

FCC Test Report

Report No.: HK2409035112-E

Test Report
On Behalf of
Dongguan MeiYin keji Co., LTD.
For
Karaoke machine
Model No.: T-03

FCC ID: 2BKSF-T03

Prepared For: Dongguan MeiYin keji Co., LTD.

Room 1004, No.3, Lane 6, Minchang Road, Nanzha, Humen Town, Dongguan

City, Guangdong Province, 523920, China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai

Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Sept. 02, 2024 ~ Sept. 18, 2024

Date of Report: Sept. 18, 2024

Report Number: HK2409035112-E

Test Result Certification

Applicant's Name...... Dongguan MeiYin keji Co., LTD.

Room 1004, No.3, Lane 6, Minchang Road, Nanzha, Humen Town,

Dongguan City, Guangdong Province, 523920, China

Report No.: HK2409035112-E

Manufacturer's Name Dongguan MeiYin keji Co., LTD.

Address Room 1004, No.3, Lane 6, Minchang Road, Nanzha, Humen Town,

Dongguan City, Guangdong Province, 523920, China

Product Description

Trade Mark: N/A

Product Name...... Karaoke machine

Model and/or Type Reference: T-03

Standards 47 CFR FCC Part 15 Subpart C 15.247

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date (s) of Performance of Tests Sept. 02, 2024 ~ Sept. 18, 2024

Test Result......Pass

Testing Engineer

Lon Liao

len lian

Technical Manager

Up. (2) 11 1

Sliver Wan

Authorized Signatory

Justin France

Jason Zhou

Table of Contents

Report No.: HK2409035112-E

	Table of Contents		Page
1. Su	mmary	WAX TO	5
1.1	Test Standards		
1.2	Test Description		
1.3	Test Facility		
1.4	Statement of the Measurement Uncertainty		
2. Ge	neral Information		
2.1	Environmental Conditions	HILLY TES	5 ^{TING}
2.2	General Description of EUT		
2.3	Description of Test Modes and Test Frequency		
2.4	Equipments Used during the Test		
2.5	Related Submittal(s) / Grant (s)		
2.6	Modifications	The state of the s	10
2.7	Description of Test Setup		10
2.8	Description of Support Units		
3. Te	st Conditions and Results		12
3.1	Conducted Emissions Test	(i) HUM	12
3.2	Radiated Emissions and Band Edge		
3.3	Maximum Peak Conducted Output Power		
3.4	20dB Bandwidth		
3.5	Frequency Separation		31
3.6	Number of Hopping Frequency	TES TIME	33
3.7	Time of Occupancy (Dwell Time)		
3.8	Out-of-Band Emissions	TESTIN'	39
3.9	Pseudorandom Frequency Hopping Sequence		49
3.10	Antenna Requirement		
4. Te:	st Setup Photos of the EUT		51
5 Dh	otos of the FLIT		HUAKTES 53

Report No.: HK2409035112-E Page 4 of 53

** Modified History **

- CO	and the same of th	and the second s			
Revision	Description	Issued Data	Remark		
Revision 1.0	Initial Test Report Release	Sept. 18, 2024	Jason Zhou		
20.0			50 S		
ESTING	TIME	ESTING ESTING	e cstng		

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com. Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

1. Summary

1.1 Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

1.2 Test Description

FCC PART 15.247		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.215	20dB Bandwidth& 99% Bandwidth	PASS
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS
FCC Part 15.247(b)	Maximum Peak Output Power	PASS
FCC Part 15.247 (a) (1)	Pseudorandom Frequency Hopping Sequence	PASS
FCC Part 15.247(a)(1)(iii)	Number of Hopping Frequency& Time of Occupancy	PASS
FCC Part 15.247(a)(1)	Frequency Separation	PASS
FCC Part 15.205/15.209	Radiated Emissions	PASS
FCC Part 15.247(d)	Band Edge Compliance of RF Emission	PASS
- 476	74.	- 1/2

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Report No.: HK2409035112-E

1.3 Test Facility

1.3.1 Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai

Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

1.3.2 Laboratory Accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 21210

The 3m alternate test site of Shenzhen HUAK Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 21210 on May 24, 2016.

1.4 Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen HUAK Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for HUAK laboratory is reported:

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.37 dB	(1)
Transmitter power Radiated	±3.35 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±3.68%	(1)
Radiated Emission 30~1000MHz	±3.90dB	(1)
Radiated Emission Above 1GHz	±4.28dB	(1)
Conducted Disturbance0.15~30MHz	±2.71dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

AFICATION.

Report No.: HK2409035112-E

2. General Information

2.1 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperatu	re:	25°C	-TING
Relative Humidity	/: MAKTES	55 %	MAKTER
Air Pressure:	(8)	101 kPa	(a)

2.2 General Description of EUT

Product Name:	Karaoke machine	MAKIL
Model/Type Reference:	T-03	
Series Model:	N/A	TESTING A TESTING
Model Difference:	N/A	O HOW
Power Supply:	DC5V from Type-C or DC3.7V from battery	
Version:	Supported EDR	TING STR
Modulation:	GFSK, π/4DQPSK, 8DPSK	HUAK
Operation Frequency:	2402MHz~2480MHz	
Channel Number:	79 marties marties	TESTING
Channel Separation:	1MHz	O HUANG
Antenna Type:	PCB Antenna	
Antenna Gain:	1.9dBi	TESTING OK TESTING
Hardware Version:	V1.0	O HO
Software Version:	V1.0	
Mata		c .

Note

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 2. Antenna gain Refer to the antenna specifications.
- 3. The cable loss data is obtained from the supplier.
- 4. The test results in the report only apply to the tested sample.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2.3 Description of Test Modes and Test Frequency

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Report No.: HK2409035112-E

There are 79 channels provided to the EUT and Channel 00/39/78 was selected for testing.

Operation Frequency:

Operation Frequenc	y.	TES	TES.	51
HUAR	Channel	HUAR	Frequency (MHz)	
	00		2402	
ESTING	01 HUAKTES	ESTING	2403	
HUAK		HUAK.	HURK	
	38		2440	
	39		2441	
HUAK TES HUAK	40	HUAK	2442	
	:		:	
	77		2479	
	78		2480	

Note: The line display in grey were the channel selected for testing

Preliminary tests were performed in each mode and packet length of BT, and found worst case as bellow, finally test were conducted at those mode and recorded in this report.

Test Items	Worst case
Conducted Emissions	Charging mode
Radiated Emissions and Band Edge	DH5 Low channel
Maximum Conducted Output Power	DH5/2DH5/3DH5
20dB Bandwidth&99% Bandwidth	DH5/2DH5/3DH5
Frequency Separation	DH5/2DH5/3DH5 Middle channel
Number of hopping frequency	DH5/2DH5/3DH5
Time of Occupancy (Dwell Time)	DH1/DH3/DH5 Middle channel 2DH1/2DH3/2DH5 Middle channel 3DH1/3DH3/3DH5 Middle channel
Out-of-band Emissions	DH5/2DH5/3DH5

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.4 Equipments Used during the Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interva
1	L.I.S.N.	R&S	ENV216	HKE-002	2024/02/20	1 Year
2	L.I.S.N.	R&S	ENV216	HKE-059	2024/02/20	1 Year
3	EMI Test Receiver	R&S	ESR	HKE-005	2024/02/20	1 Year
4	Spectrum analyzer	Agilent	N9020A	HKE-025	2024/02/20	1 Year
5	Spectrum analyzer	R&S	FSV3044	HKE-126	2024/02/20	1 Year
6	Preamplifier	EMCI	EMC051845S	HKE-006	2024/02/20	1 Year
7	Preamplifier (Schwarzbeck	BBV 9743	HKE-016	2024/02/20	1 Year
8	Preamplifier	A.H. Systems	SAS-574	HKE-182	2024/02/20	1 Year
9	6dB Attenuator	Pasternack	6db	HKE-184	2024/02/20	1 Year
10	EMI Test Receiver	Rohde & Schwarz	ESR-7	HKE-010	2024/02/20	1 Year
11	Broadband Antenna	Schwarzbeck	VULB9168	HKE-167	2024/02/21	2 Year
12	Loop Antenna	op Antenna COM-POWER		HKE-014	2024/02/21	2 Year 2 Year /
13	Horn Antenna	Schwarzbeck	Schwarzbeck 9120D HKE-013 Tonscend JS32-CE 2.5.0.6 HKE-081 Tonscend JS32-RE 5.0.0 HKE-082			
14	EMI Test Software	Tonscend			€ MIAN	
15	EMI Test Software	Tonscend			1	
16	RF Automatic control unit	Tonscend	JS0806-2	HKE-060	2024/02/20	1 Year
17	High pass filter unit	Tonscend	JS0806-F	HKE-055	2024/02/20	1 Year
18	Wireless Communication Test Set	R&S	CMU200	HKE-026	2024/02/20	1 Year
19	Wireless Communication Test Set	R&S	CMW500	HKE-027	2024/02/20	1 Year
20	High-low		HT-80L	HKE-118	2024/06/10	1 Year
21	Temperature and humidity meter	Boyang	HTC-1	HKE-075	2024/06/10	1 Year
22	RF Test Software	Tonscend	JS1120-3 Version 3.3.23	HKE-083	I WAN	1
23	10dB Attenuator	Schwarzbeck	VTSD9561F	HKE-153	2024/02/20	1 Year
24	RSE Test Software	Tonscend	JS36-RSE 5.0.0	HKE-184	ESTING /	TESTAG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Report No.: HK2409035112-E

2.5 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

Report No.: HK2409035112-E

2.6 Modifications

No modifications were implemented to meet testing criteria.

2.7 Description of Test Setup

Operation of EUT during Conducted and Radiation below 1GHz testing:

Operation of EUT during Radiation Above 1GHz testing:

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3mchamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2.8 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

102	1000	103	10%	IAN	101
Item	Equipment	Trade Mark	Model/Type No.	Specification	Note
STING	Karaoke machine	N/A	T-03	N/A	EUT
2	Adapter	N/A	MDY-10-EH	Input: AC100-240V, 50/60Hz, 0.7A Output: DC5V/3A, 9V/3A, 12V/2.25A, 20V/1.35A	Peripheral
3	Microphone	N/A	N/A	N/A	Peripheral
HUM	0111	⊘ √	0	9 mg	
STIN	STING		STING	STANG	STING

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

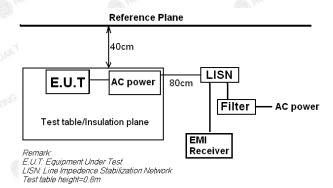
CE AL

Report No.: HK2409035112-E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

3. Test Conditions and Results

3.1 Conducted Emissions Test


Limit

According to FCC CFR Title 47 Part 15 Subpart C Section 15.207 and RSS Gen 8.8, AC Power Line Conducted Emissions Limits for License-Exempt Radio Apparatus as below:

Fraguency range (MHz)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56 100	46			
5-30 m	60	50			

^{*} Decreases with the logarithm of the frequency.

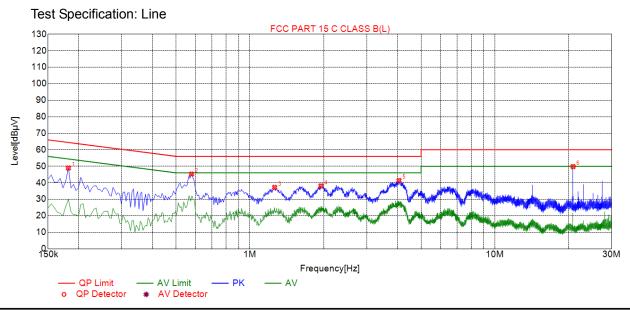
Test Configuration

Test Procedure

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

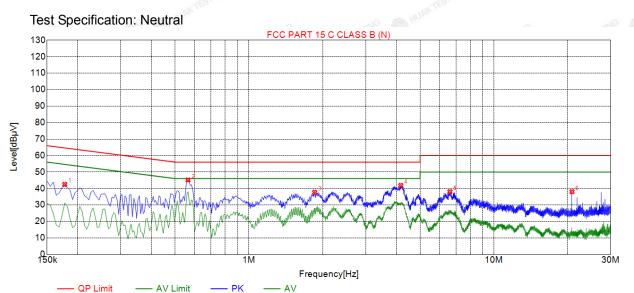


Report No.: HK2409035112-E

Test Results

All modes have been tested, only the worst result was reported as below:

	Suspected List								
	NO.	Freq. [MHz]	Level [dBµ∀]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµ∀]	Detector	Туре
	1	0.1815	48.95	19.86	64.42	15.47	29.09	PK	L
	2	0.5775	45.25	19.86	56.00	10.75	25.39	PK	L
No.	3	1.2615	37.21	19.90	56.00	18.79	17.31	PK	L
	4	1.9500	38.10	19.96	56.00	17.90	18.14	PK	L
į	5	4.0605	41.36	20.09	56.00	14.64	21.27	PK	L
	6	20.8590	49.83	19.95	60.00	10.17	29.88	PK	L

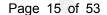

Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss

Level=Test receiver reading + correction factor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Page 14 of 53


Report No.: HK2409035112-E

Sus	Suspected List												
NO.	Freq. [MHz]	Level [dBµ∀]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре					
1	0.1770	42.45	19.75	64.63	22.18	22.70	PK	N					
2	0.5640	45.14	19.75	56.00	10.86	25.39	PK	N					
3	1.8555	37.69	19.83	56.00	18.31	17.86	PK	N					
4	4.1685	41.86	19.98	56.00	14.14	21.88	PK	N					
5	6.6165	38.05	19.97	60.00	21.95	18.08	PK	N					
6	20.8545	38.06	20.03	60.00	21.94	18.03	PK	N					

Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss

Level=Test receiver reading + correction factor

3.2 Radiated Emissions and Band Edge

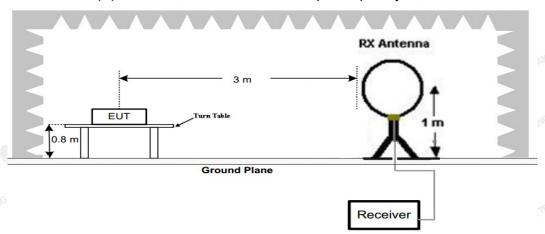
Limit

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

Report No.: HK2409035112-E

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission

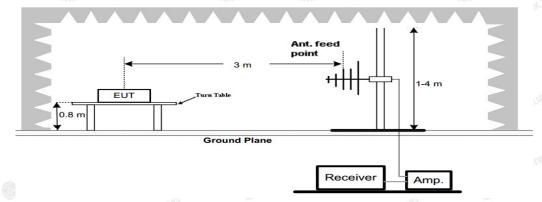

Unwanted emissions that fall into restricted bands shall comply with the limits specified in RSS-Gen; and Unwanted emissions that do not fall within the restricted frequency bands shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen.

Radiated emission limits

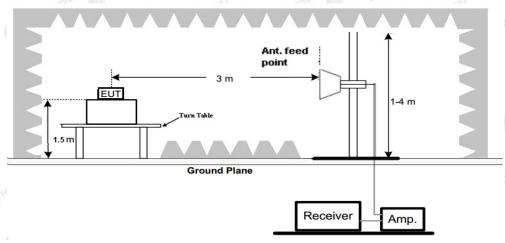
			the state of the s	
F	requency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
	1.705-30 3		20log(30)+ 40log(30/3)	30
11-	30-88	3.144	40.0 min 5	100
	88-216	3	43.5	150
3	216-960	3	46.0	200
	Above 960	TIME 3	54.0	500

Test Configuration

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

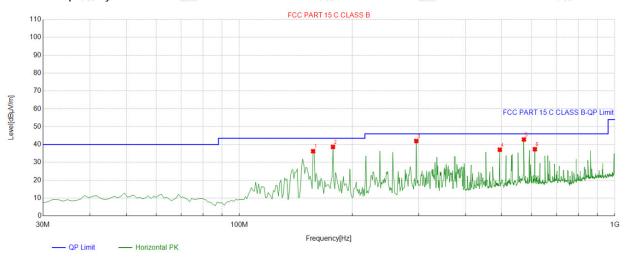


(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

Report No.: HK2409035112-E

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Test Procedure

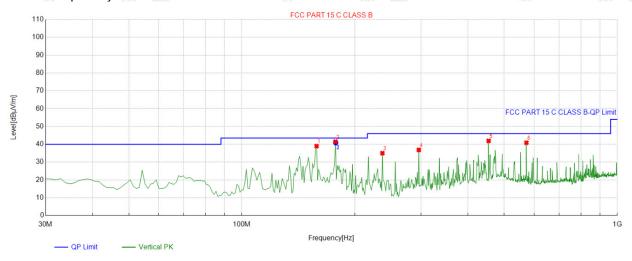

- The EUT was placed on turn table which is 0.8m above ground plane for below 1GHz test, and on a low permittivity and low loss tangent turn table which is 1.5m above ground plane for above 1GHz test.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0 degrees to 360 degrees to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.

Test Results

Remark:

- Radiated Emission measured at GFSK, π/4 DQPSK and 8DPSK mode from 9 KHz to 10th harmonic of fundamental and recorded worst case at GFSK DH5 mode.
- There is no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this
- For below 1GHz testing recorded worst at GFSK DH5 low channel.

Below 1GHz Test Results: Antenna polarity: H



	Suspe	cted List								
		Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	
7000	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
	1	157.19719	-17.77	54.04	36.27	43.50	7.23	100	57	Horizontal
	2	177.58758	-16.61	55.29	38.68	43.50	4.82	100	95	Horizontal
Ý	3	296.04604	-11.88	53.85	41.97	46.00	4.03	100	275	Horizontal
	4	494.12412	-7.84	44.94	37.10	46.00	8.90	100	37	Horizontal
	5	572.77277	-5.64	48.48	42.84	46.00	3.16	100	330	Horizontal
5	6	612.58258	-5.49	42.88	37.39	46.00	8.61	100	37	Horizontal

Remark: Factor = Cable loss + Antenna factor + Attenuator - Preamplifier; Level = Reading + Factor; Margin = Limit - Level;

Antenna polarity: V

S	uspe	cted List								
		Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	
1	10 .	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
	1	158.16816	-17.83	56.80	38.97	43.50	4.53	100	148	Vertical
<	2	177.58758	-16.61	58.07	41.46	43.50	2.04	100	169	Vertical
	3	236.81681	-13.80	48.83	35.03	46.00	10.97	100	259	Vertical
	4	296.04604	-11.88	48.73	36.85	46.00	9.15	100	314	Vertical
	5	454.31431	-8.83	50.74	41.91	46.00	4.09	100	158	Vertical
	6	572.77277	-5.64	46.51	40.87	46.00	5.13	100	193	Vertical

Final Data List												
		Freq.	Factor	QP Reading	QP Value	QP Limit	QP Margin	Height	Angle			
	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
Š	1	177.7986	-16.61	57.44	40.83	43.50	2.67	100	169	Vertical		
	2	177.8089	-16.61	57.29	40.68	43.50	2.82	100	169	Vertical		

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level;

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
		-
		-
		
ESTITUTE TESTITUTE	TESTING TESTING	TESTIN TESTIN

Note: 1. Emission Level=Reading+ Cable loss+ Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

For 1GHz to 25GHz

CH Low (2402MHz)

Horizontal:

_	rionzontai.						
51	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
I	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
	4804.00	53.16	-3.65	49.51	74.00	-24.49	peak
Ī	4804.00	46.29	-3.65	42.64	54.00	-11.36	AVG
Ī	7206.00	52.34	-0.95	51.39	74.00	-22.61	peak
Ī	7206.00	43.08	-0.95	42.13	54.00	-11.87	AVG

Report No.: HK2409035112-E

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level - Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4804.00	53.17	-3.65	49.52	74.00	-24.48	peak
4804.00	44.96	-3.65	41.31	54.00	-12.69	AVG
7206.00	51.55	-0.95	50.60	74.00	-23.40	peak
7206.00	43.24	-0.95	42.29	54.00	-11.71	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level - Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

CH Middle (2441MHz)

Horizontal:

		NOOTH AND	730.5367	ACCOL Y	75"	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4882.00	52.03	-3.54	48.49	74.00	-25.51	peak
4882.00	46.85	-3.54	43.31	54.00	-10.69	AVG
7323.00	52.09	-0.81	51.28	74.00	-22.72	peak
7323.00	41.41	-0.81	40.60	54.00	-13.40	AVG
607.01767			600000		EUR 2751	•

Report No.: HK2409035112-E

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level - Limit.

Vertical:

		. 6.5			. 637/	4.56
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4882.00	53.38	-3.54	49.84	74.00	-24.16	peak
4882.00	45.29	-3.54	41.75	54.00	-12.25	AVG
7323.00	52.21	-0.81	51.40	74.00	-22.60	peak
7323.00	42.56	-0.81	41.75	54.00	-12.25	AVG
- 5.75						

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level - Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

CH High (2480MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4960.00	53.42	-3.43	49.99	74.00	-24.01	peak
4960.00	46.33	-3.44	42.89	54.00	-11.11	AVG
7440.00	51.19	-0.77	50.42	74.00	-23.58	peak
7440.00	41.08	-0.77	40.31	54.00	-13.69	AVG

Report No.: HK2409035112-E

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level - Limit.

Vertical:

					. 6.37	4 %
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4960.00	51.46	-3.43	48.03	74.00	-25.97	peak
4960.00	46.27	-3.44	42.83	54.00	-11.17	AVG
7440.00	51.14	-0.77	50.37	74.00	-23.63	peak
7440.00	42.09	-0.77	41.32	54.00	-12.68	AVG
7.73.00					-	

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level - Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.
- (7)All modes of operation were investigated and the worst-case emissions are reported.

Radiated Band Edge Test:

Hopping

Horizontal (Worst case):

TIOTIZOTILAT (V	voist case).					
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310.00	54.84	-5.81	49.03	74	-24.97	peak
2310.00	IK TESTING	-5.81	/ AK TESTING	54	/	AVG
2390.00	53.56	-5.84	47.72	74	-26.28	peak
2390.00	I G	-5.84	1	54	1	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level - Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Estitus Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2310.00	54.32	-5.81	48.51	74	-25.49	peak	
2310.00	Merce 1	-5.81	MAKTES	54	1	AVG	
2390.00	53.17	-5.84	47.33	74 TESTIN	-26.67	peak	
2390.00	W TEX MG	-5.84	TESTING /	54	TESTING	AVG	

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level - Limit.

Horizontal (Worst case):

TOTIZOTILAT (VVO	rot oacoj.		AG	AD REEL	.10	The state of the s
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	55.49	-5.81	49.68	74	-24.32	peak
2483.50	MUAR /	-5.81	1 MHUAR	54	UAK 1	AVG
2500.00	55.18	-6.06	49.12	74	-24.88	peak
2500.00	AK TESTING	-6.06	/ TESTING	54 Julian	1	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level - Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	55.95	-5.81	50.14	74	-23.86	peak
2483.50) I	-5.81	1 0	54	1	AVG
2500.00	55.47	-6.06	49.41	74	-24.59	peak
2500.00	IN TEST	-6.06	HUAK TEST	54	1	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level - Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Report No.: HK2409035112-E

NO Hopping

Operation Mode: TX CH Low (2402MHz)

Horizontal (Worst case):

110112011 (1	voist dage).					
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310.00	54.93	-5.81	49.12	74	-24.88	peak
2310.00	JK TESTING	-5.81	/ IAK TESTING	54 MUM	1	AVG
2390.00	55.62	-5.84	49.78	74	-24.22	peak
2390.00	I G	-5.84	1	54	1	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level - Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	STING Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310.00	55.18	-5.81	49.37	74	-24.63	peak
2310.00	MeTER 1	-5.81	MAKTES	54	1	AVG
2390.00	55.49	-5.84	49.65	74 TESTING	-24.35	peak
2390.00	V TEXMS	-5.84	TESTING /	54	/ TESTING	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level - Limit.

Report No.: HK2409035112-E

Page 25 of 53 Report No.: HK2409035112-E

Operation Mode: TX CH High (2480MHz)

Horizontal (Worst case):

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	55.17	-5.81	49.36	74	-24.64	peak
2483.50	1	-5.81	1	54	ESTING /	AVG
2500.00	55.98	-6.06	49.92	74	-24.08	peak
2500.00	1	-6.06	W 1	54	1	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level - Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	55.09	-5.81	49.28	74	-24.72	peak
2483.50	THE	-5.81	1	54	ESTING /	AVG
2500.00	55.24	-6.06	49.18	74	-24.82	peak
2500.00	1	-6.06	1	54 TESTING	1	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level - Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Remark:

- 1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.
- 2. In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

3.3 Maximum Peak Conducted Output Power

Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Report No.: HK2409035112-E

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

Type	Channel	Maximum Peak Conducted Output Power (dBm)	Limit (dBm)	Result
0	00	2.23	0,"	(1)
GFSK	39	2.52	21.00	Pass
G TESTI	[©] 78	2.55 gm ^G	TSTIN	
HUAR	00	2.32	HUAR	HUAK
π/4DQPSK	39	2.72	21.00	Pass
TING	78	2.72	- JUAK TESTING	
HUAKTES	00	2.80	(a)	HUAKTES
8DPSK	39	2.23	21.00	Pass
is the	78	2.38	HUNKIL	

Note: The test results including the cable loss.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

3.4 20dB Bandwidth

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Report No.: HK2409035112-E

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

RBW=1% to 5% of the OBW VBW=approximately 3 X RBW Detector=Peak

Trace Mode: Max Hold

Use the 99% power bandwidth function of the instrument to measure the Occupied Bandwidth and recoded.

Test Configuration

Test Results

Modulation	Channel	20dB bandwidth (MHz)	Result
(a)	CH00	0.948	0,,
GFSK	CH39	0.942	.6
	CH78	0.924	MAKTESTINE
	CH00	1.323).
π/4DQPSK	CH39	1.323	Pass
	CH78	1.359	HUAK TESI.
9	CH00	1.311	
8DPSK	CH39	1.290	
	CH78	1.296	AKTESTING

Test plot as follows:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

CH78

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

CH78

Report No.: HK2409035112-E