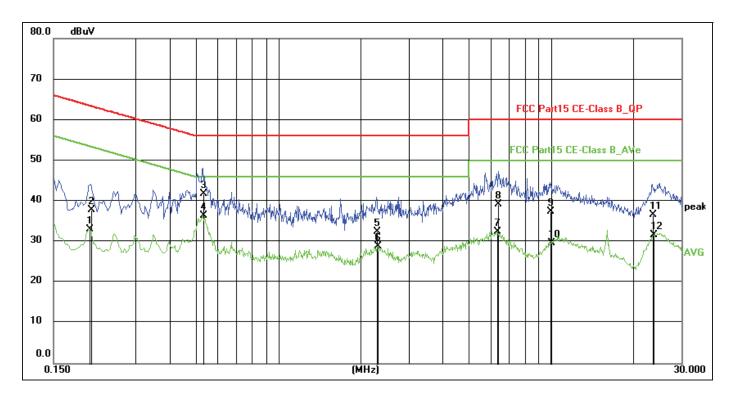
The test data of the worst-case condition(s) was recorded. The bandwidth of test receiver is set at 9 KHz.

3.5. Test Result

PASS. (See below detailed test result)

Note1: All emissions not reported below are too low against the prescribed limits.

Note2: "----" means Peak detection; "----" means Average detection


Note3: Measurement = Reading Level + Factor, Margin= Measurement-Limit

EUT:

Note:

Page 9 Report No.: NTC-ER2409026

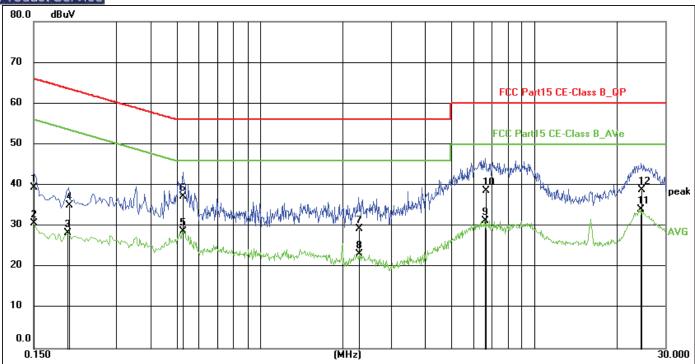
Conducted Emission Test Result

Site: 844LAB Phase:L1 Temperature(C):24(C)

Limit: FCC Part15 CE-Class B_QP Humidity(%):63%

Test Time: 2024/9/23 20:01:35

E-mail: NTC@NTC-CERT.COM


M/N.: 2868W1 Power Rating: AC120V/60Hz

Mode: Lighting Test Engineer:

Wifi Digital Clock

No. Frequency Reading Factor Measure-Limit Margin Detector Comment (MHz) Level(dBuV) (dB) ment(dBuV) (dBuV) (dB) 22.55 -20.40 **AVG** 0.2038 10.50 33.05 53.45 2 0.2060 27.31 10.50 37.81 63.37 -25.56QP 3 0.5299 31.19 10.54 41.73 56.00 -14.27QP 4 * 0.5299 25.93 10.54 36.47 46.00 -9.53 **AVG** 5 2.2900 21.96 10.58 32.54 56.00 -23.46QΡ 2.3140 18.31 10.58 28.89 46.00 -17.11**AVG** 6 6.3338 21.93 10.61 32.54 50.00 -17.46AVG 6.4020 -20.82 QΡ 8 28.57 10.61 39.18 60.00 9.9460 26.79 10.56 37.35 60.00 -22.65 QP 9 -20.35 10 10.0138 19.09 10.56 29.65 50.00 **AVG** 11 23.5540 24.95 11.65 36.60 60.00 -23.40QP 12 23.6580 20.07 11.65 31.72 50.00 -18.28 **AVG**

Page 10 Report No.: NTC-ER2409026

Site: 844LAB Phase:N Temperature(C):24(C)

Limit: FCC Part15 CE-Class B_QP Humidity(%):63%

EUT: Wifi Digital Clock Test Time: 2024/9/23 20:04:50

M/N.: 2868W1 Power Rating: AC120V/60Hz

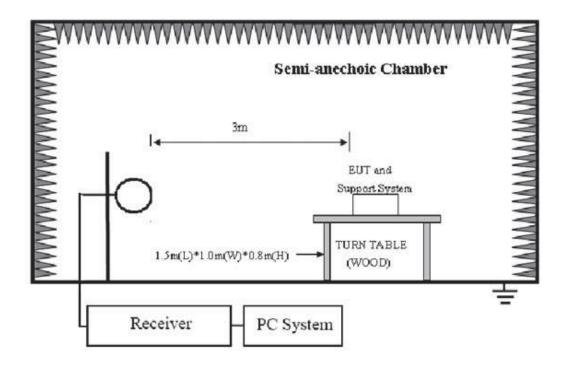
Mode: Lighting Test Engineer:

Note:

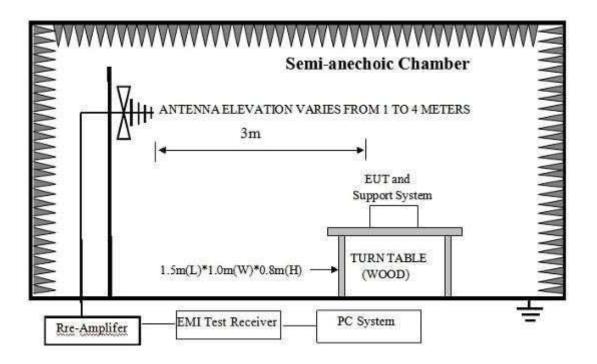
No.	Frequency	Reading	Factor	Measure-	Limit	Margin	Detector	Comment
	(MHz)	Level(dBuV)	(dB)	ment(dBuV)	(dBuV)	(dB)		
1	0.1504	28.92	10.47	39.39	65.98	-26.59	QP	
2	0.1504	20.12	10.47	30.59	55.98	-25.39	AVG	
3	0.1996	17.74	10.47	28.21	53.63	-25.42	AVG	
4	0.2020	24.65	10.48	35.13	63.53	-28.40	QP	
5	0.5220	18.13	10.49	28.62	46.00	-17.38	AVG	
6	0.5260	26.76	10.49	37.25	56.00	-18.75	QP	
7	2.2860	18.70	10.53	29.23	56.00	-26.77	QP	
8	2.3020	12.59	10.53	23.12	46.00	-22.88	AVG	
9	6.6059	20.69	10.56	31.25	50.00	-18.75	AVG	
10	6.6460	27.96	10.57	38.53	60.00	-21.47	QP	
11 *	24.4980	22.28	11.69	33.97	50.00	-16.03	AVG	
12	24.5540	27.08	11.69	38.77	60.00	-21.23	QP	

Page 11 Report No.: NTC-ER2409026

4. Radiated emission test


4.1. Test equipment

	 	1	1	1		1
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	EMI Test Receiver	R&S	ESR	7250-30406 7528	2024-05-14	1 Year
2	Trilog Broadband Antenna	Schwarzbeck	VULB9168	00969	2023-05-22	2 Year
3	Pre-amplifier	R&S	8449B	3113A04553	2024-05-14	1 Year
4	Active Loop antenna	Schwarzbeck	FMZB-1519	1519-038	2024-05-14	1 Year
5	Horn antenna	Schwarzbeck	BBHA9120D	453	2023-05-19	2 Year
6	Double Ridged Horn Antenna	A.H. System	SAS-574	584	2024-05-14	1 Year
7	Pre-amplifier	R&S	SCU18	105326	2024-05-14	1 Year
8	RF Cable	GORE	OSQ01Q010 78.7	SN1545847 3	2024-05-14	1 Year
9	RF Cable	GORE	OSQ01Q010 78.7	SN1545847 4	2024-05-14	1 Year
10	RF Cable	ESCO	ETS-LINGR EN	RFC-SMS-1 00-SMS-340 -IN	2024-05-14	1 Year
11	Measurement software	Farad	EZ-EMC(VE R:1.1.4.2)	N/A	N/A	N/A



4.2. Block diagram of test setup

In 3m Anechoic Chamber Test Setup Diagram for 9KHz to 30MHz:

In 3m Anechoic Chamber Test Setup Diagram for 30MHz to 1GHz:

4.3. Limit

FCC 15.205 Restricted frequency band:

MHz	MHz	MHz	GHz		
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15		
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46		
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75		
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5		
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2		
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5		
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7		
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4		
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5		
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2		
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4		
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12		
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0		
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8		
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5		
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)		

FCC 15.109 Limit

Frequency (MHz)	Distance (Meters)	Field Strengths Limits dB(μV)/m			
3088	3	40.0			
88216	3	43.5			
216960	3	46.0			
9601000	3	54.0			
Above 1CHz	3	Peak: 74.0			
Above 1GHz	3	Average:54.0			

Note: (1) The smaller limit shall apply at the cross point between two frequency bands.

- (2)Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.
- (3)The emission limits shown in the above table are based on measurements employing a CISPR QP detector except for the frequency bands 9-90KHz, 110-490KHz and above 1000MHz.Radiated

emissions limits in these three bands are based on measurements employing an average detector.

- (4) At frequencies below 30MHz, measurement may be performed at a distance closer then that specified, and the limit at closer measurement distance can be extrapolated by below formula: Limit 3m(dBuV/m)= Limit30m(dBuV/m) + 40Log(30m/3m)
- (5)All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.109, all the other emissions shall be at least 20dB below the fundamental emissions, or comply with 15.109 limits.

Page 14 Report No.: NTC-ER2409026

4.4. Test Procedure

Procedure of Preliminary Test

Configuration EUT to simulate typical usage as described in clause 2.3 and test equipment as described in clause 4.2 of this report.

Mains cables, telephone lines or other connections to auxiliary equipment located outside the test are shall drape to the floor, be fitted with ferrite clamps or ferrite tubes placed on the floor at the point where the cable reaches the floor and then routed to the place where they leave the turntable. No extension cords shall be used to mains receptacle.

EUT height should be 0.8m for below 1GHz and 1.5m for above 1GHz at ground with absorbers.

The antenna was placed at 3 meter away from the EUT as stated in ANSI C63.10. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.

The Analyzer / Receiver quickly scanned from 30MHz to 18GHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.

The X, Y, Z three axial are tested and the report only the worst case.

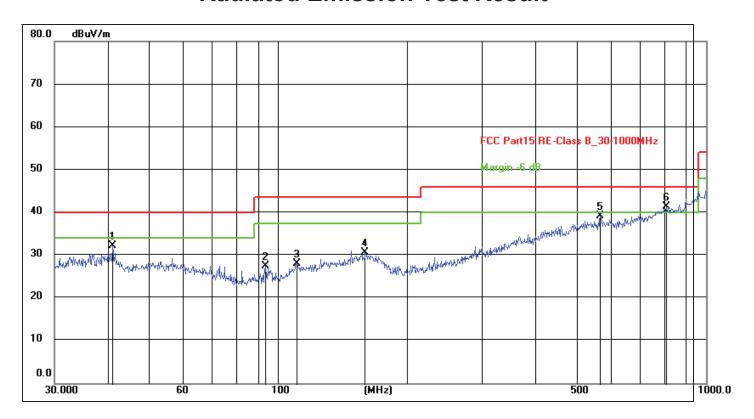
The emissions from 9KHz to 1GHz, QP or average values were measured with EMI receiver with below RBW:

Frequency band	RBW
9KHz-150KHz	200Hz
150KHz-30MHz	9KHz
30MHz-1GHz	120KHz

For emissions above 1GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1MHz, VBW is set at 3MHz for Peak measure; RMS detector RBW 1MHz VBW 3MHz for Average measure.

4.5. Test result

PASS. (See below detailed test result)


Radiated Emissions Test Data Below 30MHz:

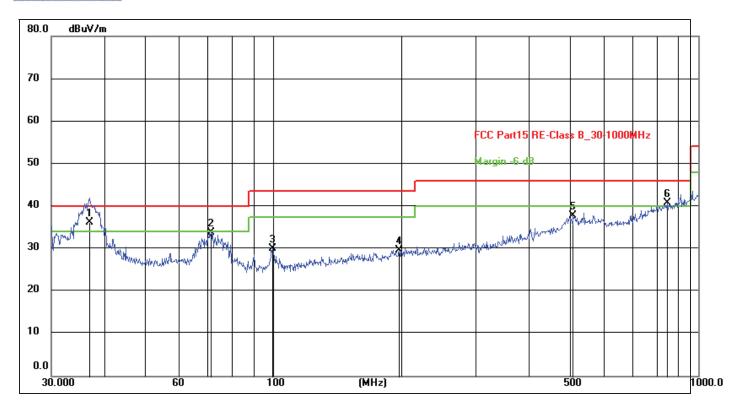
No emission found between lowest internal used/generated frequencies to 30MHz.

Page 15 Report No.: NTC-ER2409026

Radiated Emission Test Result

Site: 844LAB Antenna::Horizontal Temperature(C):24(C)

Limit: FCC Part15 CE-Class B_QP Humidity(%):60%


EUT: Wifi Digital Clock Test Time: 2024/9/24 19:23:17 M/N.: 2868W1 Power Rating: AC 120V/60Hz

Mode: Lighting Test Engineer:

Note:

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.	Height	Azimuth	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)	
1	40.9880	18.05	14.29	32.34	40.00	-7.66	peak	200	309	
2	93.4402	17.01	10.42	27.43	43.50	-16.07	peak	200	4	
3	110.5686	14.79	13.26	28.05	43.50	-15.45	peak	200	281	
4	159.7844	15.23	15.45	30.68	43.50	-12.82	peak	100	211	
5	566.6221	17.99	21.15	39.14	46.00	-6.86	peak	200	281	
6	810.2653	15.90	25.45	41.35	46.00	-4.65	peak	200	124	
*										

Page 16 Report No.: NTC-ER2409026

Site: Antenna::Vertical Temperature(C):24(C)
Limit: FCC Part15 RE-Class B_30-1000MHz Humidity(%):60%

 Limit:
 FCC Part15 RE-Class B_30-1000MHz
 Humidity(%):60%

 EUT:
 LED
 Test Time:
 2024/9/24 19:25:53

 M/N.:
 2868
 Power Rating:
 AC 120V/60Hz

Mode: Lighting Test Engineer:

Note:

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.	Height	Azimuth	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)	
1 *	36.8953	20.93	15.38	36.31	40.00	-3.69	QP	200	231	
2	71.3300	21.15	12.60	33.75	40.00	-6.25	peak	200	52	
3	99.5281	17.98	12.06	30.04	43.50	-13.46	peak	100	159	
4	197.8928	15.46	14.21	29.67	43.50	-13.83	peak	100	3	
5	508.2582	17.98	19.76	37.74	46.00	-8.26	peak	200	320	
6 !	845.0878	15.89	24.83	40.72	46.00	-5.28	peak	100	3	

Page 17 Report No.: NTC-ER2409026

For 1GHz to 25GHz

 $Note: 802.11b/802.11g/802.11n(H20)/802.11n(H40) \ Mode \ all \ have \ been \ tested, \ only \ worse \ case \ 802.11b/802.11b$

802.11b Mode (above 1GHz)

Note: 802.11b/802.11g/802.11n (H20) /802.11n(H40)all have been tested, only worse case 802.11b is reported

Fred	uency(MH	z):	24	12		Polarity:	HORIZONTAL		
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre-	Correction
(MHz)	Level		(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
	(dBuV/m)				(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4824.00	61.83	PK	74.00	-12.17	66.19	32.4	5.11	41.87	-4.36
4824.00	45.11	AV	54.00	-8.89	49.47	32.4	5.11	41.87	-4.36
7236.00	54.38	PK	74.00	-19.62	54.93	36.58	6.43	43.64	-0.63
7236.00	43.78	AV	54.00	-10.22	44.41	36.58	6.43	43.64	-0.63

Freq	uency(MH	z):	2412			Polarity:	VERTICAL		
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre-	Correction
(MHz)	Level		(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
	(dBuV/m)				(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4824.00	60.28	PK	74.00	-13.72	64.35	33.52	5.11	41.87	-3.24
4824.00	43.22	AV	54.00	-10.78	48.52	33.52	5.11	41.87	-3.24
7236.00	52.49	PK	74.00	-21.51	54.20	36.58	6.43	43.64	-0.63
7236.00	42.13	AV	54.00	-11.87	35.51	36.58	6.43	43.64	-0.63

Freq	uency(MH	z):	24	37		Polarity:	VERTICAL		
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre-	Correction
(MHz)	Level		(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
	(dBuV/m)				(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4824.00	60.92	PK	74.00	-13.08	64.87	32.56	5.34	41.85	-3.95
4824.00	44.56	AV	54.00	-9.44	48.51	32.56	5.34	41.85	-3.95
7236.00	53.84	PK	74.00	-20.16	54.20	36.54	6.81	43.71	-0.36
7236.00	43.04	AV	54.00	-10.96	43.4	36.54	6.81	43.71	-0.36

Freq	uency(MH	z):	2437		Polarity:			VERTICAL	
Frequency	Emis	Emission		Margin	Raw	Antenna	Cable	Pre-	Correction
(MHz)	Level		(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
	(dBuV/m)				(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4824.00	59.39	PK	74.00	-14.61	63.64	32.56	5.34	41.85	-3.95
4824.00	42.27	AV	54.00	-11.73	46.52	32.56	5.34	41.85	-3.95
7236.00	51.37	PK	74.00	-22.63	52.03	36.54	6.81	43.71	-0.36
7236.00	41.63	AV	54.00	-12.37	42.08	36.54	6.81	43.71	-0.36

Page 18 Report No.: NTC-ER2409026

Continue Con	SCHOOL THE SCHOOL SCHOO										
Fred	uency(MH	z):	2462		Polarity:			VERTICAL			
Frequency	Emission Level		Limit	Margin	Raw	Antenna	Cable	Pre-	Correction		
(MHz)			(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor		
	(dBuV/m)				(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)		
4824.00	59.13	PK	74.00	-14.87	63.49	32.73	5.64	41.83	-3.46		
4824.00	43.95	AV	54.00	-10.05	47.44	32.73	5.64	41.83	-3.46		
7236.00	50.37	PK	74.00	-23.63	52.43	36.5	7.23	43.79	-0.06		
7236.00	42.36	AV	54.00	-11.64	42.22	36.5	7.23	43.79	-0.06		

Fred	uency(MH	z):	2462		Polarity:			VERTICAL	
Frequency	Emis	Emission		Margin	Raw	Antenna	Cable	Pre-	Correction
(MHz)	Level		(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
	(dBuV/m)				(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4824.00	58.27	PK	74.00	-15.73	61.73	32.73	5.64	41.83	-3.46
4824.00	41.92	AV	54.00	-12.08	45.38	32.73	5.64	41.83	-3.46
7236.00	50.51	PK	74.00	-23.49	50.57	36.5	7.23	43.79	-0.06
7236.00	40.55	AV	54.00	-13.45	40.61	36.5	7.23	43.79	-0.06

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- 6. Other emissions are attenuated 20dB below the limits from 9 kHz to 30MHz, so it does not recorded in report.

Report No.: NTC-ER2409026 Page 19

Results of Band Edges Test (Radiated)

Note: 802.11b/802.11g/802.11n (H20)/ 802.11n (H40) all have been tested, only worse case 802.11b is reported

Fred	Frequency(MHz):			2412		Polarity:			HORIZONTAL	
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre-	Correction	
(MHz)	Level		(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor	
	(dBuV/m)				(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)	
2390.00	61.89	PK	74	-12.11	72.31	27.41	4.31	42.15	-10.42	
2390.00	42.91	AV	54	-11.09	53.33	27.42	4.31	42.15	-10.42	

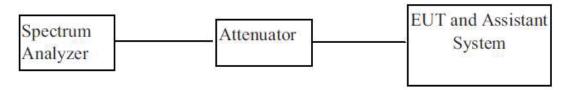
Fred	Frequency(MHz):			2412		Polarity:			ZONTAL
Frequency	Emis	Emission		Margin	Raw	Antenna	Cable	Pre-	Correction
(MHz)	Le	Level		(dB)	Value	Factor	Factor	amplifier	Factor
	(dBuV/m)				(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
2390.00	60.06	PK	74	-13.94	70.48	27.42	4.31	42.15	-10.42
2390.00	41.35	AV	54	-12.65	51.77	27.42	4.31	42.15	-10.42

Freq	uency(MH	z):	2462		Polarity:			HORIZONTAL	
Frequency	Emis	Emission		Margin	Raw	Antenna	Cable	Pre-	Correction
(MHz)	Le	Level		(dB)	Value	Factor	Factor	amplifier	Factor
	(dBuV/m)				(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
2485.00	60.74	PK	74	-13.26	70.85	27.7	4.47	42.28	-10.11
2485.00	42.03	AV	54	-11.97	52.14	27.7	4.47	42.28	-10.11

Fred	Frequency(MHz):			2462		Polarity:			ZONTAL
Frequency	Emis	Emission		Margin	Raw	Antenna	Cable	Pre-	Correction
(MHz)	Le	Level		(dB)	Value	Factor	Factor	amplifier	Factor
	(dBu	(dBuV/m)			(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
2485.00	59.13	PK	74	-14.87	69.24	27.7	4.47	42.28	10.11
2485.00	40.69	AV	54	-13.31	50.8	27.7	4.47	42.28	-10.11

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4.-- Mean the PK detector measured value is below average limit.
- 5. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- 6. For fundamental frequency, RBW 3MHz VBW 3MHz Peak detector is for PK Value; RMS detector is for AV value.
- 7. Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded in report.


Page 20 Report No.: NTC-ER2409026

5. Output Power

5.1. Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	MXA Signal Analyzer	KEYSIGHT	N9020A	MY54510476	2024/5/14	1 Year

5.2. BLOCK DIAGRAM OF TEST SETUP

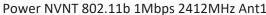
5.3. Limit

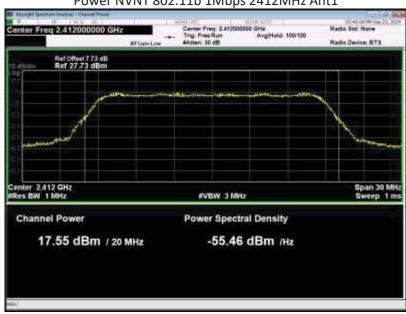
For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt (30dBm).

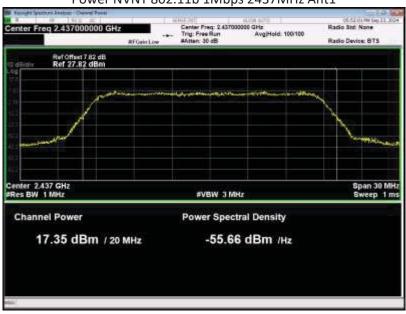
5.4. Test Procedure

For output power test:

- 1. Connect EUT RF output port to power sensor through an RF attenuator.
- 2. Connect the power sensor to the PC.
- 3. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 4. Record the maximum power from the software.


Note: The EUT was tested according to KDB 558074v03r04 for compliance to FCC 47CFR 15.247 requirements.

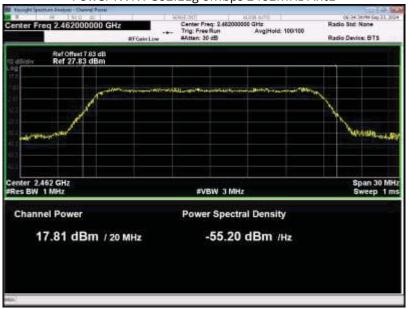



5.5. Test result

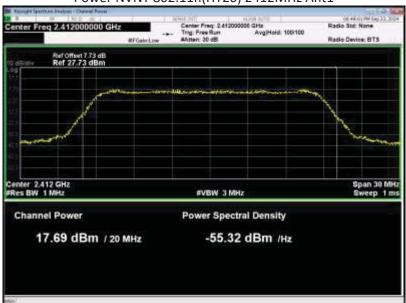
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	802.11b 1Mbps	2412	Ant 1	17.553	0	17.553	30	Pass
NVNT	802.11b 1Mbps	2437	Ant 1	17.35	0	17.35	30	Pass
NVNT	802.11b 1Mbps	2462	Ant 1	17.823	0	17.82	30	Pass

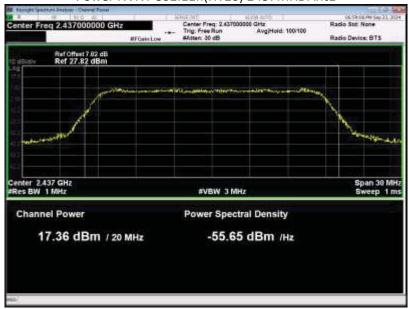


Power NVNT 802.11b 1Mbps 2437MHz Ant1

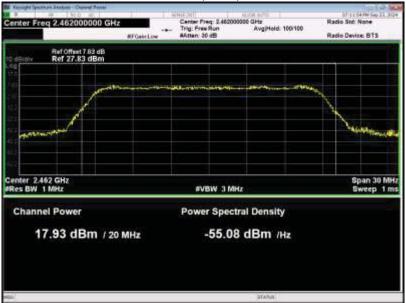


Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	802.11g 6Mbps	2412	Ant 1	17.549	0	17.549	30	Pass
NVNT	802.11g 6Mbps	2437	Ant 1	17.258	0	17.258	30	Pass
NVNT	802.11g 6Mbps	2462	Ant 1	17.81	0	17.81	30	Pass





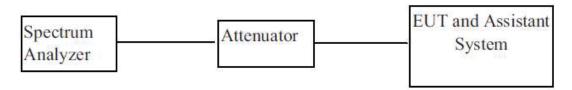
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	802.11n(HT20)	2412	Ant 1	17.69	0	17.69	30	Pass
NVNT	802.11n(HT20)	2437	Ant 1	17.359	0	17.359	30	Pass
NVNT	802.11n(HT20)	2462	Ant 1	17.933	0	17.933	30	Pass



Power NVNT 802.11n(HT20) 2437MHz Ant1

Page 25 Report No.: NTC-ER2409026

Power NVNT 802.11n(HT20) 2462MHz Ant1



6. -6dB Bandwidth

6.1. Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	MXA Signal Analyzer	KEYSIGHT	N9020A	MY54510476	2024/05/14	1 Year

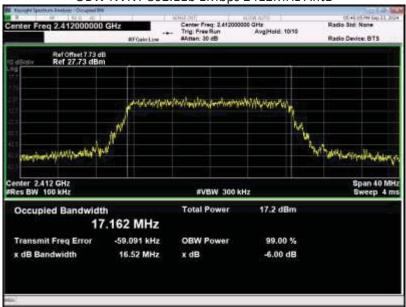
6.2. BLOCK DIAGRAM OF TEST SETUP

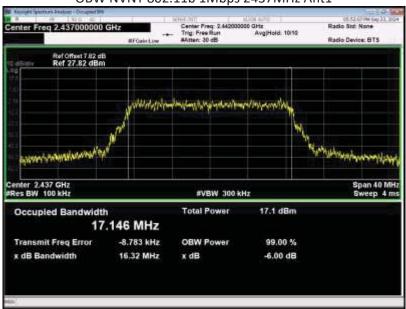
6.3. Limit

Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.4. Test Procedure

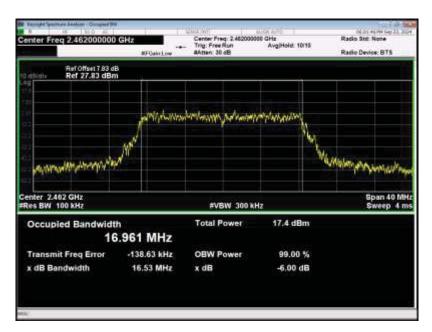
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW≥3×RBW.
- 4. Set SPA Trace 1 Max hold, then View.


Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

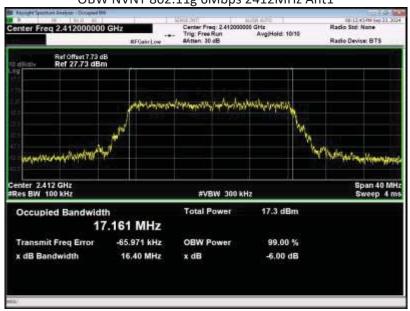

6.5. Test result

		-					
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	802.11b 1Mbps	2412	Ant 1	17.1619	16.5187	0.5	Pass
NVNT	802.11b 1Mbps	2437	Ant 1	17.146	16.3199	0.5	Pass
NVNT	802.11b 1Mbps	2462	Ant 1	16.9611	16.5257	0.5	Pass

OBW NVNT 802.11b 1Mbps 2412MHz Ant1

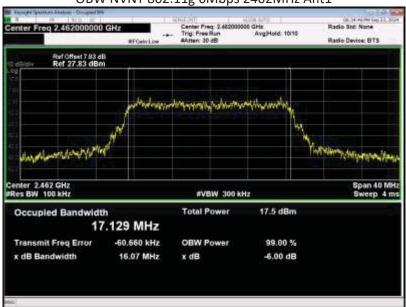


OBW NVNT 802.11b 1Mbps 2437MHz Ant1

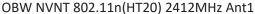

OBW NVNT 802.11b 1Mbps 2462MHz Ant1

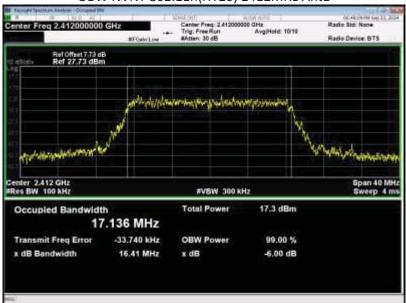
Page 28 Report No.: NTC-ER2409026


Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	802.11g 6Mbps	2412	Ant 1	17.161	16.4007	0.5	Pass
NVNT	802.11g 6Mbps	2437	Ant 1	17.1934	16.5431	0.5	Pass
NVNT	802.11g 6Mbps	2462	Ant 1	17.1287	16.0728	0.5	Pass

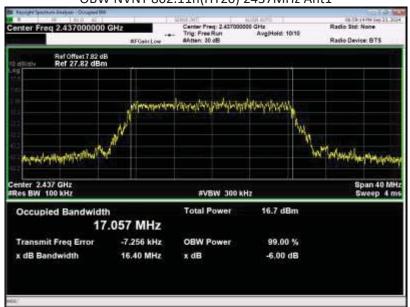


Page 29 Report No.: NTC-ER2409026

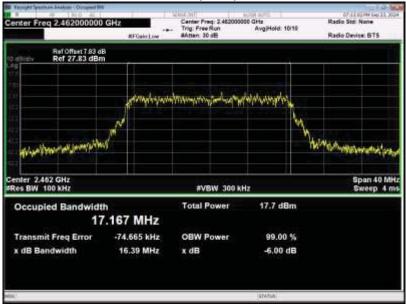

OBW NVNT 802.11g 6Mbps 2437MHz Ant1



OBW NVNT 802.11g 6Mbps 2462MHz Ant1



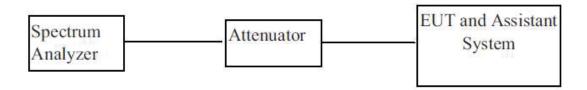
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	802.11n(HT20)	2412	Ant 1	17.1359	16.4076	0.5	Pass
NVNT	802.11n(HT20)	2437	Ant 1	17.0566	16.3987	0.5	Pass
NVNT	802.11n(HT20)	2462	Ant 1	17.1666	16.3938	0.5	Pass



OBW NVNT 802.11n(HT20) 2437MHz Ant1

Page 31 Report No.: NTC-ER2409026

OBW NVNT 802.11n(HT20) 2462MHz Ant1


Page 32 Report No.: NTC-ER2409026

7. Band Edges Measurement

7.1. Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	MXA Signal Analyzer	KEYSIGHT	N9020A	MY54510476	2024/05/14	1 Year

7.2. BLOCK DIAGRAM OF TEST SETUP

7.3. Limit

Below –30dB of the highest emission level of operating band (In 100 kHz Resolution Bandwidth)

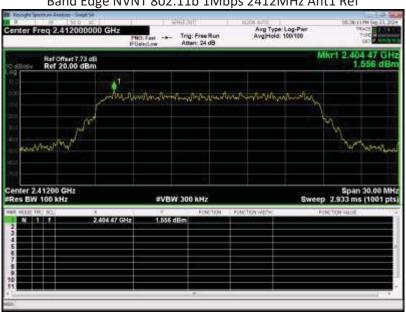
7.4. Test Procedure

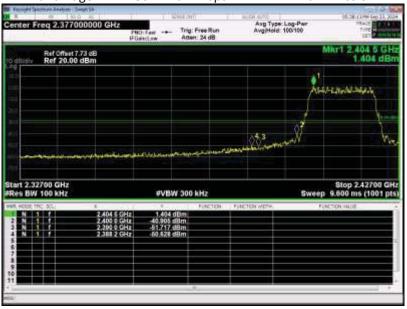
The transmitter output was connected to the spectrum analyzer via a low lose cable.

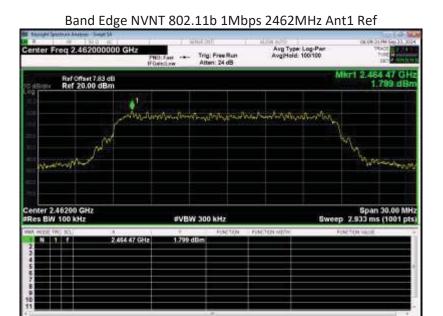
Set RBW of spectrum analyzer to 100 KHz and VBW of spectrum analyzer to 300 KHz with convenient frequency span including 100 KHz bandwidth from band edge.

Peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 30dB relative to the maximum measured in-band peak PSD level.

The band edges was measured and recorded.

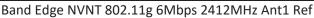


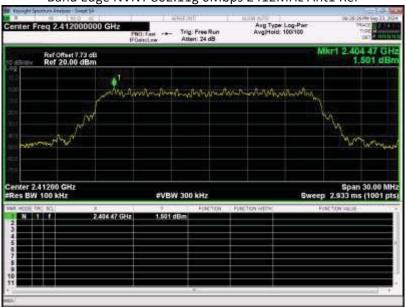

7.5. Test result


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	802.11b 1Mbps	2412	Ant 1	-52.176	-30	Pass
NVNT	802.11b 1Mbps	2462	Ant 1	-41.279	-30	Pass

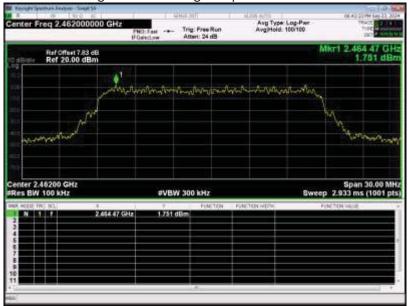
Band Edge NVNT 802.11b 1Mbps 2412MHz Ant1 Ref

Band Edge NVNT 802.11b 1Mbps 2412MHz Ant1 Emission





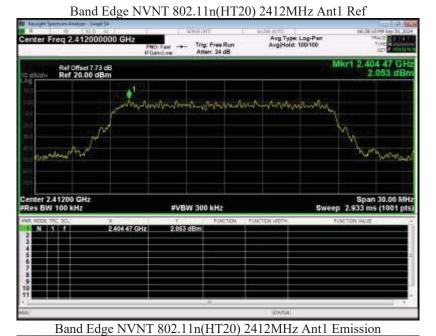
Condition Mode Frequency (MHz) Antenna Max Value (dBc) Limit (dBc) Verdict -52.461 NVNT 802.11g 6Mbps 2412 Ant 1 -30 Pass **NVNT** 802.11g 6Mbps 2462 Ant 1 -41.821 -30 Pass



Band Edge NVNT 802.11g 6Mbps 2412MHz Ant1 Emission

Page 36 Report No.: NTC-ER2409026

Band Edge NVNT 802.11g 6Mbps 2462MHz Ant1 Ref

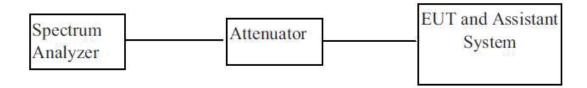


Band Edge NVNT 802.11g 6Mbps 2462MHz Ant1 Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	802.11n(HT20)	2412	Ant 1	-52.283	-30	Pass
NVNT	802.11n(HT20)	2462	Ant 1	-50.712	-30	Pass



Band Edge NVNT 802.11n(HT20) 2462MHz Ant1 Emission


Page 39 Report No.: NTC-ER2409026

8. Conducted Spurious Emission

8.1. Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	MXA Signal Analyzer	KEYSIGHT	N9020A	MY54510476	2024/05/14	1 Year

8.2. BLOCK DIAGRAM OF TEST SETUP

8.3. Limit

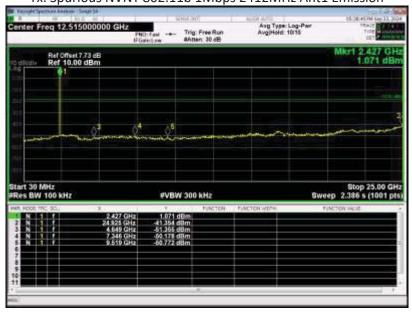
In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power.

In addition, radiation emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in§15.209(a)

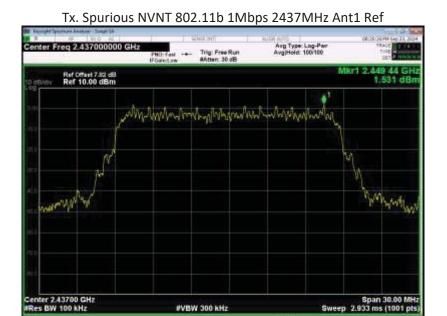
8.4. Test Procedure

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Trace 1 Max hold, then View.

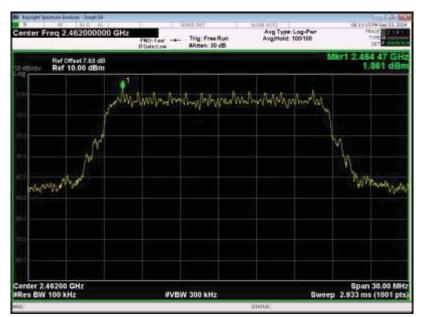
Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements. Owing to satisfy the requirements of the number of measurement points, we set the RBW=1MHz, VBW > RBW, scan up through 10th harmonic, and consider the tested results as the worst case, if the tested results conform to the requirement, we can deem that the real tested results(set the RBW=100KHz, VBW > RBW) are conform to the requirement.


8.5. Test result

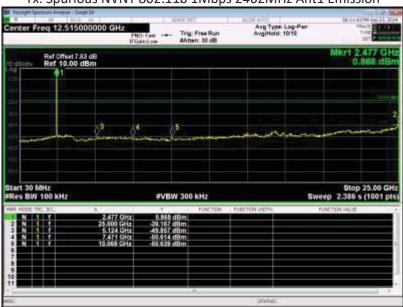
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	802.11b 1Mbps	2412	Ant 1	-42.926	-20	Pass
NVNT	802.11b 1Mbps	2437	Ant 1	-41.591	-20	Pass
NVNT	802.11b 1Mbps	2462	Ant 1	-41.021	-20	Pass


Tx. Spurious NVNT 802.11b 1Mbps 2412MHz Ant1 Ref

Tx. Spurious NVNT 802.11b 1Mbps 2412MHz Ant1 Emission



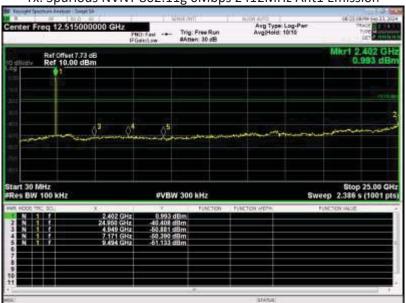
Tx. Spurious NVNT 802.11b 1Mbps 2437MHz Ant1 Emission



Tx. Spurious NVNT 802.11b 1Mbps 2462MHz Ant1 Ref

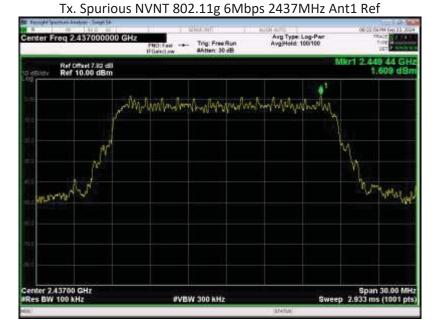
Tx. Spurious NVNT 802.11b 1Mbps 2462MHz Ant1 Emission

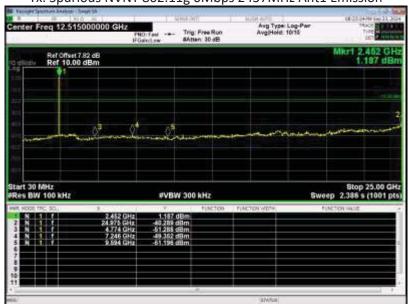
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	802.11g 6Mbps	2412	Ant 1	-42.211	-20	Pass
NVNT	802.11g 6Mbps	2437	Ant 1	-41.889	-20	Pass
NVNT	802.11g 6Mbps	2462	Ant 1	-41.452	-20	Pass


NTC Product Service

Tx. Spurious NVNT 802.11g 6Mbps 2412MHz Ant1 Ref

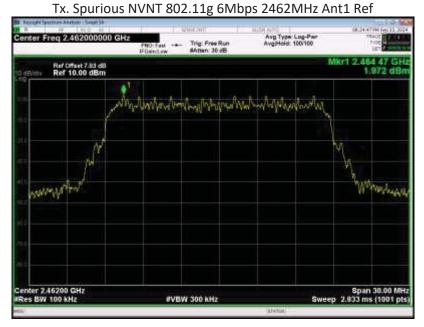
Report No.: NTC-ER2409026



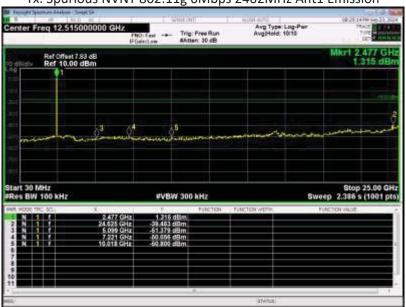


NTC Product Service

Report No.: NTC-ER2409026



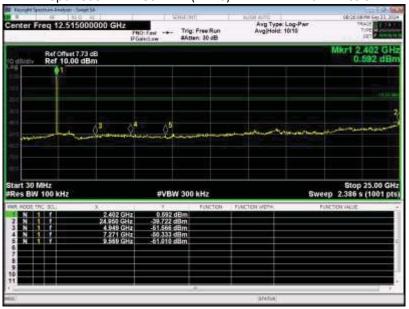
Tx. Spurious NVNT 802.11g 6Mbps 2437MHz Ant1 Emission



NTC Product Service

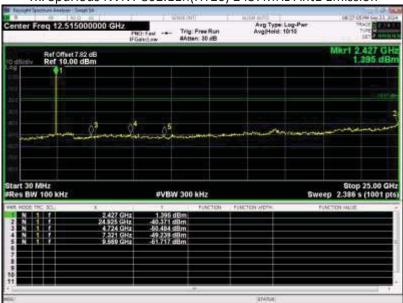
Report No.: NTC-ER2409026


Tx. Spurious NVNT 802.11g 6Mbps 2462MHz Ant1 Emission



Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	802.11n(HT20)	2412	Ant 1	-41.521	-20	Pass
NVNT	802.11n(HT20)	2437	Ant 1	-41.802	-20	Pass
NVNT	802.11n(HT20)	2462	Ant 1	-42.042	-20	Pass

Tx. Spurious NVNT 802.11n(HT20) 2412MHz Ant1 Emission



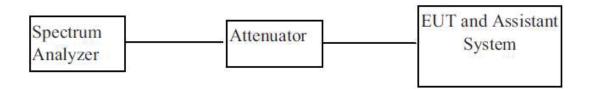
Tx. Spurious NVNT 802.11n(HT20) 2437MHz Ant1 Ref

Report No.: NTC-ER2409026

Tx. Spurious NVNT 802.11n(HT20) 2437MHz Ant1 Emission

Tx. Spurious NVNT 802.11n(HT20) 2462MHz Ant1 Ref

Tx. Spurious NVNT 802.11n(HT20) 2462MHz Ant1 Emission



9. Conducted Output Power Spectral Density

9.1. Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	MXA Signal Analyzer	KEYSIGHT	N9020A	MY54510476	2024/05/14	1 Year

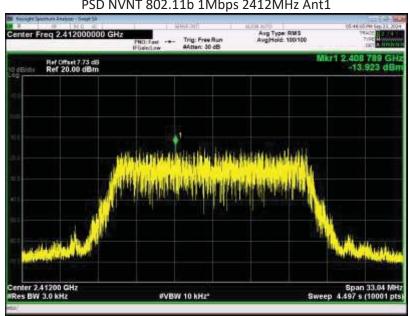
9.2. Block diagram of test setup

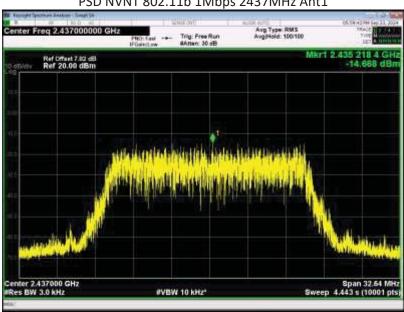
9.3. Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

9.4. Test Procedure

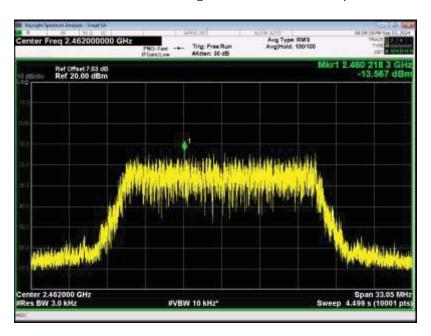
- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.



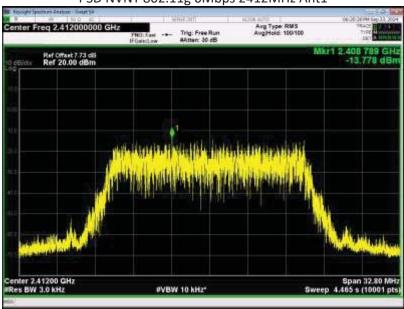

9.5. Test result

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	802.11b 1Mbps	2412	Ant 1	-13.923	8	Pass
NVNT	802.11b 1Mbps	2437	Ant 1	-14.668	8	Pass
NVNT	802.11b 1Mbps	2462	Ant 1	-13.567	8	Pass

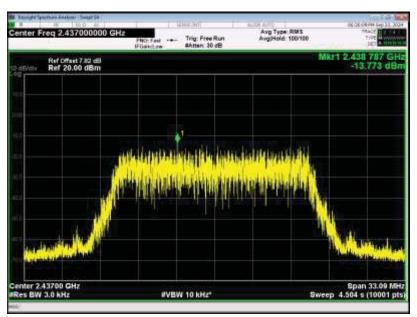
PSD NVNT 802.11b 1Mbps 2412MHz Ant1



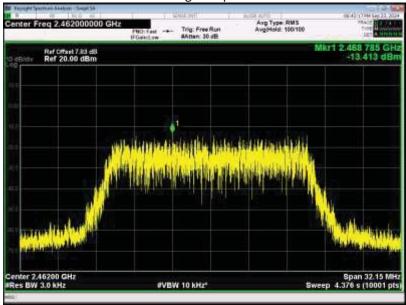
PSD NVNT 802.11b 1Mbps 2437MHz Ant1


PSD NVNT 802.11b 1Mbps 2462MHz Ant1

Page 65 Report No.: NTC-ER2409026

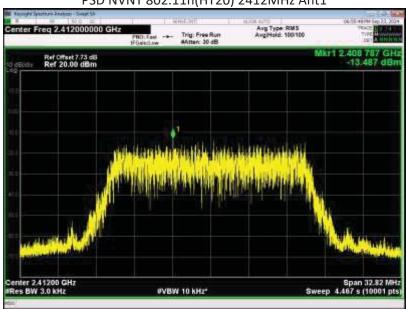

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	802.11g 6Mbps	2412	Ant 1	-13.778	8	Pass
NVNT	802.11g 6Mbps	2437	Ant 1	-13.773	8	Pass
NVNT	802.11g 6Mbps	2462	Ant 1	-13.413	8	Pass

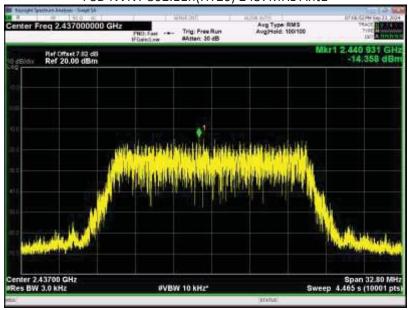
PSD NVNT 802.11g 6Mbps 2412MHz Ant1



PSD NVNT 802.11g 6Mbps 2437MHz Ant1

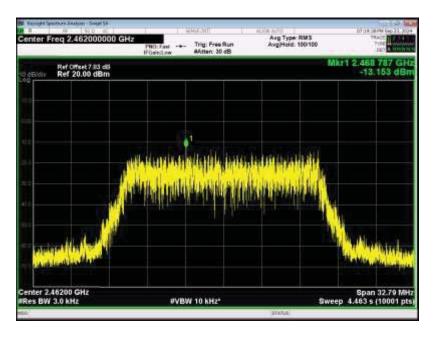
PSD NVNT 802.11g 6Mbps 2462MHz Ant1





Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	802.11n(HT20)	2412	Ant 1	-13.487	8	Pass
NVNT	802.11n(HT20)	2437	Ant 1	-14.358	8	Pass
NVNT	802.11n(HT20)	2462	Ant 1	-13.153	8	Pass

PSD NVNT 802.11n(HT20) 2412MHz Ant1



PSD NVNT 802.11n(HT20) 2437MHz Ant1

PSD NVNT 802.11n(HT20) 2462MHz Ant1

10. Antenna Requirement

10.1. Standard requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

10.2. EUT Antenna

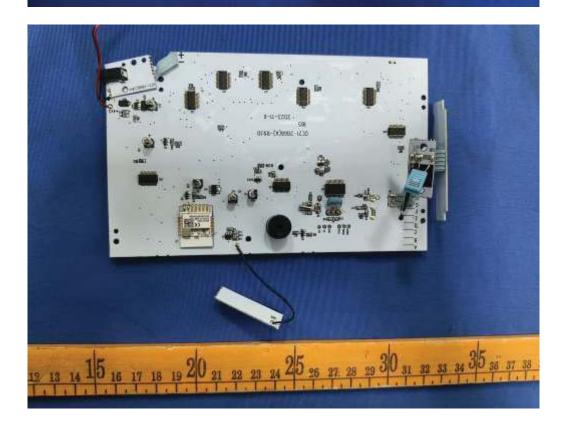
The antenna is Integral Antenna and no consideration of replacement. Antenna gain is Maximum 2.21dBi from 2.4GHz to 2.5GHz.

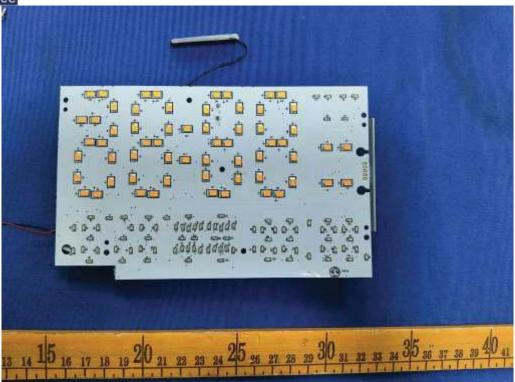
11. Test setup photograph

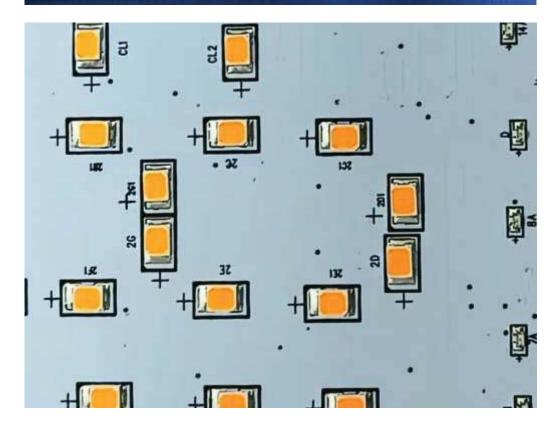
11.1. Photos of power line conducted emission test

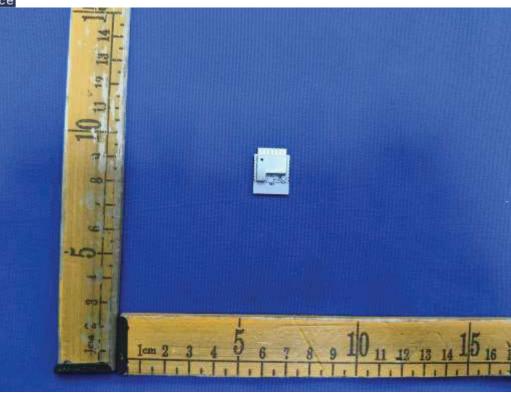
11.2. Photos of radiated emission test

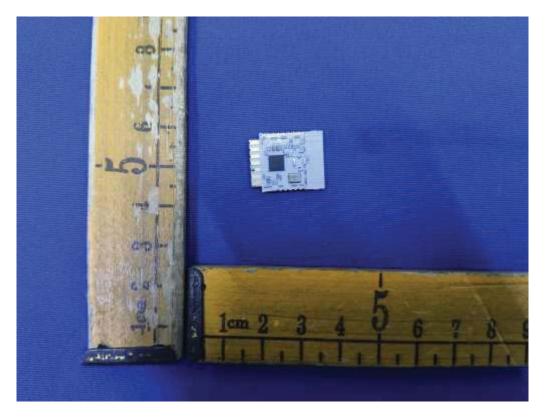
12. Photos of the EUT

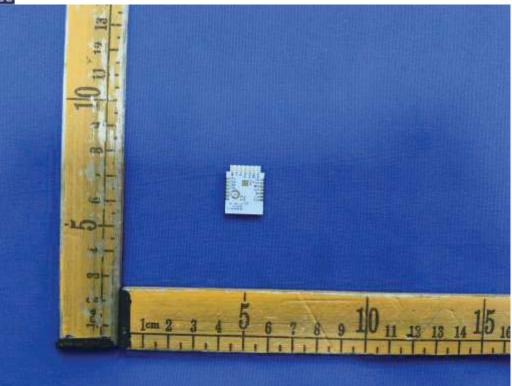


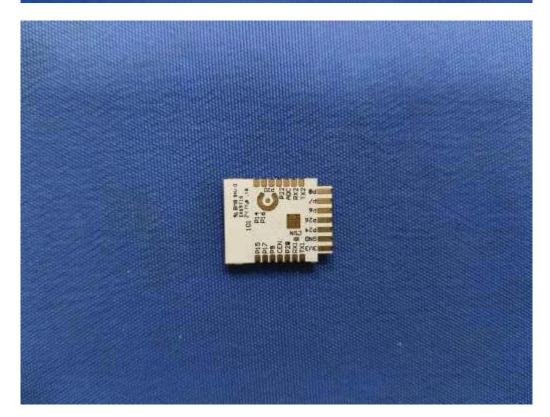


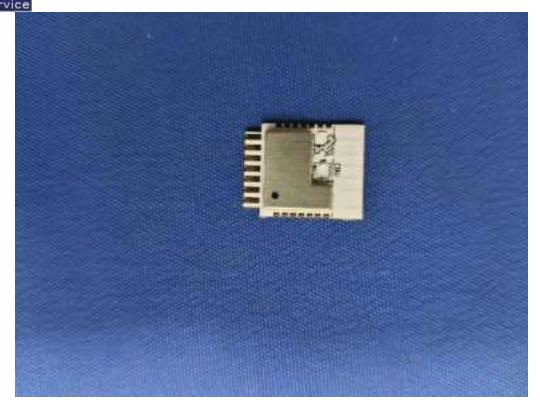


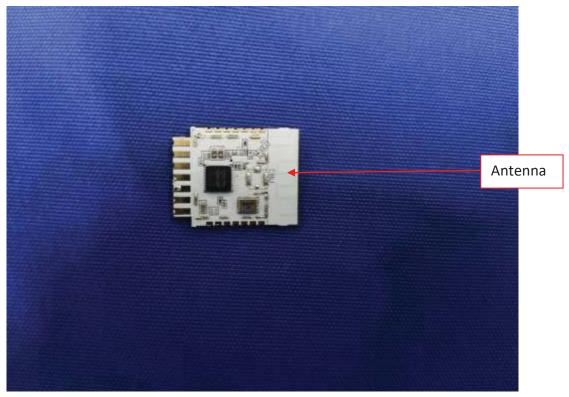












--END OF REPORT--