

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No...... CTA24110101101 FCC ID.....: 2BL4T-5012-WB

(position+printed name+signature)... File administrators Xudong Zhang

Supervised by

(position+printed name+signature)..: Project Engineer Zoey Cao

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue.....: Nov. 04, 2024

Testing Laboratory NameShenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name......Zhongshan YichengLighting Technology Co.,Ltd

Building 3, 4th Floor, No.2Yihui Third Road, Maohui IndustrialZone,

Henglan Town, Zhongshan City, China

Test specification:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Equipment description.....Led strip light

Trade Mark: N/A

Manufacturer Zhongshan YichengLighting Technology Co.,Ltd CTATESTIN'

Model/Type reference.....5012-WB

Listed Models3535RGB

Modulation: GFSK

Frequency...... From 2402MHz to 2480MHz

RatingsDC 5.0V From external circuit

Result...... PASS

Report No.: CTA24110101101 Page 2 of 34

TEST REPORT

Equipment under Test Led strip light

Model /Type 5012-WB

Listed Models 3535RGB

Applicant Zhongshan YichengLighting Technology Co.,Ltd

Building 3, 4th Floor, No.2Yihui Third Road, Maohui IndustrialZone, Address

Henglan Town, Zhongshan City, China

Manufacturer Zhongshan YichengLighting Technology Co.,Ltd

Address	: Building 3, 4th Floor, No.2Yih Henglan Town, Zhongshan C	nui Third Road, Maohui IndustrialZone, City, China
CTATE	TING	
Test Ro	esult:	PASS

The test report merely corresponds to the test sample.

it is not policy. It is not permitted to copy extracts of these test result without the written permission of the test

Page 3 of 34 Report No.: CTA24110101101

Contents

		TATESTING	Contents		
	1	TEST STANDARDS	ESTING		4
	Town Williams		ATL	NG	
	2	SUMMARY			5
	_	O M M A K I			0
		_			_
	2.1	General Remarks			5
	2.2	Product Description*			5
	2.3	Equipment Under Test			5
	2.4	Short description of the Equipme	nt under Test (EUT)		5
	2.5	EUT operation mode			6
	2.6	Block Diagram of Test Setup			6
CV	2.7	Related Submittal(s) / Grant (s)			6
7	2.8	Modifications			6
		CTA			
	<u>3</u>	TEST ENVIRONMENT			7
	<u>J</u>	TEST ENVIRONMENT :			
	3.1	Address of the test laboratory		TATE	7
	3.2	Test Facility			7
	3.3	Environmental conditions		CTATES	7
	3.4	Summary of measurement results			8
	3.5	Statement of the measurement ur			8
	3.6	Equipments Used during the Test	!		9
		ESTIN			
	1	TEST CONDITIONS AND	PESIII TS		11
	Z C	TEST CONDITIONS AND			
				ATESTING	
	4.1	AC Power Conducted Emission			11
	4.2	Radiated Emissions and Band Ed	ge		14
	4.3	Maximum Peak Output Power		ATT	21
	4.4	Power Spectral Density	C. C.		22
	4.5	6dB Bandwidth			24
	4.6	Out-of-band Emissions			26
	4.7	Antenna Requirement			30
	5,	TEST SETUP PHOTOS O	E TUE		31
CTA!	<u>5</u>	TEST SETUP PHOTOS O	F THE EUT		<u> 3 1</u>
CTATE		ESTIN			
	<u>6</u>	PHOTOS OF THE EUT			32
		CIT			
			CTA,		
			CTATESTING CTATESTING		,,,,
				CTATES	

Report No.: CTA24110101101 Page 4 of 34

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices CTATE KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 CTATESTING

Page 5 of 34 Report No.: CTA24110101101

SUMMARY

General Remarks 2.1

CTATE			
2.1 General Remarks		-ATESI"	
Date of receipt of test sample	T V	Oct. 28, 2024	TESTING
Testing commenced on		Oct. 28, 2024	CTA
Testing concluded on	:	Nov. 04, 2024	

2.2 Product Description*

: Oct. 28, 2024
: Nov. 04, 2024
ription*
Led strip light
5012-WB
DC 5.0V From external circuit
Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A
V1.0
V1.0
CTA241101011-1# (Engineer sample) CTA241101011-2# (Normal sample)
Bluetooth low Energy
GFSK
2402MHz to 2480MHz
40
2 MHz
PCB antenna
0.98 dBi

2.3 Equipment Under Test

Power supply system utilised

2.3 Equipment Unde	r Test					
Power supply system to	ıtilised					
Power supply voltage	:	С	230V / 50 Hz		120V / 60Hz	
-		С	12 V DC	C	24 V DC	
	-717		Other (specified in bl	ank below	<u>v)</u>	

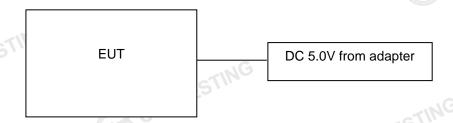
DC 5.0V From external circuit

Short description of the Equipment under Test (EUT)

This is a Led strip light.

For more details, refer to the user's manual of the EUT.

Report No.: CTA24110101101 Page 6 of 34


2.5 EUT operation mode

The Applicant provides command "*#*#3646633#*#*" access (Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing. There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

Operation Frequency:

2.6 Block Diagram of Test Setup	CTATESTIN
39	2480
38	2478
37	2476
TESTII"	:
19	2440
TING	:
02	2406
01	2404
00	2402
Channel	Frequency (MHz)

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria. CTATESTING Report No.: CTA24110101101 Page 7 of 34

TEST ENVIRONMENT

Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	23 ° C
ALIX.	TES.
Humidity:	44 %
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing:

Temperature:	24 ° C
. NG	
Humidity:	47 %
	t.
Atmospheric pressure:	950-1050mbar

	Allilosphene pressure.	930-103011Ibai	
С	onducted testing:	LES.	TING
	Temperature:	24 ° C	TES!
	No. of the last of	110	(A)
	Humidity:	46 %	
	•		
	Atmospheric pressure:	950-1050mbar	

Report No.: CTA24110101101 **Page 8 of 34**

Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
§15.247(e)	Power spectral density	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	 Lowest Middle Highest	complies
§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	complies
§15.247(b)(3)	Maximum output Peak power	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.247(d)	Band edge compliance conducted	BLE 1Mpbs		BLE 1Mpbs	☑ Lowest☑ Highest	complies
§15.205	Band edge compliance radiated	BLE 1Mpbs	☑ Lowest☑ Highest	BLE 1Mpbs	☑ Lowest☑ Highest	complies
§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	complies
§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	complies
§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs	-/-	BLE 1Mpbs	-/-	complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs	'NG -/-	BLE 1Mpbs	-/-	complies

Remark:

- The measurement uncertainty is not included in the test result.
- We tested all test mode and recorded worst case in report

Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	_ING	0.57 dB	(1)
Spectrum bandwidth	-ES\\\\\ /	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

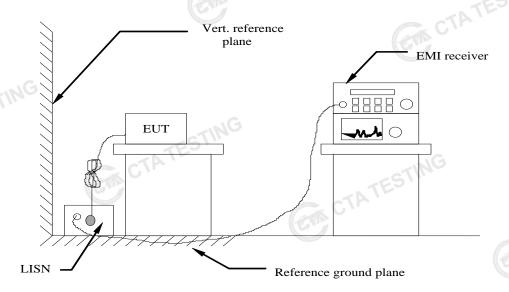
Page 9 of 34 Report No.: CTA24110101101

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
	LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
	EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
	EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
	Spectrum Analyzer	R&S	FSP	CTA-337	2024/08/03	2025/08/02
	Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
	Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
	WIDEBAND RADIO COMMUNICATION TESTER	G CMW500	R&S	CTA-302	2024/08/03	2025/08/02
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2026/10/16
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
15	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
	Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02
	Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02
	CIN CIN	GW C	TATESTIN	C.TA	TESTING	

Page 10 of 34 Report No.: CTA24110101101


	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
	TING					223004
CTATE		CTATESTING				
1						

Report No.: CTA24110101101 Page 11 of 34

TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

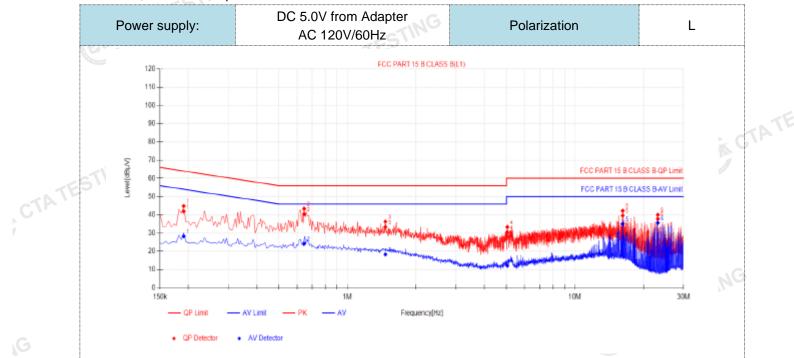
TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

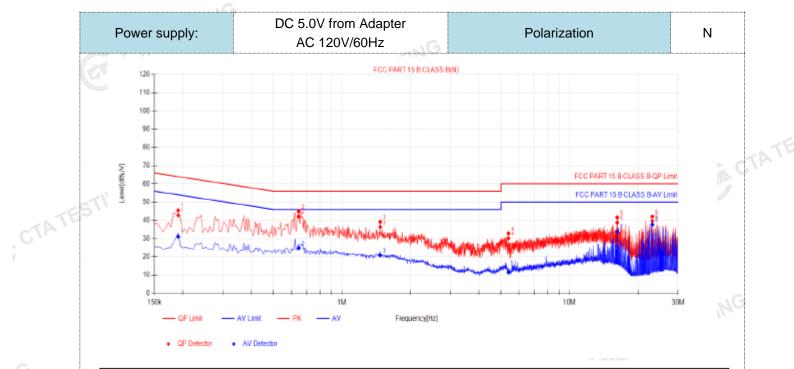

Fraguency range	· /N/LI=\	Limit (dBuV)				
Frequency range	: (IVITIZ)	Quasi-peak	Average			
0.15-0.5		66 to 56*	56 to 46*			
0.5-5		56	46			
5-30		60	50			
* Decreases with the logar	ithm of the frequency.	STINE				
TEST RESULTS Remark:	CTAT	Es	ESTING			

TEST RESULTS

1. BLE 1Mpbs was tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs High channel was reported as below:

Report No.: CTA24110101101 Page 12 of 34

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:



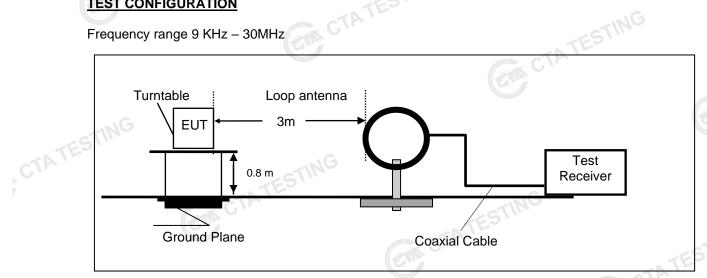
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dBµV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict
1	0.1905	10.05	31.86	41.91	64.01	22.10	18.24	28.29	54.01	25.72	PASS
2	0.645	9.98	30.45	40.43	56.00	15.57	14.25	24.23	46.00	21.77	PASS
3	1.4685	9.90	23.50	33.40	56.00	22.60	8.45	18.35	46.00	27.65	PASS
4	5.046	10.00	20.51	30.51	60.00	29.49	2.17	12.17	50.00	37.83	PASS
5	16.2285	10.33	29.28	39.61	60.00	20.39	24.69	35.02	50.00	14.98	PASS
6	23.127	10.48	27.31	37.79	60.00	22.21	25.15	35.63	50.00	14.37	PASS

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V)

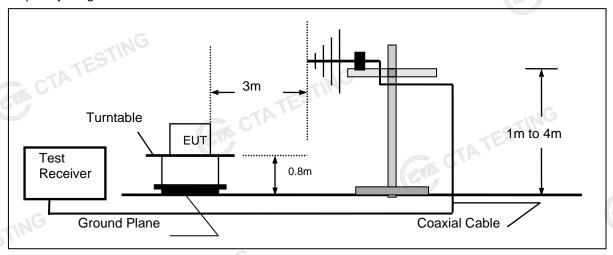
CTA TESTING

Report No.: CTA24110101101 Page 13 of 34

		t									
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict
1	0.1905	9.99	32.76	42.75	64.01	21.26	21.16	31.15	54.01	22.86	PASS
2	0.645	10.11	31.97	42.08	56.00	13.92	14.64	24.75	46.00	21.25	PASS
3	1.473	10.14	26.26	36.40	56.00	19.60	10.79	20.93	46.00	25.07	PASS
4	5.388	10.15	20.03	30.18	60.00	29.82	1.44	11.59	50.00	38.41	PASS
5	16.2285	10.45	28.31	38.76	60.00	21.24	23.47	33.92	50.00	16.08	PASS
6	23.127	10.65	29.01	39.66	60.00	20.34	27.06	37.71	50.00	12.29	PASS

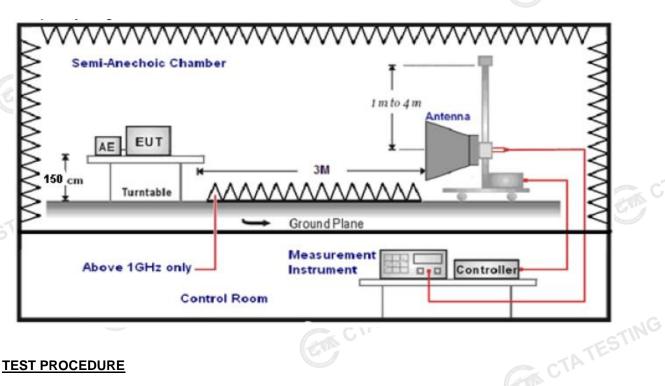

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV) SAN CTATESTING

Page 14 of 34 Report No.: CTA24110101101


4.2 Radiated Emissions and Band Edge

TEST CONFIGURATION

Frequency range 9 KHz – 30MHz



Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Report No.: CTA24110101101 Page 15 of 34

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states: 6.

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
330	Peak Value: RBW=1MHz/VBW=3MHz,	TING
1GHz-40GHz	Sweep time=Auto	Peak
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,	Peak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

le calculation is as follows:	
RA + AF + CL - AG	
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	(-CIP)

Report No.: CTA24110101101 Page 16 of 34

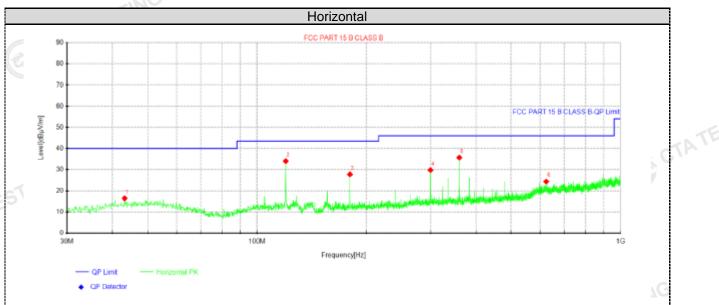
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)		
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)		
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)		
1.705-30	3	20log(30)+ 40log(30/3)	30		
30-88	3	40.0	100		
88-216	3	43.5	150		
216-960	3	46.0	200		
Above 960	3	54.0	500		

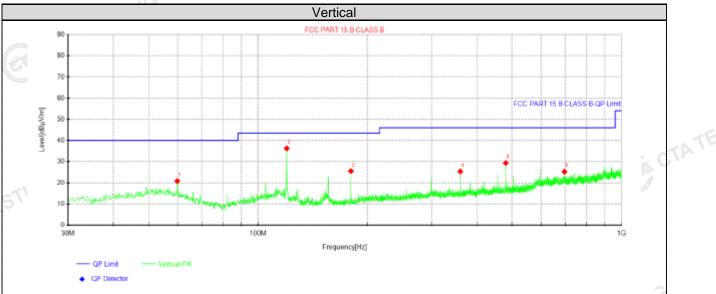

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- 2. BLE 1Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report. CTA TESTING

For 30MHz-1GHz

Page 17 of 34 Report No.: CTA24110101101


Suspe	ected Data	List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polanty
1	43.2162	28.08	16.46	-11.62	40.00	23.54	100	61	Horizontal
2	119.967	47.91	34.05	-13.86	43.50	9.45	100	189	Horizontal
3	179.986	42.31	27.76	-14.55	43.50	15.74	100	201	Horizontal
4	300.023	40.65	29.77	-10.88	46.00	16.23	100	339	Horizontal
5	360.042	46.26	35.71	-10.55	46.00	10.29	100	0	Horizontal
6	624.125	30.14	24.42	-5.72	46.00	21.58	100	315	Horizontal

CTATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Page 18 of 34 Report No.: CTA24110101101

Susp	ected Data	List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity
NO.	[MHz]	[dBµ∨]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Folality
1	59.9488	33.61	20.86	-12.75	40.00	19.14	100	356	Vertical
2	119.967	50.14	36.28	-13.86	43.50	7.22	100	137	Vertical
3	179.986	40.08	25.53	-14.55	43.50	17.97	100	218	Vertical
4	360.042	35.91	25.36	-10.55	46.00	20.64	100	66	Vertical
5	480.08	38.63	29.31	-9.32	46.00	16.69	100	149	Vertical
6	696.026	30.43	25.25	-5.18	46.00	20.75	100	113	Vertical

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTATESTING

Page 19 of 34 Report No.: CTA24110101101

For 1GHz to 25GHz

GFSK (above 1GHz)

Freque	Frequency(MHz):			02	Pola	arity:	HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	61.35	PK	74	12.65	65.62	32.33	5.12	41.72	-4.27	
4804.00	44.97	AV	54	9.03	49.24	32.33	5.12	41.72	-4.27	
7206.00	54.03	PK	74	19.97	54.55	36.6	6.49	43.61	-0.52	
7206.00	42.69	AV	54	11.31	43.21	36.6	6.49	43.61	-0.52	

Freque	Frequency(MHz):			2402		Polarity:		VERTICAL		
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	59.42	PK	74	14.58	63.69	32.33	5.12	41.72	-4.27	
4804.00	43.63	AV	54	10.37	47.90	32.33	5.12	41.72	-4.27	
7206.00	52.52	PK	74	21.48	53.04	36.6	6.49	43.61	-0.52	
7206.00	41.37	AV	54	12.63	41.89	36.6	6.49	43.61	-0.52	

Frequency(MHz):		2440		Polarity:		HORIZONTAL		\L	
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	61.11	PK	74	12.89	64.99	32.6	5.34	41.82	-3.88
4880.00	44.49	AV	54	9.51	48.37	32.6	5.34	41.82	-3.88
7320.00	53.68	PK	74	20.32	53.79	36.8	6.81	43.72	-0.11
7320.00	42.57	AV	54	11.43	42.68	36.8	6.81	43.72	-0.11

725 0041			110				-IN	G	
Freque	Frequency(MHz):		2440		Polarity:		VERTICAL		•
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	59.26	PK	74	14.74	63.14	32.6	5.34	41.82	-3.88
4880.00	41.80	AV	54	12.20	45.68	32.6	5.34	41.82	-3.88
7320.00	52.20	PK	74	21.80	52.31	36.8	6.81	43.72	-0.11
7320.00	41.54	ΑV	54	12.46	41.65	36.8	6.81	43.72	-0.11
	•		GTIN						

Frequency(MHz):		2480		Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.71	PK	74	13.29	63.79	32.73	5.66	41.47	-3.08
4960.00	44.87	AV	54	9.13	47.95	32.73	5.66	41.47	-3.08
7440.00	53.65	PK	74	20.35	53.20	37.04	7.25	43.84	0.45
7440.00	43.16	PK	54	10.84	42.71	37.04	7.25	43.84	0.45

Freque	Frequency(MHz):		2480		Polarity:		VERTICAL		
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	58.72	PK	74	15.28	61.80	32.73	5.66	9 41.47	-3.08
4960.00	43.18	AV	54	10.82	46.26	32.73	5.66	41.47	-3.08
7440.00	51.68	PK	74	22.32	51.23	37.04	7.25	43.84	0.45
7440.00	41.12	PK	54	12.88	40.67	37.04	7.25	43.84	0.45

REMARKS:

Report No.: CTA24110101101 Page 20 of 34

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

ssion vel v/m) PK AV ssion vel v/m) PK AV b: ssion vel v/m) PK AV j: ssion	Limit (dBuV/m) 74 54 24 Limit (dBuV/m) 74 54 24	Margin (dB) 12.60 11.62 02 Margin (dB) 14.21 13.84	Raw Value (dBuV) 71.82 52.80 Pola Raw Value (dBuV) 70.21 50.58	Antenna Factor (dB/m) 27.42 27.42 arity: Antenna Factor (dB/m) 27.42 27.42 arity:	Cable Factor (dB) 4.31 4.31 Cable Factor (dB) 4.31 4.31	Pre- amplifier (dB) 42.15 42.15 VERTICAL Pre- amplifier (dB) 42.15	Correction Factor (dB/m) -10.42 -10.42 Correction Factor (dB/m) -10.42 -10.42
vel v/m) PK AV ission vel v/m) PK AV j: ssion vel v/m) PK AV j: ssion	(dBuV/m) 74 54 Limit (dBuV/m) 74 54 24	(dB) 12.60 11.62 02 Margin (dB) 14.21 13.84	Value (dBuV) 71.82 52.80 Pola Raw Value (dBuV) 70.21 50.58	Factor (dB/m) 27.42 27.42 arity: Antenna Factor (dB/m) 27.42 27.42	Factor (dB) 4.31 4.31 Cable Factor (dB) 4.31 4.31	amplifier (dB) 42.15 42.15 VERTICAL Preamplifier (dB) 42.15 42.15	Factor (dB/m) -10.42 -10.42 -10.42 Correction Factor (dB/m) -10.42 -10.42
AV ission vel v/m) PK AV ission	54 Limit (dBuV/m) 74 54 24	11.62 02 Margin (dB) 14.21 13.84	52.80 Pola Raw Value (dBuV) 70.21 50.58	27.42 Antenna Factor (dB/m) 27.42 27.42	4.31 Cable Factor (dB) 4.31 4.31	42.15 VERTICAL Pre- amplifier (dB) 42.15 42.15	-10.42 Correction Factor (dB/m) -10.42
ssion vel V/m) PK AV	Limit (dBuV/m) 74 54	Margin (dB) 14.21 13.84	Raw Value (dBuV) 70.21 50.58	27.42 Antenna Factor (dB/m) 27.42 27.42	Cable Factor (dB) 4.31 4.31	Pre- amplifier (dB) 42.15 42.15	Correction Factor (dB/m) -10.42
ssion vel v/m) PK AV):	Limit (dBuV/m) 74 54	Margin (dB) 14.21 13.84	Raw Value (dBuV) 70.21 50.58	Antenna Factor (dB/m) 27.42 27.42	Factor (dB) 4.31 4.31	Pre- amplifier (dB) 42.15	Correction Factor (dB/m) -10.42 -10.42
vel V/m) PK AV AV Ssion	(dBuV/m) 74 54 24	(dB) 14.21 13.84	Value (dBuV) 70.21 50.58	Factor (dB/m) 27.42 27.42	Factor (dB) 4.31 4.31	amplifier (dB) 42.15 42.15	Factor (dB/m) -10.42 -10.42
AV): ssion	54 24	13.84	50.58	27.42	4.31	42.15	-10.42
): ssion	24						
ssion		80	Pola	rity:	Н	IORIZONTA	
				Polarity: HORIZONTAL			AL
vel ıV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
PK	74	13.03	71.08	27.7	4.47	42.28	-10.11
AV	54	11.78	52.33	27.7	4.47	42.28	-10.11
):	24	80	Polarity:		VERTICAL		
ssion vel IV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
PK	74	15.35	68.76	27.7	4.47	42.28	-10.11
AV	54	12.76	51.35	27.7	4.47	42.28	-10.11
3 (ssion vel V/m) PK AV SuV/m) =F (dB/m) =	Discision vel Limit (dBuV/m) V/m) 74 AV 54 BuV/m) = Raw Value (dB/m) = Antenna Fact	Ession vel V/m) Limit (dBuV/m) Margin (dB) PK 74 15.35 AV 54 12.76	Ession vel V/m) Limit (dBuV/m) Margin (dB) Raw Value (dBuV) PK 74 15.35 68.76 AV 54 12.76 51.35 BuV/m) = Raw Value (dBuV)+Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Facto	Description Comparison Compar	Cable Cabl	Description Polarity: VERTICAL Antenna vel (v/m) Limit (dBuV/m) Margin (dB) Raw Value Factor (dB/m) Antenna Factor (dB/m) Preamplifier (dB) PK 74 15.35 68.76 27.7 4.47 42.28 AV 54 12.76 51.35 27.7 4.47 42.28 BuV/m) = Raw Value (dBuV)+Correction Factor (dB/m) (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Page 21 of 34 Report No.: CTA24110101101

Maximum Peak Output Power

Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

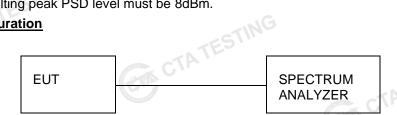
Test Configuration

Test Results

		ATESTIN
Output power (dBm)	Limit (dBm)	Result
-2.01		
-2.00	30.00	Pass
-2.23		
TES	CTA TESTING	
- H	(dBm) -2.01 -2.00 -2.23	(dBm) -2.01 -2.00 -2.23

Report No.: CTA24110101101 Page 22 of 34

Power Spectral Density


Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- Set the VBW ≥ 3× RBW.
- CTA TESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration

Test Results

ſ			Power Spectral Density		
-5	Type	Channel	(dBm/3KHz)	Limit (dBm/3KHz)	Result
ATL		00	-18.38		
	GFSK 1Mbps	19	-18.12	8.00	Pass
		39	-18.41	-1G	
	Test plot as follows	31			

Report No.: CTA24110101101 Page 23 of 34

Page 24 of 34 Report No.: CTA24110101101

4.5 6dB Bandwidth

Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

Test Results		ANALYZ		CTATESTING
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
STIM	00	0.732		
GFSK 1Mbps	19	0.668	≥500	Pass
C	39	0.664		
Test plot as follows:	CIN C	TATES	CTATESTIN	G

Report No.: CTA24110101101 Page 26 of 34

Out-of-band Emissions 4.6

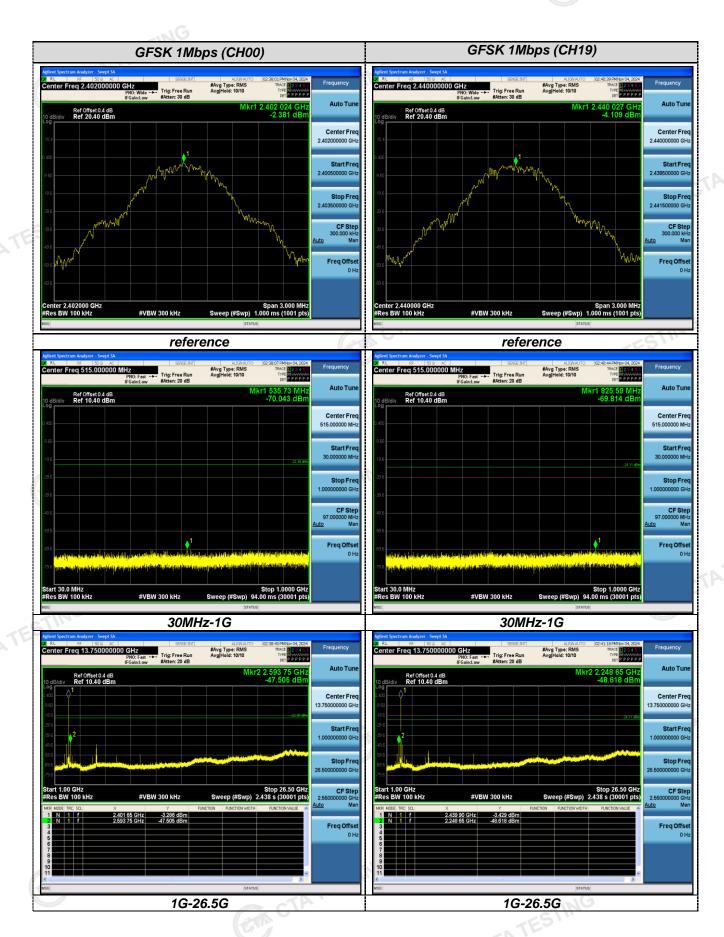
Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

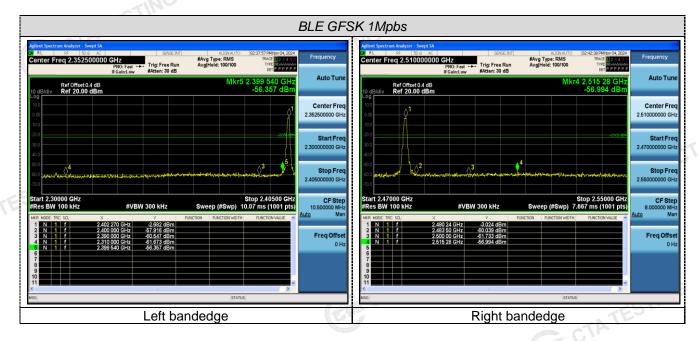


Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage CTATE measurement data.

Test plot as follows:

Report No.: CTA24110101101 Page 27 of 34



Page 28 of 34 Report No.: CTA24110101101

Page 29 of 34 Report No.: CTA24110101101

Band-edge Measurements for RF Conducted Emissions:

Report No.: CTA24110101101 Page 30 of 34

Antenna Requirement

Standard Applicable

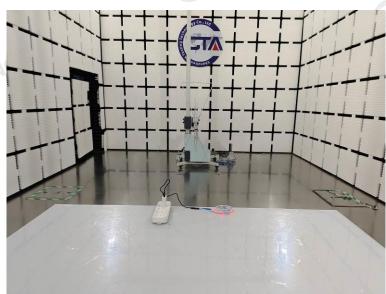
For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

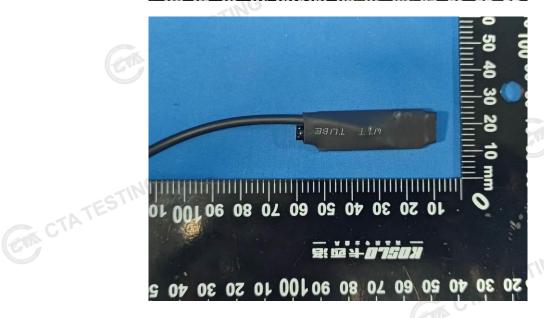
Antenna Connected Construction


The gain of antenna was 0.98 dBi.

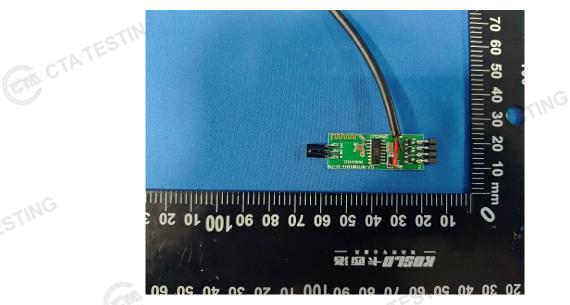
Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTATESTING

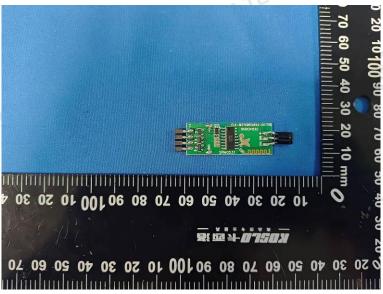
Page 31 of 34 Report No.: CTA24110101101

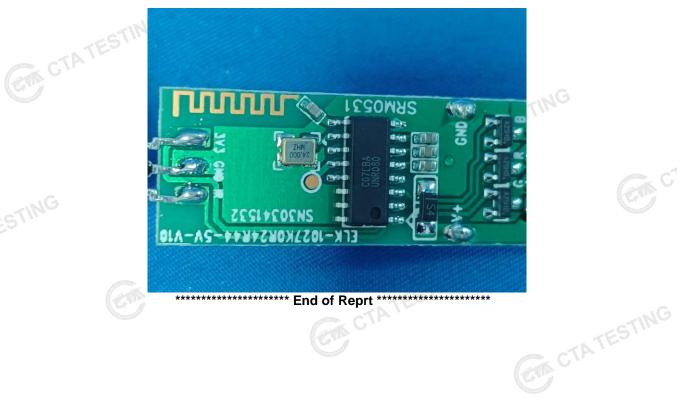
Test Setup Photos of the EUT



Page 32 of 34 Report No.: CTA24110101101


Photos of the EUT




Report No.: CTA24110101101 Page 33 of 34

Page 34 of 34 Report No.: CTA24110101101

