

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

	PART 15 SUBPART C TEST REF	ORT
	FCC PART 15.247	
Report Reference No FCC ID		
Compiled by (position+printed name+signa	^{ature):} File administrators Xudong Zhang	Xudary zhaney Go
Supervised by	ature): Project Engineer Zoey Cao	Testite Technology
Approved by (position+printed name+signa	ature): RF Manager Eric Wang	Eric Wang
Date of issue	: Nov. 08, 2024	STIM
	Shenzhen CTA Testing Technology C	
Address	Room 106, Building 1, Yibaolai Industria Fuhai Street, Baoʻan District, Shenzhen,	l Park, Qiaotou Community, China
Applicant's name	Shenzhen Leadway Electronic Co., Lt	d
Address	208#, A10 Building, Qinghu Industry zon Longhua district, Shenzhen City, Guange	•
Test specification	TESIN	. C.
Chandard		ESTING
Standard		
Shenzhen CTA Testing Tecl This publication may be repro Shenzhen CTA Testing Techr material. Shenzhen CTA Test	hnology Co., Ltd. All rights reserved. duced in whole or in part for non-commercial pur hology Co., Ltd. is acknowledged as copyright or ing Technology Co., Ltd. takes no responsibility from the reader's interpretation of the reproduce	wner and source of the for and will not assume
Shenzhen CTA Testing Tecl This publication may be repro Shenzhen CTA Testing Techr material. Shenzhen CTA Test liability for damages resulting placement and context.	duced in whole or in part for non-commercial pur hology Co., Ltd. is acknowledged as copyright or ing Technology Co., Ltd. takes no responsibility from the reader's interpretation of the reproduce	wner and source of the for and will not assume
Shenzhen CTA Testing Tecl This publication may be repro Shenzhen CTA Testing Techr material. Shenzhen CTA Test liability for damages resulting	duced in whole or in part for non-commercial pur hology Co., Ltd. is acknowledged as copyright or ing Technology Co., Ltd. takes no responsibility from the reader's interpretation of the reproduce	wner and source of the for and will not assume
Shenzhen CTA Testing Tecl This publication may be repro Shenzhen CTA Testing Techr material. Shenzhen CTA Test liability for damages resulting placement and context. Equipment description Trade Mark	duced in whole or in part for non-commercial pur hology Co., Ltd. is acknowledged as copyright or ing Technology Co., Ltd. takes no responsibility from the reader's interpretation of the reproduce	wher and source of the for and will not assume d material due to its
Shenzhen CTA Testing Tecl This publication may be repro Shenzhen CTA Testing Techr material. Shenzhen CTA Test liability for damages resulting placement and context. Equipment description Trade Mark	duced in whole or in part for non-commercial pur hology Co., Ltd. is acknowledged as copyright or ing Technology Co., Ltd. takes no responsibility from the reader's interpretation of the reproduce Doorlock : N/A : Shenzhen Leadway Electronic Co., Ltd	wher and source of the for and will not assume d material due to its
Shenzhen CTA Testing Tecl This publication may be repro Shenzhen CTA Testing Techr material. Shenzhen CTA Test liability for damages resulting placement and context. Equipment description Trade Mark Manufacturer Model/Type reference	duced in whole or in part for non-commercial pur hology Co., Ltd. is acknowledged as copyright or ing Technology Co., Ltd. takes no responsibility from the reader's interpretation of the reproduce Doorlock : N/A : N/A : Shenzhen Leadway Electronic Co., Ltd 	wher and source of the for and will not assume d material due to its
Shenzhen CTA Testing Tecl This publication may be repro Shenzhen CTA Testing Techr material. Shenzhen CTA Test liability for damages resulting placement and context. Equipment description Trade Mark Manufacturer Model/Type reference Listed Models	duced in whole or in part for non-commercial pur hology Co., Ltd. is acknowledged as copyright or ing Technology Co., Ltd. takes no responsibility from the reader's interpretation of the reproduce Doorlock : N/A : N/A : Shenzhen Leadway Electronic Co., Ltd : K170C : N/A	wher and source of the for and will not assume d material due to its
Shenzhen CTA Testing Tecl This publication may be repro Shenzhen CTA Testing Techr material. Shenzhen CTA Test liability for damages resulting placement and context. Equipment description Trade Mark Manufacturer Model/Type reference Listed Models Modulation	duced in whole or in part for non-commercial pur hology Co., Ltd. is acknowledged as copyright or ing Technology Co., Ltd. takes no responsibility from the reader's interpretation of the reproduce Doorlock : N/A : N/A : Shenzhen Leadway Electronic Co., Ltd : K170C : N/A	wner and source of the for and will not assume
Shenzhen CTA Testing Tecl This publication may be repro Shenzhen CTA Testing Techr material. Shenzhen CTA Test liability for damages resulting placement and context. Equipment description Trade Mark Manufacturer Model/Type reference Listed Models Modulation Frequency	duced in whole or in part for non-commercial pur hology Co., Ltd. is acknowledged as copyright or ing Technology Co., Ltd. takes no responsibility from the reader's interpretation of the reproduce : Doorlock : N/A : Shenzhen Leadway Electronic Co., Ltd : K170C : N/A : GFSK	wher and source of the for and will not assume d material due to its

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

Report No.: CTA24110400	0801	Page 2 of 39
CTATESTING	TEST REPORT	
Equipment under Test	: Doorlock	CTATESTING
Model /Type	: K170C	
Listed Models	: N/A	
Applicant	Shenzhen Leadway Electronic Co	o., Ltd
Address	: 208#, A10 Building, Qinghu Industry Longhua district, Shenzhen City, Gu	Jangdong Province China 518109
Manufacturer	Shenzhen Leadway Electronic Co	o., Ltd
Address	: 208#, A10 Building, Qinghu Industry Longhua district, Shenzhen City, Gu	· -
Test R	esult:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory. CTATESTING laboratory.

Contents

	TESTING	Contents	
1	TEST STANDARDS	4.5TMC	-
2	SUMMARY		
_		TAIL	
2.4	Concret Domestre	G	
2.1	General Remarks	5	
2.2	Product Description*		
2.3	Equipment Under Test		
2.4 G	Short description of the Equipment	under Test (EUT) 5 5 5 5 5 6	
2.5	EUT operation mode		
2.6	Block Diagram of Test Setup	6 6	
2.7	Related Submittal(s) / Grant (s)		
2.8	Modifications	6	
3	TEST ENVIRONMENT		
_	Contraction of the second seco	CTA.	3
• •		CON CTATES 7 7 8	
3.1	Address of the test laboratory		
3.2	Test Facility		
3.3	Environmental conditions		
3.4	Summary of measurement results	0	
3.5	Statement of the measurement unce	•	
3.6	Equipments Used during the Test	9	
	TESI		
4	TEST CONDITIONS AND R	ESULTS	
Carlo U	V		•
		IE G	
4.1	AC Power Conducted Emission	TNO 10	
4.2	Radiated Emissions and Band Edge		
4.3	Maximum Peak Output Power	20	
4.4	Power Spectral Density	21	
4.5	6dB Bandwidth	23	
4.6	Out-of-band Emissions	25	
4.7	Antenna Requirement	29	
<u>5</u>	TEST SETUP PHOTOS OF	THE EUT	
<u> </u>	TING		•
^			
<u>6</u>	PHOTOS OF THE EUT		-
		CTA TESTING	
		GA CTATES.	
		GT C''	
	A		
GAN C		STINE	
	TATESTING	TESTING	

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices CTATE KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission

Systems (DTS) Operating Under §15.247 CTATESTING

2 SUMMARY

2.1 **General Remarks**

CTATES			
2.1 General Remarks			
Date of receipt of test sample		Nov. 01, 2024	
Testing commenced on		Nov. 01, 2024	
Testing concluded on	:	Nov. 08, 2024	

2.2 Product Description*

2.2 Product Descri	ption*
Product Description:	Doorlock
Model/Type reference:	K170C
Power supply:	DC 6.0V From battery and DC 5.0V From external circuit
Adapter information (Auxiliary test supplied by test Lab):	Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A
Hardware version:	V1.0
Software version:	V1.0
Testing sample ID:	CTA241104008-1# (Engineer sample) CTA241104008-2# (Normal sample)
Bluetooth BLE	
Supported type:	Bluetooth low Energy
Modulation:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40
Channel separation:	2 MHz
Antenna type:	PCB antenna
Antenna gain:	0.92 dBi

2.3 Equipment Under Test

Power supply system utilised

				CTA	
2.3 Equipment Under Test					TATE
Power supply system utilised	ł				CTA CIT
Power supply voltage	:	Ο	230V / 50 Hz	O 120V / 60Hz	and the second sec
		Ο	12 V DC	O 24 V DC	
ST		•	Other (specified in b	lank below)	

DC 6.0V From battery and DC 5.0V From external circuit

Short description of the Equipment under Test (EUT) 2.4

This is a Doorlock. For more details, refer to the user's manual of the EUT.

2.5 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing. There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

Channel	Frequency (MHz)
00	2402
01	2404
02	2406
19	2440
ESTIN	÷
37	2476
38	2478
39	2480

2.6 Block Diagram of Test Setup

EUT

1G	DC 5.0V From adapter	
	GA CTATESTI	

Related Submittal(s) / Grant (s) 2.7

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria. GA CTATESTING

3 TEST ENVIRONMENT

Address of the test laboratory 3.1

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	23 ° C			
	TES			
Humidity:	44 %			
Atmospheric pressure:	950-1050mbar			

AC Main Conducted testing.

te main eenadeted teeting.			
Temperature:	24 ° C		
-NG			
Humidity:	47 %		
Atmospheric pressure:	950-1050mbar		

	Aunospheric pressure.	930-1030mbai	
С	onducted testing:	TES	TING
	Temperature:	24 ° C	TESI
	Constant of the second second		(A)
	Humidity:	46 %	
	Atmospheric pressure:	950-1050mbar]

	Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
	§15.247(e)	Power spectral density	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
	§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	complies
	§15.247(b)(3)	Maximum output Peak power	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
CTATE	§15.247(d)	Band edge compliance conducted	BLE 1Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Highest	complies
	§15.205	Band edge compliance radiated	BLE 1Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Highest	complies
	§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
	§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs	Lowest Middle	BLE 1Mpbs	Lowest Middle	complies
	§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs	-/-	BLE 1Mpbs	-/-	complies
	§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs	1NG -/-	BLE 1Mpbs	-/-	complies

3.4 Summary of measurement results

Remark:

1. The measurement uncertainty is not included in the test result.

We tested all test mode and recorded worst case in report 2.

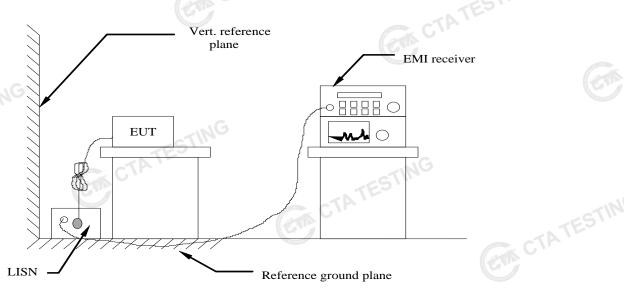
Statement of the measurement uncertainty 3.5

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. TESTING Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.

ine pest measurement capability for	best measurement capability for Shenzhen CTA resting rechnology Co., Ltd.						
Test	Range	Measurement Uncertainty	Notes				
Radiated Emission	9KHz~30MHz	3.02 dB	(1)				
Radiated Emission	30~1000MHz	4.06 dB	(1)				
Radiated Emission	1~18GHz	5.14 dB	(1)				
Radiated Emission	18-40GHz	5.38 dB	(1)				
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)				
Output Peak power	Dutput Peak power 30MHz~18GHz						
Power spectral density	G	0.57 dB	(1)				
Spectrum bandwidth		1.1%	(1)				
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)				
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)				
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)				

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test


	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date	
	LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02	
	LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02	
	EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02	
	EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02	
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02	
	Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/02	
	Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02	
	Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02	
	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02	
	Temperature and humidity meter	G Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02	
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16	
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12	
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16	
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2026/10/16	
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02	
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02	
	Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02	
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02	
TATE	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02	
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02	
	Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02	
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02	

Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test Software	G Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
CA C	GAG	TATESI		TESTING	

TEST CONDITIONS AND RESULTS 4

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

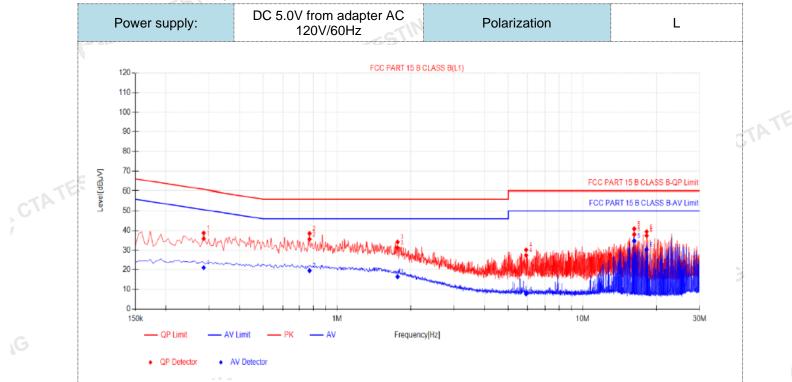
AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Frequency range (MHz)	Limit (dBuV)						
	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					
* Description with the learning of the fragment of							

Decreases with the logarithm of the frequency.

TEST RESULTS

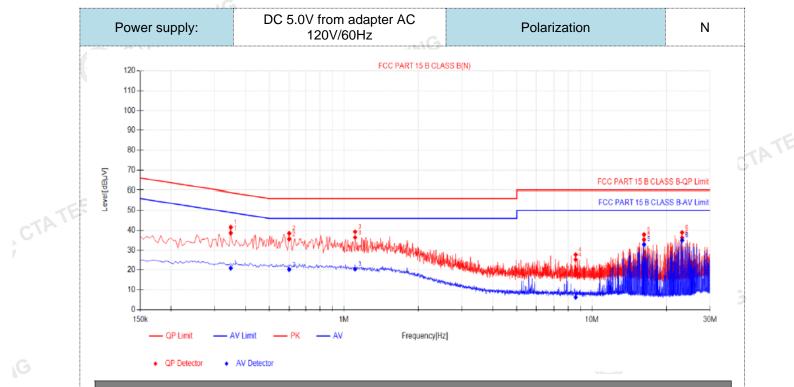

Remark:

1. BLE 1Mpbs was tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs High channel

Page 11 of 39

GTA TESTING

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:


Einal Data Lie

ппа		51										
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	A∨ Margin [dB]	Verdict	
1	0.285	9.95	25.93	35.88	60.67	24.79	11.15	21.10	50.67	29.57	PASS]
2	0.771	9.95	25.69	35.64	56.00	20.36	9.61	19.56	46.00	26.44	PASS	
3	1.7655	9.91	21.39	31.30	56.00	24.70	6.52	16.43	46.00	29.57	PASS]
4	5.9145	10.13	17.25	27.38	60.00	32.62	-2.44	7.69	50.00	42.31	PASS	
5	16.2285	10.33	27.69	38.02	60.00	21.98	24.40	34.73	50.00	15.27	PASS	- <u>'</u> 47-
6	18.2445	10.38	27.06	37.44	60.00	22.56	19.97	30.35	50.00	19.65	PASS	
ote:1)	.QP Value	e (dBµV)	= QP Rea	ading (dE	BμV)+ Fa	actor (dB)				Constant of the second	
2)	Factor (d	R)-incor	tion loss	of LISN ($(dB) \pm C_2$	ahla loss	(dB)					

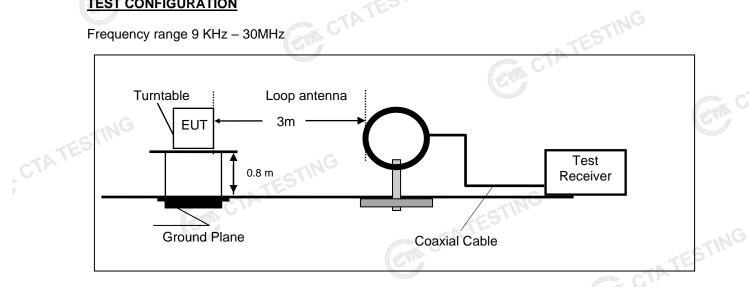
Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
- CTA TESTING 4). AVMargin(dB) = AV Limit (dBµV) - AV Value (dBµV)

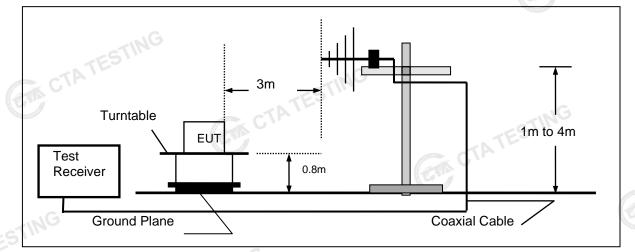
Page 12 of 39

Final Data List

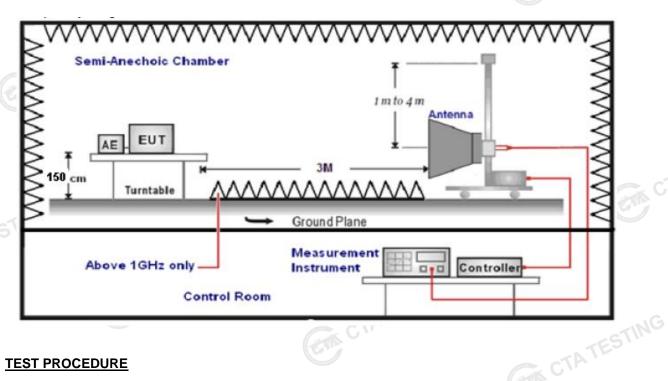
	1 1110	- Data Lie	~										
	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
2	1	0.348	9.86	28.78	38.64	59.01	20.37	11.07	20.93	49.01	28.08	PASS	
	2	0.6	10.15	25.43	35.58	56.00	20.42	10.13	20.28	46.00	25.72	PASS	
	3	1.1085	10.15	26.25	36.40	56.00	19.60	10.29	20.44	46.00	25.56	PASS	
	4	8.5875	10.41	14.83	25.24	60.00	34.76	-4.15	6.26	50.00	43.74	PASS	
	5	16.2285	10.45	24.81	35.26	60.00	24.74	22.45	32.90	50.00	17.10	PASS	
	6	23.127	10.65	25.64	36.29	60.00	23.71	24.33	34.98	50.00	15.02	PASS	TE
Note:1).QP Value (dB μ V)= QP Reading (dB μ V)+ Factor (dB)											AN		
	2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)												
	3).	QPMargir	n(dB) = C	QP Limit ((dBµV) -	QP Valu	ie (dBµV)					


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V)

CTATE



TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and
- rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT. 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states: 6.

Test Frequency range	Test Antenna Type	Test Distance	
9KHz-30MHz	Active Loop Antenna	3	a contrad
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	A DESCRIPTION OF THE PARTY OF T
18GHz-25GHz	Horn Anternna	1	
		*	

Setting test receiver/spectrum as following table states: 7.

Test Frequency range	Test Receiver/Spectrum Setting	Detector	
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP	
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP	
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP	
and the second se	Peak Value: RBW=1MHz/VBW=3MHz,	TING	
1GHz-40GHz	Sweep time=Auto	Peak	
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,		
	Sweep time=Auto		

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

e calculation is as follows.	
RA + AF + CL - AG	
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	
	CTA CTA
Shenzhen CTA Testin	a Technology Co., Ltd.

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.05	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark:

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. BLE 1Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found 3. except system noise floor in 9 KHz to 30MHz and not recorded in this report. CTA TESTING

For 30MHz-1GHz

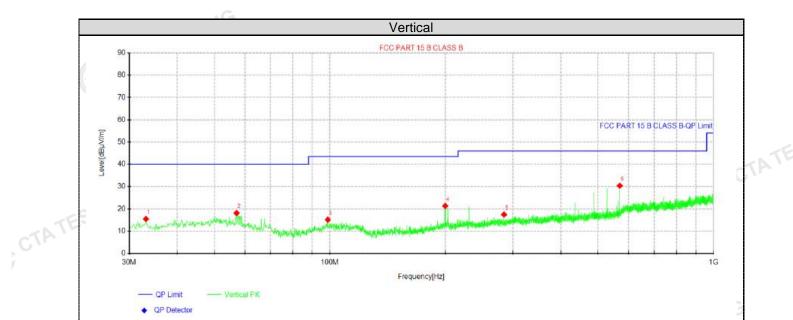
TATE

Suspected Data List

CTATESTING

	NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity
	NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polanty
	1	48.5513	28.54	17.31	-11.23	40.00	22.69	100	233	Horizontal
	2	115.36	27.67	14.01	-13.66	43.50	29.49	100	1	Horizontal
	3	216.967	33.65	21.09	-12.56	46.00	24.91	100	291	Horizontal
	4	393.265	43.97	33.88	-10.09	46.00	12.12	100	326	Horizontal
1	5	515.363	33.92	24.90	-9.02	46.00	21.10	100	210	Horizontal
	6	827.218	33.06	28.76	-4.30	46.00	17.24	100	269	Horizontal

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)


2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

TATE

CIA

Suspected Data List

N	10.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity
	NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Folanty
	1	33.1525	29.37	15.49	-13.88	40.00	24.51	100	185	Vertical
	2	57.16	30.20	18.13	-12.07	40.00	21.87	100	360	Vertical
	3	98.7488	28.34	15.16	-13.18	43.50	28.34	100	125	Vertical
	4	199.871	34.12	21.31	-12.81	43.50	22.19	100	79	Vertical
5	5	284.382	28.83	17.47	-11.36	46.00	28.53	100	360	Vertical
	6	569.562	38.16	30.42	-7.74	46.00	15.58	100	138	Vertical

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

CTATESTING

Page 18 of 39

For 1GHz to 25GHz

		NG		GFSK (abo	/e 1GHz)				
Freque	ncy(MHz)	:	24	02	Pola	arity:	н	ORIZONTA	L
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	62.09	PK	74	11.91	66.36	32.33	5.12	41.72	-4.27
4804.00	45.59	AV	54	8.41	49.86	32.33	5.12	41.72	-4.27
7206.00	53.82	PK	74	20.18	54.34	36.6	6.49	43.61	-0.52
7206.00	43.17	AV	54	10.83	43.69	36.6	6.49	43.61	-0.52

Freque	ncy(MHz)	:	24	02	Pola	arity:	VERTICAL		
Frequency (MHz)	Emis Lev (dBu ^v	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	60.17	PK	74	13.83	64.44	32.33	5.12	41.72	-4.27
4804.00	43.09	AV	54	10.91	47.36	32.33	5.12	41.72	-4.27
7206.00	51.72	PK	74	22.28	52.24	36.6	6.49	43.61	-0.52
7206.00	41.44	AV	54	12.56	41.96	36.6	6.49	43.61	-0.52
				G	1			TE	

Freque	ncy(MHz)	:	24	40	Pola	arity:	HORIZONTAL		AL.
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	61.55	PK	74	12.45	65.43	32.6	5.34	41.82	-3.88
4880.00	44.70	AV	54	9.30	48.58	32.6	5.34	41.82	-3.88
7320.00	53.26	PK	74	20.74	53.37	36.8	6.81	43.72	-0.11
7320.00	42.54	AV	54	11.46	42.65	36.8	6.81	43.72	-0.11
A CONTRACTOR OF THE OWNER OWNER OF THE OWNER			cette	(P)	•	•	-IN	G	•

Freque	ncy(MHz)	:	24	40	Pola	arity:	VERTICAL		
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	59.64	PK	74	14.36	63.52	32.6	5.34	41.82	-3.88
4880.00	42.62	AV	54	11.38	46.50	32.6	5.34	41.82	-3.88
7320.00	51.70	PK	74	22.30	51.81	36.8	6.81	43.72	-0.11
7320.00	40.16	AV	54	13.84	40.27	36.8	6.81	43.72	-0.11
			STIN						

Freque	ncy(MHz)	:	24	80	Pola	rity:	HORIZONTAL		
Frequency (MHz)	Emis Le ^v (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.76	PK	74	13.24	63.84	32.73	5.66	41.47	-3.08
4960.00	44.18	AV	54	9.82	47.26	32.73	5.66	41.47	-3.08
7440.00	52.60	PK	74	21.40	52.15	37.04	7.25	43.84	0.45
7440.00	41.71	PK	54	12.29	41.26	37.04	7.25	43.84	0.45

Freque	ncy(MHz)	:	24	80	Pola	arity:	VERTICAL		
Frequency (MHz)	Lev	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	G Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	58.71	PK	74	15.29	61.79	32.73	5.66	41.47	-3.08
4960.00	42.37	AV	54	11.63	45.45	32.73	5.66	41.47	-3.08
7440.00	50.78	PK	74	23.22	50.33	37.04	7.25	43.84	0.45
7440.00	39.93	PK	54	14.07	39.48	37.04	7.25	43.84	0.45
REMARKS	:				6	Contraction of the second			CTP
			Shenzhen	CTA Testing	Technology	Co., Ltd.			

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Freque	ency(MHz)	:	24	<u>GFS</u> 02		arity:	Н	ORIZONTA	L
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.89	PK	74	12.11	72.31	27.42	4.31	42.15	-10.42
2390.00	43.74	AV	54	10.26	54.16	27.42	4.31	42.15	-10.42
Freque	ency(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.83	PK	74	14.17	70.25	27.42	4.31	42.15	-10.42
2390.00	41.74	AV	54	12.26	52.16	27.42	4.31	42.15	-10.42
Freque	ency(MHz)	:	24	80	Pola	arity:	HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
(10112)		, DIZ	74	12.78	71.33	27.7	4.47	42.28	-10.11
2483.50	61.22	PK				07.7	4 47	42.28	-10.11
, ,	61.22 43.22	AV	54	10.78	53.33	27.7	4.47	42.20	-10.11
2483.50 2483.50		AV	54 24			arity:		VERTICAL	
2483.50 2483.50	43.22	AV : sion vel	1			1			
2483.50 2483.50 Freque Frequency	43.22 ency(MHz) Emis Lev	AV : sion vel	24 Limit	80 Margin	Pola Raw Value	arity: Antenna Factor	Cable Factor	VERTICAL Pre- amplifier	Correction Factor

4. -- Mean the PK detector measured value is below average limit.

5. The other emission levels were very low against the limit.

Maximum Peak Output Power 4.3

Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

Channel	Output power (dBm)	Limit (dBm)	Result
00	-1.95		
19	-1.99	30.00	Pass
39	-2.15		
-	00 19 39	Channel (dBm) 00 -1.95 19 -1.99 39 -2.15	Channel (dBm) Limit (dBm) 00 -1.95

4.4 **Power Spectral Density**

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW \geq 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- CTATESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration

CTATESTING EUT SPECTRUM ANALYZER

Test Results

(Hz)	Result
6	
1 8.00	Pass
5	

Page 22 of 39

4.5 6dB Bandwidth

Limit

ESTING For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

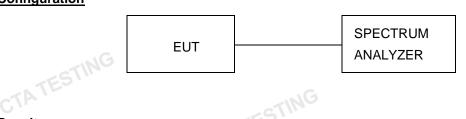
The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

Test Results		ANALYZ	FR	CTATESTING
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
GTINC	00	0.656		
GFSK 1Mbps	19	0.680	≥500	Pass
CIL	39	0.668		
Test plot as follows:	CAN C	TATES	CTA TESTIN	G

Out-of-band Emissions 4.6

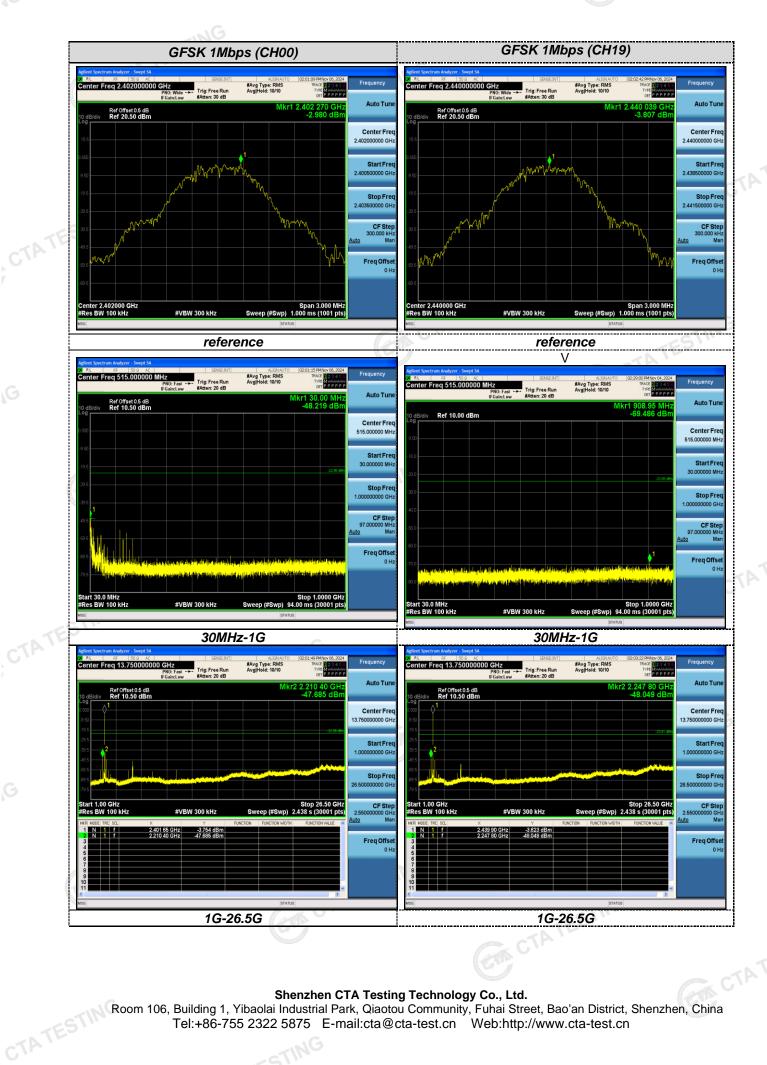

Limit

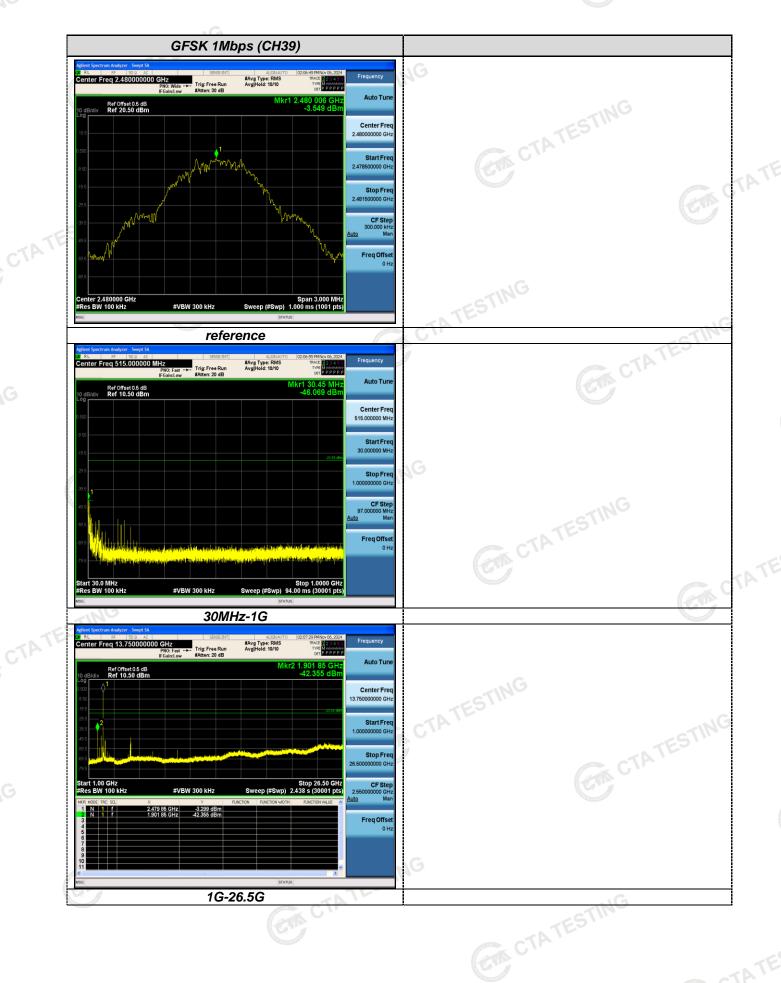
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector , and max hold. Measurements utilizing these setting are GTA CTATESTING made of the in-band reference level, bandedge and out-of-band emissions.

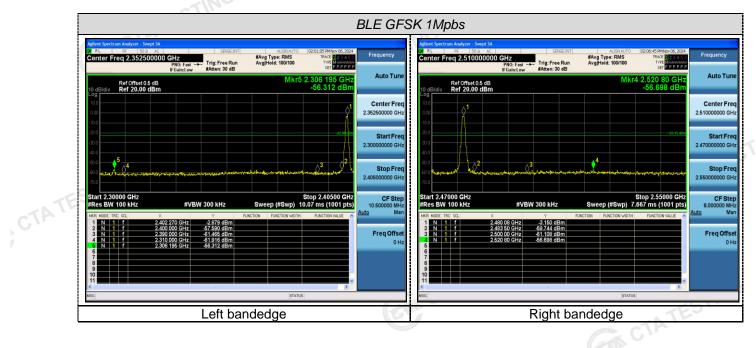
Test Configuration




Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage **GIA CTATE** measurement data.

Test plot as follows:


Page 26 of 39

Page 28 of 39

Band-edge Measurements for RF Conducted Emissions:

4.7 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

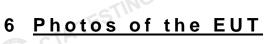
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The gain of antenna was 0.92 dBi.

Remark: The antenna gain is provided by the customer , if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility.

5 Test Setup Photos of the EUT



TING

TING

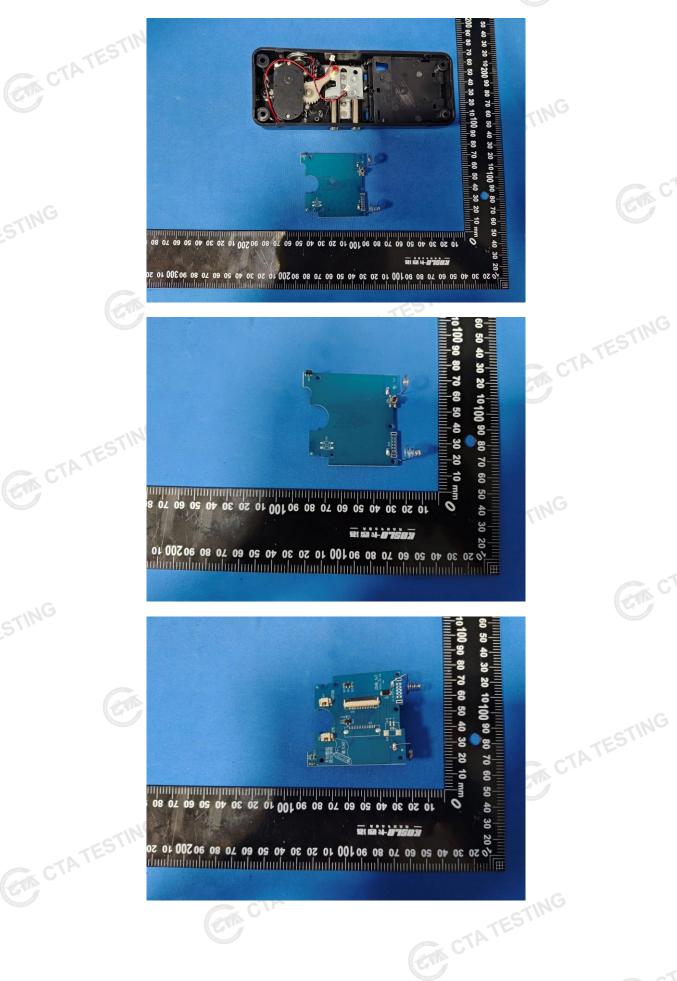
80 70 60 10 mm os or 005.0e os os os os os os ce 005.0e os os os os os os os or 001.0e os 4 Ria + 0750X 5 50 30 40 20 60 10 80 30100 10 50 30 40 20 60 10 80 30 00 10 20 30 40 20 60 10 80 300 10 50

GA CTATESTIN

Page 33 of 39

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

70


40 30

CTATESTING

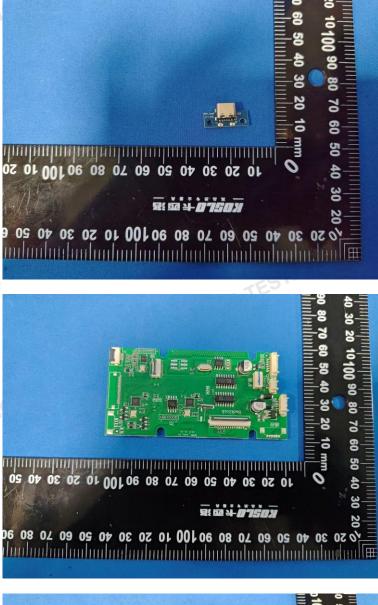
10 60 0 50

Rid + OTSON

Page 34 of 39

Page 35 of 39

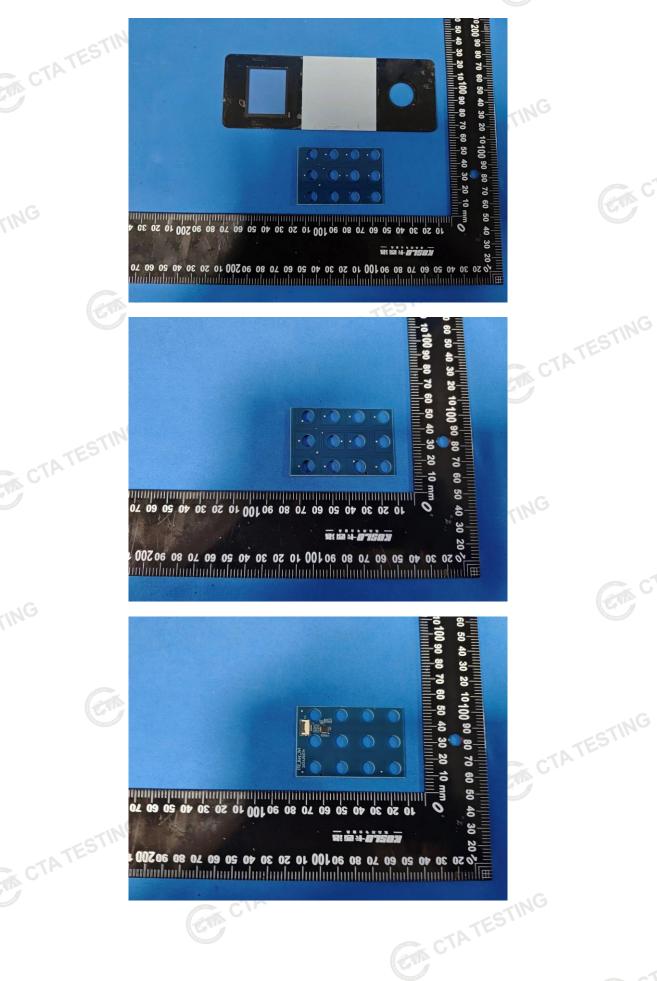
CTA TESTIN


Page 36 of 39

TING

Imminution in the second se

CTA TESTING


CTA TESTING

um 10 50 30 40 20 60 10 80 30100 10 50 30 40 20 60 1 R D + O'ISOX 050 30 40 20 60 10 80 30 100 10 50 30 40 20 60 10 80 30 500 a tauha da a had a a had a a had a a had a hadCTATESTING

Page 38 of 39

