

Maximum Permissible Exposure Report

FCC ID: 2BL4R-PAK

1. Product Information

FCC ID : 2BL4R-PAK

EUT : SmartLED Strip Lights

Test Model : PAK544581

Additional Model No. : PAK544585, PAK544582, PAK544586, PAK544583, PAK544587,

PAK544584, PAK544588

Model Declaration : PCB board, structure and internal of these model(s) are the same, So

no additional models were tested

Power Supply : For Adapter Model: J482-2402000UX

Input:100-240V~, 50/60Hz, 1.5A Output: 24.0V-2.0A, 48.0W

For Adapter Model: M240100-S99US Input: 100-240V~, 50/60Hz, 0.6A Output: 24.0V—1.0A, 24.0W

For Adapter Model: M240050-A005US Input: 100-240V~, 50/60Hz, 0.5A Output: 12.0V==0.5A, 12.0W

Hardware Version : V1.0.1 Software Version : V1.2.10

Bluetooth :

Frequency Range : 2402MHz~2480MHz

Channel Number : 40 channels for Bluetooth V5.2 (DTS)

Channel Spacing : 2MHz for Bluetooth V5.2 (DTS)
Modulation Type : GFSK for Bluetooth V5.2 (DTS)

Bluetooth Version : V5.2

Antenna Description : PCB Antenna, 2.21dBi(Max.)

WIFI(2.4G Band) :

Frequency Range : 2412MHz-2462MHz

Channel Number : 11 Channels for 20MHz bandwidth (2412~2462MHz)

7 Channels for 40MHz bandwidth (2422~2452MHz)

Channel Spacing : 5MHz

Modulation Type : IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK)

IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK)
IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK)

Antenna Description : PCB Antenna 2.21dBi(Max.)

Exposure category : General population/uncontrolled environment

EUT Type : Production Unit
Device Type : Mobile Device

Date of Test : November 06, 2024 ~ November 13, 2024

Date of Report : November 14, 2024

Page 2 of 5 FCC ID: 2BL4R-PAK

2. Evaluation Method

Systems operating under the provisions of FCC 47 CFR section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as mobile device whereby a distance of 0.2m normally can be maintained between the user and the device, and below RF Permissible Exposure limit shall comply with.

In accordance with KDB447498D01 for Simultaneous transmission MPE test exclusion applies when the sum of the MPE ratios for all simultaneous transmitting antennas incorporated in a host device, based on the calculated/estimated, numerically modelled or measured field strengths or power density, is ≤ 1.0. The MPE ratio of each antenna is determined at the minimum test separation distance required by the operating configurations and exposure conditions of the host device, according to the ratio of field strengths or power density to MPE limit, at the test frequency. Either the maximum peak or spatially averaged results from measurements or numerical simulations may be used to determine the MPE ratios. Spatial averaging does not apply when MPE is estimated using simple calculations based on far-field plane-wave equivalent conditions. The antenna installation and operating requirements for the host device must meet the minimum test separation distances required by all antennas, in both standalone and simultaneous transmission operations, to satisfy compliance.

3. Limit

3. 1 Refer Evaluation Method

ANSI C95.1–2019: IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz

<u>FCC KDB publication 447498 D01 General 1 RF Exposure Guidance v06:</u> Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

FCC CFR 47 part1 1.1310: Radiofrequency radiation exposure limits.

FCC CFR 47 part2 2.1091: Radiofrequency radiation exposure evaluation: mobile devices.

3. 2 Limit

Limits for Maximum Permissible Exposure (MPE)/Controlled Exposure

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time	
Range(MHz)	Strength(V/m)	Strength(A/m)	Strength(A/m) (mW/cm²)		
Limits for Occupational/Controlled Exposure					
0.3 - 3.0	614	1.63	(100) *	6	
3.0 - 30	1842/f	4.89/f	(900/f ²)*	6	
30 – 300	61.4	0.163	1.0	6	
300 – 1500	/	1	f/300	6	
1500 – 100,000	1	1	5	6	

Limits for Maximum Permissible Exposure (MPE)/Uncontrolled Exposure

Elimite for Maximum 1 emilesible Expedite (Mi E)/emechanica Expedite							
Frequency Electric Field M		Magnetic Field	Power Density	Averaging Time			
Range(MHz)			(mW/cm²)	(minute)			
Limits for Occupational/Uncontrolled Exposure				The state of the s			
0.3 - 3.0	614	1.63	(100) *	30			
3.0 - 30	824/f	2.19/f	(180/f ²)*	30			
30 - 300	27.5	0.073	0.2	30			
300 – 1500	/	/	f/1500	30			
1500 - 100,000	/	/	1.0	30			

F=frequency in MHz

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000. China

^{*=}Plane-wave equivalent power density

FCC ID: 2BL4R-PAK

4. MPE Calculation Method

Predication of MPE limit at a given distance Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S=PG/4\pi R^2$

Where: S=power density

P=power input to antenna

G=power gain of the antenna in the direction of interest relative to an isotropic radiator

R=distance to the center of radiation of the antenna

5. Antenna Information

EUT can only use antennas certificated as follows provided by manufacturer;

20 1 can only acc antonnac continuated ac follows provided by managed action,							
Internal/External	Antenna type and	Operate frequency	Maximum antenna	Notes			
Identification	antenna number	band	gain				
Antenna	PCB Antenna	2400-2500 MHz	2.21dBi	BT/ WIFI Antenna			

6. Conducted Power

[BLE 1M]

[==]						
Mode	Channel	Frequency	Peak Conducted Output Power			
		(MHz)	(dBm)			
	0	2402	0.07			
GFSK	19	2440	-0.18			
	39	2480	0.05			

IBLE 2M1

[====:::]						
Modo	Channal	Frequency	Peak Conducted Output Power			
Mode	Channel	(MHz)	(dBm)			
GFSK	0	2402	-0.06			
	19	2440	-0.36			
	39	2480	-0.11			

[2 4G WI AN]

A STATE OF THE STA		[Z.4G WLAN]	
Mode	Channel	Frequency (MHz)	Peak Conducted Output
Wiodo	Gridinion	r requeries (ivii i2)	Power (dBm)
	1	2412	15.66
IEEE 802.11b	6	2437	15.91
	11	2462	15.43
	1	2412	14.44
IEEE 802.11g	6	2437	14.31
d	11	2462	14.12
IEEE 802.11n	1	2412	13.92
HT20	6	2437	13.76

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

Page 4 of 5

FCC I	D: 2BL	_4R-P	ΑK
-------	--------	-------	----

	11	2462	13.34
IEEE 802.11n HT40	3	2422	12.19
	6	2437	12.54
	9	2452	13.1

7. Manufacturing Tolerance

BLE 1M (Peak)						
Channel 0 Channel 19 Channel 39						
Target (dBm)	0	0	0			
Tolerance ± (dB)	1.0	1.0	1.0			

BLE 2M (Peak)						
Channel	Channel 0	Channel 19	Channel 39			
Target (dBm)	0	0	0			
Tolerance ± (dB)	1.0	1.0	1.0			

	IEEE 802	.11b(Peak)				
Channel	Channel 01	Channel 06	Channel 11			
Target (dBm)	Target (dBm) 15.0		15.0			
Tolerance ± (dB)	1.0 ing Lab	1.0 Resting Lab	1.0			
9	IEEE 802.11g(Peak)					
Channel	Channel 01	Channel 06	Channel 11			
Target (dBm) 14.0		14.0	14.0			
Tolerance ± (dB) 1.0		1.0	1.0			
	IEEE 802.1	1n20(Peak)				
Channel	Channel 01	Channel 06	Channel 11			
Target (dBm)	13.0	13.0	13.0			
Tolerance ± (dB)	1.0	1.0	1.0			
	IEEE 802.1	1n40(Peak)				
Channel	Channel 03	Channel 06	Channel 09			
Target (dBm)	12.0	12.0	13.0			
Tolerance ± (dB)	1.0	1.0	1.0			

8. Measurement Results

As declared by the Applicant, the EUT is a wireless device used in a fix application, at least 20 cm from any body part of the user or nearby persons; from the maximum EUT RF output power, the minimum separation distance, r =20cm, as well as the gain of the used antenna refer to antenna information, the RF power density can be obtained.

[BLE 1M]

	Output	power	Antenna	Antenna	MPE	MPE
Modulation Type	dDm	mW	Gain	Gain	(mW/cm2)	Limits
	dBm mW	(dBi)	(linear)	(IIIVV/CIIIZ)	(mW/cm2)	
GFSK	1.0	1.2589	2.21	1.6596	0.0004	1.0000

	44					ozta 455
			[BLE 2M]		工清格·测版	
Modulation Type	Output power		Antenna	Antenna	MPE	MPE
	dBm	mW	Gain	Gain	(mW/cm2)	Limits
			(dBi)	(linear)		(mW/cm2)
GFSK	1.0	1.2589	2.21	1.6634	0.0004	1.0000

[2.4GWLAN]

Modulation Type	Output power		Antenna	Antenna	MDE	MPE
	dBm	mW	Gain (dBi)	Gain (linear)	MPE (mW/cm2)	Limits (mW/cm2)
IEEE 802.11b	16.0	39.8107	2.21	1.6634	0.0132	1.0000
IEEE 802.11g	15.0	31.6228	2.21	1.6634	0.0105	1.0000
IEEE 802.11n HT20	14.0	25.1189	2.21	1.6634	0.0083	1.0000
IEEE 802.11n HT40	14.0	25.1189	2.21	1.6634	0.0083	1.0000

Remark:

- 1. Output power including tune-up tolerance;
- 2. Output power was adjust to duty cycle at 100% if measured duty cycle less than 98%;
- 3. MPE evaluate distance is 20cm from user manual provide by manufacturer.

9. Conclusion

The measurement results comply with the FCC Limit per 47 CFR 2.1091 for the uncontrolled RF Exposure of mobile device.

--THE END OF REPORT-----

Shenzhen LCS Compliance Testing Laboratory Ltd.