

PARTIAL Test Report 24-1-0039801T021_TR1-R01

Number of pages: 28	Date of Report:	2024-Nov-04
---------------------	-----------------	-------------

Testing company: cetecom advanced GmbH Applicant: Lufthansa Technik AG

Untertuerkheimer Str. 6-10

66117 Saarbruecken GERMANY

Product: Small Aircraft Cabin Management and Inflight Entertainment System (SAC)

Model: SAC0522

PMN: SAC

HVIN: SAC0522-001-001 **FVIN:** SCDP1-01-B-RC01

Testing has been FCC Regulations

carried out in Title 47 CFR, Chapter I, Subchapter A, Part 15

Subpart C Intentional Radiators accordance with:

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,

and 5725-5850 MHz

ISED-Regulations

Radio Standards Specification

RSS-Gen, Issue 5

General Requirements for Compliance of Radio Apparatus

RSS-247, Issue 3

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area

Network (LE-LAN) Device

Tested Technology: Bluetooth

Test Results:
☐ The EUT complies with the requirements in respect of selected parameters subject to

the test.

The test results relate only to devices specified in this document

Signatures:

B.Eng. Martin Nunier Salih Öztan
Supervisor Radio Services Testing Manager
Authorization of test report Responsible of test report

Salil of

Table of Contents

Ta	ble c	of Annex	3
1	(General information	4
	1.1	Disclaimer and Notes	4
	1.2	Attestation	4
	1.3	Summary of Test Results	5
	1.4	Summary of Test Methods	6
2	Þ	Administrative Data	7
	2.1	Identification of the Testing Laboratory	7
	2.2	General limits for environmental conditions	7
	2.3	Test Laboratories sub-contracted	7
	2.4	Organizational Items	7
	2.5	Applicant's details	7
	2.6	Manufacturer's details	7
	2.7	Equipment under Test (EUT)	8
	2.8	Untested Variant (VAR)	8
	2.9	Auxiliary Equipment (AE)	8
	2.10	0 Connected cables (CAB)	8
	2.11	1 Software (SW)	8
	2.12	2 EUT set-ups	8
	2.13	3 EUT operation modes	9
3	Е	Equipment under test (EUT)	10
	3.1	General Data of Main EUT as Declared by Applicant	10
	3.2		
	3.3		
4	N	Measurements	11
	4.1	Peak output power (Sweep)	11
	4.2	Radiated field strength emissions below 30 MHz	13
	4.3		
	4.4		
	4.5	Radiated Band-Edge emissions	22
	4.6	Equipment lists	24
5	F	Results from external laboratory	
6		Opinions and interpretations	
7		List of abbreviations	
8		Measurement Uncertainty valid for conducted/radiated measurements	
9		Versions of test reports (change history)	

	Table of Annex				
Annex No.	Contents	Reference Description	Total Pages		
Annex 1a	Radiated test result diagrams	24-1-0039801T021_TR1-A201-R01	26		
Annex 1b Conducted test result diagrams		24-1-0039801T021_TR1-A202-R01	20		
Annex 2	Internal photographs of EUT	Will be provided by customer			
Annex 3	External photographs of EUT	24-1-0039801T021_TR1-A101-R01	5		
Annex 4 Test set-up photographs 24-1-0039801T021_TR1-A103-R01 7					
	The listed attachments are separate documents.				

24-1-0039801T021_TR1-R01 3 / 28

1 General information

1.1 Disclaimer and Notes

The test results of this test report relate exclusively to the test item specified in this test report as specified in chapter 2.7. cetecom advanced does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of cetecom advanced.

The testing service provided by cetecom advanced has been rendered under the current "General Terms and Conditions for cetecom advanced".

cetecom advanced will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the cetecom advanced test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the cetecom advanced test report include or imply any product or service warranties from cetecom advanced, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by cetecom advanced.

All rights and remedies regarding vendor's products and services for which cetecom advanced has prepared this test report shall be provided by the party offering such products or services and not by cetecom advanced.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 10 years at cetecom advanced.

Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

1.2 Attestation

I declare that all measurements were performed by me or under my supervision and that all measurements have been performed and are correct to my best knowledge and belief to Industry Canada standards. All of the above requirements are met in accordance with enumerated standards.

24-1-0039801T021_TR1-R01 4/28

1.3 Summary of Test Results

The EUT integrates a Bluetooth transmitter. Other implemented wireless technologies were not considered within this test report.

Test case	Reference	Reference	Page	Remark	Result
	Clause FCC ⊠	Clause ISED ⊠			
Duty cycle	§15.35(c)	RSS-Gen Issue 5, §8.2			NP
Emission Bandwidth 20 dB	§15.247(a)(1)	RSS-247, Issue 3,			NP
		§5.1(a)			
Occupied Channel Bandwidth 99%	2.1049(h)	RSS-Gen, Issue 5,			NP
		§6.7			
Carrier Frequency Separation	§15.247(a)(1)	RSS-247, Issue 3,			NP
		§5.1(b)			
Number of Hopping Channels	§15.247(a)(1)(iii)	RSS-247, Issue 3,			NP
		§5.1(d)			
Time of Occupancy	§15.247(a)(1)(iii)	RSS-247, Issue 3,			NP
		§5.1(d)			
Peak output power (Sweep)	§15.247(b)(1)	RSS-247, Issue 3:	12		PASSED
		§5.4(b)			
Transmitter Peak output power radiated	§15.247(b)(4)	RSS-247, Issue 3:			NP
		§5.4(b)			
Emissions in non-restricted frequency bands	§15.247(d)	RSS-247, Issue 3, §5.5			NP
Radiated Band-Edge emissions	§15.247(d)	RSS-247, Issue 3, §5.5	23		PASSED
		RSS-Gen: Issue 5: §8.9			
		Table 5+6+7			
Radiated field strength emissions below 30	§15.205(a)	RSS-Gen: Issue 5	16		PASSED
MHz	§15.209(a)	§8.9 Table 6			
Radiated field strength emissions 30 MHz – 1	§15.209	RSS-Gen: Issue 5	18		PASSED
GHz	§15.247(d)	§8.9 Table 5			
		RSS-247, Issue 3, §5.5			
Radiated field strength emissions above 1	§15.209(a)	RSS-Gen: Issue 5: §8.9	20		PASSED
GHz	§15.247(d)	Table 5+7			
		RSS-247, Issue 3, §5.5			
AC-Power Lines Conducted Emissions	§15.207	RSS-Gen Issue 5:			NP
		§8.8, Table 4			

PASSED The EUT complies with the essential requirements in the standard.

FAILED The EUT does not comply with the essential requirements in the standard.

N/A Test case does not apply to the test object.

NP The test was not performed by the cetecom advanced laboratory.

Decision Rule: cetecom advanced GmbH follows <u>ILAC G8:2019 chapter 4.2.1 (Simple Acceptance Rule)</u>.

Remarks:

> Please check the module report for not performed measurements by the cetecom advanced GmbH laboratory.

24-1-0039801T021_TR1-R01 5/28

1.4 Summary of Test Methods

Test case	Test method
Duty-Cycle	ANSI C63.10:2013, §11.6(b)
Peak output power (Sweep)	ANSI C63.10:2013, §6.10.1
Emission Bandwidth 20 dB	ANSI C63.10:2013
Carrier Frequency Separation	ANSI C63.10:2013
Number of Hopping Channels	ANSI C63.10:2013
Time of Occupancy	ANSI C63.10:2013
Occupied Channel Bandwidth 99%	ANSI C63.10:2013, §6.9.3
Power spectral density	ANSI C63.10:2013, §6.9.2, §11.8
Transmitter Peak output power radiated	Result calculated with measured conducted RF-power value and
	stated/measured antenna gain for band of interest
Emissions in non-restricted frequency bands	ANSI C63.10:2013, §11.11, §6.10.5
Radiated field strength emissions below 30 MHz	ANSI C63.10-2013 §6.3, §6.4
Radiated field strength emissions 30 MHz- 1 GHz	ANSI C63.4-2014 §8.2.3, ANSI C63.10-2013 §6.3, §6.5
Radiated field strength emissions above 1 GHz	ANSI C63.4-2014 §8.3, ANSI C63.10-2013 §6.3, §6.6
Radiated Band-Edge emissions	ANSI C63.10-2013; "Marker-Delta method", §6.10.5, §11.13
AC-Power Lines Conducted Emissions	ANSI C63.4-2014 §7, ANSI C63.10-2013 §6.2

And reference also to Test methods in KDB558074

24-1-0039801T021_TR1-R01 6/28

2 Administrative Data

2.1 Identification of the Testing Laboratory

Company name: cetecom advanced GmbH Address:

Untertuerkheimer Str. 6-10

66117 Saarbruecken

Germany

Responsible for testing laboratory: Dipl.-Ing. (FH) Andreas Luckenbill M.Sc.

Accreditation scope: DAkkS Webpage: FCC ISED

3462D / DE0001 IC Lab company No. / CAB ID:

Test location 1: Im Teelbruch 116; 45219 Essen

Test location 2:

2.2 General limits for environmental conditions

Temperature:	22±2 °C
Relative. humidity:	45±15% rH

2.3 Test Laboratories sub-contracted

Company name:

2.4 Organizational Items

Responsible testing manager: Salih Öztan Receipt of EUT: 2024-Aug-06

Date(s) of test: 2024-Sep-19 to 2024-Sep-20

Version of template: 24.0301

2.5 Applicant's details

Applicant's name: Lufthansa Technik AG

Address: Weg beim Jäger 193

> 22335 Hamburg Hamburg Germany

Contact Person: Clemens Zumegen

Contact Person's Email: clemens.zumegen@lht.dlh.de

2.6 Manufacturer's details

Manufacturer's name: Lufthansa Technik AG Address: Weg beim Jäger 193 22335 Hamburg Germany

24-1-0039801T021_TR1-R01 7 / 28

2.7 Equipment under Test (EUT)

EUT No.*)	Sample No.	Product	Model	Type	SN	HW	SW
NO.							
EUT 1	24-1-00398S02_C01	Small Aircraft Cabin	SAC0522	MOD0	Q000040	SAC0522-	SCDP1-01-
		Management and Inflight				001-001	A-RC01
		Entertainment System (SAC)					

^{*)} EUT short description is used to simplify the identification of the EUT in this test report.

2.8 Untested Variant (VAR)

VAR	Sample No.	Product	Model	Туре	SN	HW	SW
No.*)							

^{*)} The listed additional untested model variant(s) (VAR) is/are not object of evaluation of compliance. For further information please see Annex 5: Declaration of applicant of model differences.

If the table above does not show any other line than the headline, no untested variants are available.

2.9 Auxiliary Equipment (AE)

AE	Sample No.	Auxiliary Equipment	Model	SN	HW	SW
No.*)						
AE 1	24-1-00398S03_C01	WiFi Antenna	WIFI ANTENNA MIMO	N/A	N/A	N/A
AE 2	24-1-00398S06_C01	Socket	N/A	N/A	N/A	N/A
AE 3	24-1-00398S07_C01	Termination Network	N/A	N/A	N/A	N/A

^{*)} AE short description is used to simplify the identification of the auxiliary equipment in this test report. If the table above does not show any other line than the headline, no AE was used during testing nor was taken into account for evaluation.

2.10 Connected cables (CAB)

САВ	Sample No.	Cable Type	Connectors / Details	Length
No.*)				
CAB 1	24-1-00398S04_C01	Network cable		200 cm
CAB 2	24-1-00398S05_C01	Power Cable		< 300 cm

^{*)} CAB short description is used to simplify the identification of the connected cables in this test report. If the table above does not show any other line than the headline, no cable was used during testing nor was taken into account for evaluation.

2.11 Software (SW)

SW	Sample No.	SW Name	Description	SW Status
No.*)				

^{*)} SW short description is used to simplify the identification of the used software in this test report. If the table above does not show any other line than the headline, no SW was used during testing nor was taken into account for evaluation.

2.12 EUT set-ups

set-up no.*)	Combination of EUT and AE	Description
Set 1	EUT 1 + AE 1 + AE 2 + AE 3 + CAB 1 + CAB 2	Used for radiated measurements
Set 2	EUT 1 (+ AE 1) + AE 2 + AE 3 + CAB 1 + CAB 2	Used for conducted measurements

^{*)} EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

2.13 EUT operation modes

EUT operating mode no.*1)	Operating modes	Additional information
	Bluetooth	The EUT was put to fixed channel (modulated) continuous transmissions mode
On 1	BDR/EDR Modes*	
Op 1	TX-Fixed Channel	*Other supported wireless technologies were put in idle mode using special test
	(Modulated)	software *2)
	Bluetooth	The EUT was put into normal hopping mode.
0.2	BDR/EDR Modes*	
Op 2	Normal operating	*Other supported wireless technologies were put in idle mode using special test
	mode	software *2)
Op 3	Receiving (RX)	With help of special test firmware RX-mode was set-up.
Op 3	mode	with help of special test infliwate na-mode was set-up.

^{*1)} EUT operating mode no. is used to simplify the test report.

24-1-0039801T021_TR1-R01 9/28

^{*2)} Please refer to document NXP-RF-Guide-AN14114.pdf

3 Equipment under test (EUT)

3.1 General Data of Main EUT as Declared by Applicant

Firmware	☐ for normal use	Special version for test exe	cution		
Power supply	☐ AC Mains -				
	☑ DC Mains	C Mains 28 V DC			
	☐ Battery	tery -			
Operational conditions	$T_{\text{nom}} = +21 ^{\circ}\text{C}$ $T_{\text{min}} = \text{N/A}$ $T_{\text{max}} = \text{N/A}$				
EUT sample type	Pre-Production				
Weight	2.130 kg				
Size [LxWxH]	28.0 cm x 18.0 cm x 7.0 cm				
Interfaces/Ports	USB. TNC				
For further details refer Applicants Declaration & following technical documents					
For further details regarding radio param	eters, please refer to Bluetoo	th Core Specification			

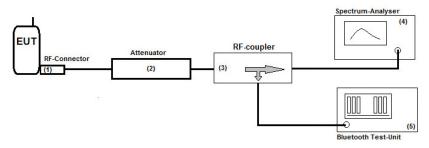
3.2 Detailed Technical data of Main EUT as Declared by Applicant

Frequency Band	2.4 GHz ISM Band (2400 MHz - 2483.5 MHz)				
Number of Channels	,				
(USA/Canada -bands)	79				
Nominal Channel Bandwidth	1 MHz				
Type of Modulation Data Rate	\boxtimes GFSK 1 Mbit/s \boxtimes $\pi/4$ DQPSK 2 Mbit/s				
Type of Modulation Data Nate	⊗ 8DPSK 3 Mbit/s				
	⊠ a/n/ac mode				
Other installed options	⊠ b/g/n mode				
Other installed options	☐ Bluetooth LE (not tested within this report)				
	☐ Cellular transceiver (2G/3G/4G/5G/GPS, not tested in this report)				
	GFSK: 10.60 dBm				
Max. Conducted Output Power	π/4 DQPSK 9.82 dBm				
	8DPSK: 10.09 dBm				
	GFSK: 10.60 dBm + 6.6 dBi = 17.2 dBm				
EIRP Power (Calculated EIRP)	$\pi/4$ DQPSK: 9.82 dBm + 6.6 dBi = 16.42 dBm				
	8DPSK: 10.09 dBm+ 6.6 dBi = 16.69 dBm				
Antenna Type	External Antenna				
Antenna Gain	6.6 dBi				
FCC label attached	No				
Test firmware / software and storage	EUT 1				
location	2011				
For further details refer Applicants Declara	ation & following technical	documents			
Description of Reference Document (suppl	ied by applicant)	Version	Total Pages		

3.3 Modifications on Test sample

|--|

24-1-0039801T021_TR1-R01 10 / 28


4 Measurements

4.1 Peak output power (Sweep)

4.1.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then on the RF-coupler the coupled RF-path is connected to a Bluetooth test unit communication tester (5). The direct RF-path is connected to the spectrum – analyzer (4) for specific RF-measurements. The specific attenuation losses for both signal paths/branches are determined prior to the measurement within a set-up calibration. These are then taken into account by correcting the measurement readings on the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 6)

Measurement is made using Rohde & Schwarz TS8997 test system.

EUT settings

Hopping mode was switched offso fixed three different channels could be measured.

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions.

Different modulation characteristics have been checked, e.g. data rates which EUT can operate

4.1.2 Measurement Location

Test site 120910 - Radio Laboratory 1 (15 8997)	Test site	
---	-----------	--

4.1.3 Limit

Frequency Range [MHz]	Limit [W]	Limit [dBm]	Detector	RBW / VBW [MHz]
2400 - 2483.5	1	30	MaxPeak	3 / 10

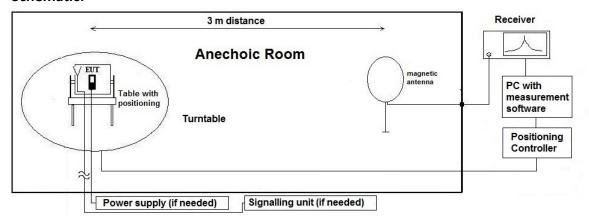
24-1-0039801T021_TR1-R01 11 / 28

4.1.4 Result

Mode	Channel	Frequency [MHz]	Max Peak Power [dBm]	Result
Set 1 / Op 1 / DH3 / GFSK	Low	2402	10.60	PASSED
Set 1 / Op 1 / DH3 / GFSK	Mid	2441	10.15	PASSED
Set 1 / Op 1 / DH3 / GFSK	High	2480	10.11	PASSED
Set 1 / Op 1 / 2DH3 / π/4-DQPSK	Low	2402	9.82	PASSED
Set 1 / Op 1 / 2DH3 / π/4-DQPSK	Mid	2441	9.34	PASSED
Set 1 / Op 1 / 2DH3 / π/4-DQPSK	High	2480	9.25	PASSED
Set 1 / Op 1 / 3DH3 / 8DPSK	Low	2402	10.09	PASSED
Set 1 / Op 1 / 3DH3 / 8DPSK	Mid	2441	9.61	PASSED
Set 1 / Op 1 / 3DH3 / 8DPSK	High	2480	9.49	PASSED

Remark: for more information and graphical plot see annex 1a 24-1-0039801T021_TR1_A202-R01

24-1-0039801T021_TR1-R01 12 / 28


4.2 Radiated field strength emissions below 30 MHz

4.2.1 Description of the general test setup and methodology, see below example:

Evaluating the radiated field emissions are done first by an exploratory emission measurement and a final measurement for most critical frequencies determined.

The loop antenna was placed at 1 m height above ground plane and 3 m measurement distance from set-up for investigations. Because of reduced measurement distance, correction data were applied, as stated in chapter "General Limit - Radiated field strength emissions below 30 MHz". The tests are performed in the semi anechoic room recognized by the regulatory commission.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 6)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (step 90°, range 0° to 360°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT), the emission spectrum was recorded.

The loop antenna was moved at least to 2-perpendicular axes (antenna vector in direction of EUT and parallel to EUT) in order to maximize the emissions. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a data reduction table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by main-taining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position).

24-1-0039801T021_TR1-R01 13 / 28

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A$ AF = Antenna factor

C_L = Cable loss

 $M = L_T - E_C$ $D_F = Distance correction factor (if used)$

E_C = Electrical field – corrected value

E_R = Receiver reading

G_A = Gain of pre-amplifier (if used)

 L_T = Limit M = Margin

All units are dB-units, positive margin means value is below limit.

4.2.2 Sample calculation

Raw- Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss	Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
19.83	18.9	-70.75	0.18		-51.67	-31.83	30 to 3 m correction used according ANSI C63.10-2013

Remark: This calculation is based on an example value at 458 kHz

4.2.3 Measurement Location

Test site 120901 - SAC3 - Radiated Emission <1GHz

24-1-0039801T021_TR1-R01 14 / 28

4.2.4 Correction factors due to reduced meas. distance (f < 30 MHz):

The used correction factors when the measurement distance is reduced compared to regulatory measurement distance, are calculated according Extrapolation formulas valid for EUT's with maximum dimension of 0.625xLambda. Formula 2+3+4 as presented in ANSI C63.10, Chapter 6.4.4 are used for the calculations of proper extrapolation factors

Frequency	f	Lambda	Far-Field	Distance Limit	1st	2nd Condition	Distance
Range	[kHz/MHz]	[m]	Point	accord. 15.209	Condition	(Limit distance	Correction
. 0		• •	[m]	[m]	(dmeas <	bigger dnear-	accord.
			[]	[]	Dnear-field)	field)	Formula
	0	22222 22	F20F 47		•	•	
	9	33333.33	5305.17		fullfilled	not fullfilled	-80.00
	10 20	30000.00	4774.65		fullfilled	not fullfilled	-80.00
	30	15000.00 10000.00	2387.33 1591.55		fullfilled fullfilled	not fullfilled not fullfilled	-80.00 -80.00
	40	7500.00	1193.66		fullfilled	not fullfilled	-80.00
	50	6000.00	954.93		fullfilled	not fullfilled	-80.00
	60	5000.00	795.78		fullfilled	not fullfilled	-80.00
	70	4285.71	682.09	300	fullfilled	not fullfilled	-80.00
	80	3750.00	596.83		fullfilled	not fullfilled	-80.00
	90	3333.33	530.52		fullfilled	not fullfilled	-80.00
kHz	100	3000.00	477.47		fullfilled	not fullfilled	-80.00
	125	2400.00	381.97		fullfilled	not fullfilled	-80.00
	200	1500.00	238.73		fullfilled	fullfilled	-78.02
	300	1000.00	159.16		fullfilled	fullfilled	-74.49
	400	750.00	119.37		fullfilled	fullfilled	-72.00
	490	612.24	97.44		fullfilled	fullfilled	-70.23
	500	600.00	95.49		fullfilled	not fullfilled	-40.00
	600	500.00	79.58		fullfilled	not fullfilled	-40.00
	700	428.57	68.21		fullfilled	not fullfilled	-40.00
	800	375.00	59.68	_	fullfilled	not fullfilled	-40.00
	900	333.33	53.05		fullfilled	not fullfilled	-40.00
	1.00	300.00	47.75		fullfilled	not fullfilled	-40.00
	1.59	188.50	30.00		fullfilled	not fullfilled	-40.00
	2.00	150.00	23.87		fullfilled	fullfilled	-38.02
	3.00	100.00	15.92		fullfilled	fullfilled	-34.49
	4.00	75.00	11.94		fullfilled	fullfilled	-32.00
	5.00	60.00	9.55		fullfilled	fullfilled	-30.06
	6.00	50.00	7.96		fullfilled	fullfilled	-28.47
	7.00	42.86	6.82		fullfilled fullfilled	fullfilled	-27.13
	8.00 9.00	37.50	5.97			fullfilled	-25.97
	10.00	33.33 30.00	5.31 4.77	30	fullfilled fullfilled	fullfilled fullfilled	-24.95 -24.04
	10.60	28.30	4.77	30	fullfilled	fullfilled	-23.53
	11.00	27.27	4.34		fullfilled	fullfilled	-23.21
MHz	12.00	25.00	3.98		fullfilled	fullfilled	-22.45
	13.56	22.12	3.52		fullfilled	fullfilled	-21.39
	15.00	20.00	3.18		fullfilled	fullfilled	-20.51
	15.92	18.85	3.00		fullfilled	fullfilled	-20.00
	17.00	17.65	2.81		not fullfilled	fullfilled	-20.00
	18.00	16.67	2.65		not fullfilled	fullfilled	-20.00
	20.00	15.00	2.39		not fullfilled	fullfilled	-20.00
	21.00	14.29	2.27		not fullfilled	fullfilled	-20.00
	23.00	13.04	2.08		not fullfilled	fullfilled	-20.00
	25.00	12.00	1.91		not fullfilled	fullfilled	-20.00
	27.00	11.11	1.77		not fullfilled	fullfilled	-20.00
	29.00	10.34	1.65		not fullfilled	fullfilled	-20.00
	30.00	10.00	1.59		not fullfilled	fullfilled	-20.00

24-1-0039801T021_TR1-R01 15 / 28

4.2.5 Limit

Radiated emissions limits, (3 meters)								
Frequency Range [MHz]	Limit [μV/m]	Limit [dBμV/m]	Distance [m]	Detector	RBW [kHz]			
0.009 - 0.09	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2			
0.09 - 0.11	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Quasi peak	0.2			
0.11 - 0.15	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2			
0.15 - 0.49	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	9			
0.49 - 1.705	24000 / f [kHz]	87.6 – 20Log(f) (kHz)	30	Quasi peak	9			
1.705 - 30	30	29.5	30	Quasi peak	9			

^{*}Remark: In Canada same limits apply, just unit reference is different

4.2.6 Result

Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 0.009 – 30 MHz	Result
2.01	Low	Set 1 / Op 1 / GFSK	No peaks < 6 dB margin found	Passed
2.02	Low	Set 1 / Op 1 / GFSK	No peaks < 6 dB margin found	Passed
2.03	Mid	Set 1 / Op 1 / GFSK	No peaks < 6 dB margin found	Passed
2.04	High	Set 1 / Op 1 / GFSK	No peaks < 6 dB margin found	Passed

Remark: for more information and graphical plot see annex 1a 24-1-0039801T021_TR1-A201-R01

24-1-0039801T021_TR1-R01 16 / 28



4.3 Radiated field strength emissions 30 MHz – 1 GHz

4.3.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 16-1-4:2010 compliant semi anechoic room (SAR) and fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 6)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 90°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

Measurement antenna: horizontal and vertical, heights: 1,0 m and 1,82 m as worst-case determined by an exploratory emission measurements. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc. either on 10m OATS or 3m semi-anechoic room.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height between 1 m and 4 m.

24-1-0039801T021_TR1-R01 17 / 28

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A$ (1) AF = Antenna factor

 C_L = Cable loss

 $M = L_T - E_C$ (2) $D_F = Distance correction factor (if used)$

E_C = Electrical field – corrected value

E_R = Receiver reading

G_A = Gain of pre-amplifier (if used)

 L_T = Limit M = Margin

All units are dB-units, positive margin means value is below limit.

4.3.2 Sample calculation

Raw- Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss	Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
32.7	22.25		3.1		25.35	58.05	

Remark: This calculation is based on an example value at 800.4 MHz

4.3.3 Measurement Location

Test site 120901 - SAC3 - Radiated Emission <1GHz

4.3.4 Limit

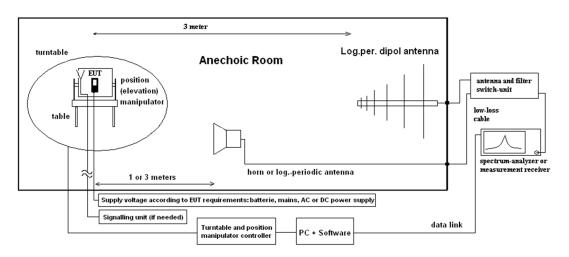
	Radiated emissions limits, (3 meters)									
Frequency Range L		Limit	Limit	Detector	RBW / VBW					
	[MHz]	[μV/m]	[dBµV/m]		[kHz]					
	30 - 88	100	40.0	Quasi peak	100 / 300					
	88 - 216	150	43.5	Quasi peak	100 / 300					
	216 - 960	200	46.0	Quasi peak	100 / 300					
	960 - 1000	500	54.0	Quasi peak	100 / 300					

4.3.5 **Result**

Diagram	Channel	Mode Maximum Level [dBμV/m] Frequency Range 30 – 1000 MHz		Result
3.01a	0	BT BR DH5 ch0	41.91 @167.99MHz	Passed
3.01b	0	BT BR DH5 ch0	38.19 @404.22MHz	Passed
3.02a	39	BT BR DH5 ch39	42.05 @167.99MHz	Passed
3.02b	39	BT BR DH5 ch39	38.40 @167.99MHz	Passed
3.03a	78	BT BR DH5 ch78	40.05 @167.99MHz	Passed
3.03b	78	BT BR DH5 ch78	36.53 @167.99MHz	Passed

Remark: for more information and graphical plot see annex A124-1-0039801T021_TR1-A201-R01

24-1-0039801T021_TR1-R01 18 / 28



4.4 Radiated field strength emissions above 1 GHz

4.4.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 18-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 6)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3-orthogonal axis, the antenna height and tilting or three axis scan for portable/small equipment.

24-1-0039801T021_TR1-R01 19 / 28

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

 $E_C = E_R + A_F + C_L + D_F - G_A$ (1) $E_C = Electrical field - corrected value$

E_R = Receiver reading

 $M = L_T - E_C (2) M = Margin$

 $L_T = Limit$

 A_F = Antenna factor

C_L = Cable loss

D_F = Distance correction factor (if used)

G_A = Gain of pre-amplifier (if used)

All units are dB-units, positive margin means value is below limit.

4.4.2 Sample calculation

Raw- Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss + Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
29.37	41.20		24.28	16.92	46.3	CableLoss and PreAmp data in one data correction file

Remark: This calculation is based on an example value at 10 GHz

4.4.3 Measurement Location

Test site 1 – 18 GHz	120904 - FAC1 - Radiated Emissions
Test site 18 – 26.5 GHz	120907 - FAC2 - Radiated Emissions

4.4.4 Limit

Radiated emissions limits, (3 meters)								
Frequency Range [MHz]	Limit [μV/m]	Limit [dBµV/m]	Detector	RBW / VBW [kHz]				
Above 1000	500	54	Average	1000 / 3000				
Above 1000	5000	74	Peak	1000 / 3000				

4.4.5 Result

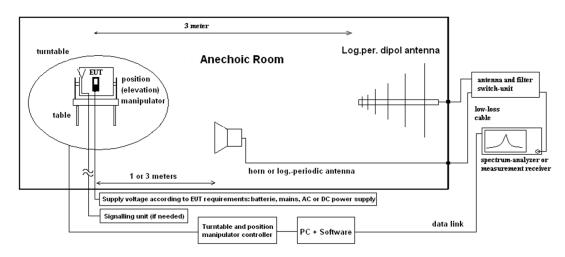
Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 1 – 18 GHz	Result
4.01	0	BT BR DH5 ch0	No peaks < 6 dB margin found	Passed
4.02	39	BT BR DH5 ch39	No peaks < 6 dB margin found	Passed
4.03	78	BT BR DH5 ch78	No peaks < 6 dB margin found	Passed

Remark: for more information and graphical plot see annex A124-1-0039801T021_TR1-A201-R01

24-1-0039801T021_TR1-R01 20 / 28

Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 18 – 26.5 GHz	Result
4.04	0	BT BR DH5 ch0	44.33 @23.03GHz	Passed
4.05	0	BT BR DH5 ch0	44.33 @22.53GHz	Passed
4.06	39	BT BR DH5 ch39	43.95 @23.79GHz	Passed
4.07	39	BT BR DH5 ch39	44.26 @23.86GHz	Passed
4.08	78	BT BR DH5 ch78	44.31 @22.54GHz	Passed
4.09	78	BT BR DH5 ch78	44.26 @23.87GHz	Passed

Remark: for more information and graphical plot see annex A124-1-0039801T021_TR1-A201-R01


24-1-0039801T021_TR1-R01 21 / 28

4.5 Radiated Band-Edge emissions

4.5.1 Description of the general test setup and methodology, see below example:

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 6)

For uncritical results where a measurement resolution bandwidth of 1MHz can clearly show the compliance without influencing the results, a field strength measurement was performed to show compliance.

For critical results a Marker-Delta marker method was used for showing compliance to restricted bands. The method consists of three independent steps:

- 1. Step: Prior to the measurement the fundamental radiated In-Band field strength was performed. The determined value is used as reference value.
- 2. Step: Second step consist of finding the relative attenuation between the fundamental emission and the maximum local out-of-band emission (within 2 MHz range around the band edge either on the band-edge directly or some modulation product if the level is greater than that on the band-edge) when measured with lower resolution bandwidth.
- 3. .Step: The delta value recorded in step 2 will be subtracted from value recorded in step 1, thus giving the required field strength at the band-edge. This value must fulfil the requirements for radiated spurious emissions in restricted bands in FCC §15.205 with the general limits of FCC §15.209

The EUT was instructed to send with maximum power (if adjustable) according to applicants instructions.

4.5.2 Measurement Location

Test site 120904 - FAC1 - Radiated Emissions

24-1-0039801T021_TR1-R01 22 / 28

4.5.3 Limit

Frequency Range [MHz]	Pk Limit [dBc]	Avg Limit [dBc]	Avg Limit [dBμV/m]	Pk Limit [dBμV/m]	Detector	RBW / VBW [kHz]
Below 2390	-	-	54	74	Average / Peak	1000 / 3000
Above 2483.5	-	-	54	74	Average / Peak	1000 / 3000
2390 - 2400	-20	-	-	-	Peak	100 / 300
2390 - 2400	-	-30	-	-	Average	100 / 300

4.5.4 Result

Non-restricted bands near-by

Diagram	Channel	Mode	Peak [dBc]	Average [dBc]	Result
9.01	0	BT BR DH5 ch0	48.59	59.72	Passed
9.03	0	BT EDR 2-DH5 ch0	45.54	51.09	Passed
9.05	0	BT EDR 3-DH5 ch0	47.26	52.04	Passed

Remark: for more information and graphical plot see annex A124-1-0039801T021_TR1-A201-R01

Restricted bands near-by

Diagram	Channel	Mode	Peak [dBμV/m]	Average [dBμV/m]	Result
9.01	0	BT BR DH5 ch0	58.21	46.77	Passed
9.02	78	BT BR DH5 ch78	59.14	47.44	Passed
9.03	0	BT EDR 2-DH5 ch0	58.58	46.71	Passed
9.04	78	BT EDR 2-DH5 ch78	62.40	48.10	Passed
9.05	0	BT EDR 3-DH5 ch0	58.92	46.71	Passed
9.06	78	BT EDR 3-DH5 ch78	59.90	47.35	Passed

Remark: for more information and graphical plot see annex A124-1-0039801T021_TR1-A201-R01

24-1-0039801T021_TR1-R01 23 / 28

4.6 Equipment lists

ID	Description	Manufacturer	SerNo	CheckType	Last Check	Interval	Next Check
	120901 - SAC3 - Radiated Emission <1GHz			calchk	cal: 2015-Jul-21	cal: 10Y	cal: 2025-Jul-21
20442	Semi Anechoic Chamber SAC3	ETS-Lindgren Gmbh / Taufkirchen	without	cnn	chk: 2021-Jul-27 cal: -	chk: 12M cal: -	chk: 2022-Jul-27
20482	Filter Matrix SAC3	cetecom advanced GmbH / Essen	without	cnn	chk: - cal: -	chk: - cal: -	chk: - cal: -
20482		cerecom advanced difforty Essen	without	Cilii	chk: -	chk: -	chk: -
20574 20620	Biconilog Hybrid Antenna BTA-L EMI Test Receiver ESU26	Frankonia GmbH / Heideck Rohde & Schwarz Messgerätebau GmbH /	980026L 100362	cal	cal: 2022-Jun-15 cal: 2024-May-15	cal: 36M cal: 12M	cal: 2025-Jun-15 cal: 2025-May-15
		Memmingen		cai	cai. 2024 Way 13		<u> </u>
20885	Power Supply EA3632A	Agilent Technologies Deutschland GmbH	75305850	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
	120904 - FAC1 - Radiated Emissions			chk	chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20020	Double-Ridged Waveguide Horn Antenna 3115	EMCO Elektronik GmbH / Gilching	9107-3699	calchk	cal: 2024-Sep-11	cal: 36M	cal: 2027-Sep-11
20066	(Subst 1) Notch Filter WRCT 1900/2200-5/40-10EEK	Wainwright Instruments GmbH	5	chk	chk: 2013-Apr-20	chk: 12M	
20121	Notch Filter WRCB 1879,5/1880,5EE	Wainwright Instruments GmbH	15	chk	chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20122	Notch Filter WRCB 1747/1748	Wainwright Instruments GmbH / Andechs	12	chk	chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20254	High Pass Filter 5HC 2600/12750-1.5KK	Trilithic	23042	chk	chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
					chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20287	Pre-Amplifier 25MHz - 4GHz AMF-2D- 100M4G-35-10P	Miteq Inc.	379418	chk	chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20290	Notch Filter WRCA 901,9/903,1SS	Wainwright Instruments GmbH	3RR	chk	chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20291	High Pass Filter WHJ 2200-4EE	Wainwright Instruments GmbH	14	chk	chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20338	Pre-Amplifier JS4-00102600-38-5P	Miteq Inc.	838697	chk	chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20341	Digital Multimeter Fluke 112	Fluke Deutschland GmbH / Glottertal	81650455	cal	cal: 2024-May-13	cal: 24M	cal: 2026-May-13
20448	Notch Filter WRCT 1850.0/2170.0-5/40-10SSK	Wainwright Instruments GmbH	5	chk	chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20449	Notch Filter WRCT 824.0/894.0-5/40-8SSK	Wainwright Instruments GmbH	1	chk	chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
20484	Pre-Amplifier 2,5GHz - 18GHz AMF-5D-	Miteq Inc.	1244554	chk	-		
20489	02501800-25-10P Test Receiver ESU40	Rohde & Schwarz Messgerätebau GmbH /	100030	cal	chk: 2023-Aug-22 cal: 2024-May-15	chk: 12M cal: 12M	chk: 2024-Aug-22 cal: 2025-May-15
20512	Notch Filter WRCA 800/960-02/40-6EEK (GSM	Memmingen Wainwright Instruments GmbH	24	chk			
20558	850) Fully Anechoic Chamber 1	ETS-Lindgren Gmbh / Taufkirchen	without		chk: 2023-Aug-22 cal: -	chk: 12M cal: -	chk: 2024-Aug-22 cal: -
	rully Affection Chamber 1	ETS-Emagrem Gribin / Taurkirchem	without	cnn	chk: -	chk: -	chk: -
20608	Ultrabroadband-Antenna HL562	Rohde & Schwarz Messgerätebau GmbH / Memmingen	830547/009	cal	cal: 2023-Jul-04	cal: 36M	cal: 2026-Jul-04
20611	Power Supply E3632A	Agilent Technologies Deutschland GmbH	KR 75305854	сри			
20690	Spectrum Analyzer FSU26	Rohde & Schwarz Messgerätebau GmbH / Memmingen	100302/026	cal	cal: 2023-May-25	cal: 24M	cal: 2025-May-25
20720	Measurement Software EMC32 [FAC]	Rohde & Schwarz Messgerätebau GmbH	V10.xx	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20868	High Pass Filter AFH-07000	AtlanTecRF	16071300004	chk	chk: 2023-Aug-22	chk: 12M	
20883	Open Switch and control Platform OSP-B200S2	Rohde & Schwarz Messgerätebau GmbH /	101432	chk			chk: 2024-Aug-22
20884	Satellite Open Switch and control Platform OSP320	Memmingen Rohde & Schwarz Messgerätebau GmbH /	101391	chk	chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
	120907 - FAC2 - Radiated Emissions	Memmingen		chk	chk: 2023-Aug-22	chk: 12M	chk: 2024-Aug-22
					chk: 2024-Mar-15	chk: 12M	chk: 2025-Mar-15
20005	AC - LISN 50 Ohm/50μH ESH2-Z5	Rohde & Schwarz Messgerätebau GmbH / Memmingen	861741/005	cal	cal: 2024-May-16	cal: 12M	cal: 2025-May-16
20133	Double-Ridged Waveguide Horn Antenna 3115 (Meas 1)	EMCO Elektronik GmbH / Gilching	9012-3629	cal	cal: 2023-May-22	cal: 36M	cal: 2026-May-22
20302	Horn Antenna BBHA9170 (Meas 1)	Schwarzbeck Mess-Elektronik OHG / Schönau	155	сри	chk: 2020-Apr-15	chk: 12M	
20412	Fully Anechoic Chamber 2	ETS-Lindgren Gmbh / Taufkirchen	without	chk			ald again.
20729	FS-Z140	Rohde & Schwarz Messgerätebau GmbH /	101004	cal	chk: 2024-Mar-15 cal: 2023-Jun-16	chk: 12M cal: 36M	chk: 2025-Mar-15 cal: 2026-Jun-16
20730	FS-Z110	Memmingen Rohde & Schwarz Messgerätebau GmbH /	101468	cal	cal: 2023-Jun-02	cal: 36M	cal: 2026-Jun-02
20731	FS-Z75	Memmingen Rohde & Schwarz Messgerätebau GmbH /	101022	cal	cal: 2022-May-18	cal: 36M	cal: 2025-May-18
		Memmingen			cal: 2024-May-24		•
20733	Harmonic Mixer FS-Z220 Harmonic Mixer FS-Z325	RPG-Radiometer Physics GmbH / Meckenheim RPG-Radiometer Physics GmbH / Meckenheim	101009 101005	cal	cal: 2024-May-24 cal: 2024-May-24	cal: 36M cal: 36M	cal: 2027-May-24 cal: 2027-May-24
20765	Pickett-Potter Horn Antenna FH-PP 40-60	RPG-Radiometer Physics GmbH / Meckenheim	010001	chk	chk: 2023-Oct-20	chk: 12M	chk: 2024-Oct-20
20767	Pickett-Potter Horn Antenna FH-PP 140-220	RPG-Radiometer Physics GmbH / Meckenheim	010011	chk		chk: 12M	
20811	Horn Antenna ASY-SGH-124-SMA	Antenna Systems Solutions S.L / Santander	29F14182337	cal	chk: 2023-Oct-20 cal: 2021-Oct-20	cal: 36M	chk: 2024-Oct-20 cal: 2024-Oct-20
20812	Pickett-Potter Horn Antenna FH-PP-325	RPG-Radiometer Physics GmbH / Meckenheim	10024	chk			
20813	Pickett-Potter Horn Antenna FH-PP 075	RPG-Radiometer Physics GmbH / Meckenheim	10006	chk	chk: 2023-Oct-20	chk: 12M	chk: 2024-Oct-20
20814	Pickett-Potter Horn Antenna FH-PP 140	RPG-Radiometer Physics GmbH / Meckenheim	10008	chk	chk: 2023-Oct-20	chk: 12M	chk: 2024-Oct-20
20815	Pickett-Potter Horn Antenna FH-PP 110	RPG-Radiometer Physics GmbH / Meckenheim	10014	chk	chk: 2023-Oct-20	chk: 12M	chk: 2024-Oct-20
20013	. Issect 1 otter Horri Antenna rn-PP 110	o nadionictei ritysics dilibri / Meckelineim	10017	LIIK			

24-1-0039801T021_TR1-R01 24 / 28

ID	Description	Manufacturer	SerNo	CheckType	Last Check	Interval	Next Check
					chk: 2023-Oct-20	chk: 12M	chk: 2024-Oct-20
20816	SGH Antenna SGH-26-WR10	Anteral S.L.	1144	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20817	Waveguide Rectangular Horn Antenna SAR-	ERAVANT / Torrance	13254-01	chk			
	2309-22-S2				chk: 2023-Oct-20	chk: 12M	chk: 2024-Oct-20
20836	1-18 GHz Amplifier	Wright Technologies, Inc., Inc. / Roseville	0001	chk			
						chk: 36M	
20877	JS42-08001800-16-8P Verstärker	Miteq Inc.	2079991 / 2079992	chk			
					chk: 2023-Feb-27	chk: 6M	chk: 2023-Aug-27
20907	Waveguide WR-15 attenuator STA-30-15-M2	SAGE Millimeter Inc.	13256-01	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20908	Waveguide WR 10 attenuator STA-30-10-M2	SAGE Millimeter Inc.	13256-01	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20909	Waveguide Horn Antenna PE9881-24	Pasternack Enterprises, Inc.	37/2016	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20910	Frequency Multiplier 936VF-10/385	MI-Wave, Millimeter Wave Products Inc.	142	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20911	Frequency Multiplier 938WF-10/387	MI-Wave, Millimeter Wave Products Inc.	141	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20912	Low noise Amplifier Module 0.5-4GHz	RF-Lambda Europe GmbH / Rüsselsheim	19041200083	cpu			
					chk: 2020-Dec-01	chk: 6M	chk: 2021-Jun-01
20913	Phase Amplitude Stable Cable Assembly DC-	RF-Lambda Europe GmbH	AC19040001	cnn	cal: -	cal: -	cal: -
	40GHz				chk: -	chk: -	chk: -
25457	DRG Horn Antenna SAS-574	A.H. Systems, Inc. / Chatsworth	383	cal	cal: 2022-Mar-28	cal: 36M	cal: 2025-Mar-28

Tools used in 'P1M1'

4.6.1 Legend

Note / remarks	Interval of calibration & Verification			
12M	12 months			
24M	24 months			
36M	36 months			
10Y	10 Years			

Abbreviation Check Type	Description
cnn	Calibration and verification not necessary
cal	Calibration
calchk	Calibration plus intermediate Verification
chk	Verification
сри	Verification before usage

24-1-0039801T021_TR1-R01 25 / 28

None

5 Results from external laboratory

Results from external laboratory						
None	-					
6 Opinions	s and interpreta	ations				
None	-					
7 List of al	breviations					

24-1-0039801T021_TR1-R01 26 / 28

8 Measurement Uncertainty valid for conducted/radiated measurements

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor \mathbf{k} , such that a confidence level of approximately 95% is achieved. For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it contribution to the overall uncertainty according its statistical distribution calculated.

Issue No.	Measurement type	Reference	Frequency range of measurement Start [MHz] Stop [MHz]		Calculated Uncertainty based on confidence level of 95.54%	Remarks
1	Magnetic Field Strength	EN ,FCC, JP, IC	0.009	30	4.86	Magnetic loop antenna, Pre-Amp on
			30	100	4.57	without Pre-Amp
			30	100	4.91	with Pre-Amp
			100	1000	4.02	without Pre-Amp
			100	1000	4.26	with Pre-Amp
			1000	18000	4.36	without Pre-Amp
		EN, FCC, JP, IC	1000	18000	5.23	with Pre-Amp
	RF-Output Power (EIRP)		18000	33000	4.92	Schwarzbeck BBHA9170 (#20302) Antenna set-up non-waveguide antenna)
2	Unwanted emissions (EIRP)		33000	50000	4.17	Set-up for Q-Band (WR-22), non-wave guide antenna
	[dB]		40000	60000	4.69	Set-up U-Band (WR-19), non-waveguide antenna
			50000	75000	4.06	External Mixer set-up V-Band (WR-15)
			75000	110000	4.17	External Mixer set-up W-Band (WR-6)
			90000	140000	5.49	External Mixer set-up F-Band (WR-8)
			140000	225000	6.22	External Mixer set-up G-Band (WR-5)
			225000	325000	7.04	External Mixer set-up (WR-3)
\Box			325000	500000	8.84	External Mixer set-up (WR-2.2)
	Radiated Blocking [dB]	EN	1000	18000	2.85	Typical set-up with microwave generator and antenna, value for 7 GHz calculated
			18000	33000	4.66	Typical set-up with microwave generator and antenna
3			33000	50000	3.48	WR-22 set-up
			50000	75000	3.73	WR-15 set-up
			75000	110000	4.26	WR-6 set-up
	Frequency Error / UWB+FMCW [kHz]	EN, FCC, JP, ISED	40000	77000	276.19	calculated for 77 GHz (FMCW) carrier
4			6000	7000	33.92	calculated for 6.5 GHz UWB Ch.5
4	Frequency Error / NFC [Hz]	EN, FCC, JP, ISED	11.00	14.00	20.76	calculated for 13.56 MHz NFC carrier
			30	6000	1.11	Power measurement with Fast-sampling-detector
	TS 8997 Conducted Parameters	FCC15/18 / ISED	30	6000	1.20	Power measurement with Spectrum-Analyzer
			30	6000	1.20	3. Power Spectrum-Density measurement
			30	7500	1.20	4. Conducted Spurious emissions
			0.009	30	2.56	5. Conducted Spurious emissions
5			2.4	2.48	1.95 ppm	6a. Bandwidth / 2-Marker Method for 2.4 GHz ISM
			5.18	5.825	7.180 ppm	6b. Bandwidth / 2-Marker Method for 5 GHz WLAN
			5.18	5.825	1.099 ppm	7. Frequency (Marker method) for 5 GHz WLAN
			30	6000	0.11561 μs	8. Medium-Utilization factor / Timing
			30	6000	1.85	9a. Blocking-Level of companion device
			30	6000	1.62	9b. Blocking Generator level
6	Conducted Emissions	EN, FCC	0.009	30	3.57	general EMI-measurements on AC/DC ports

24-1-0039801T021_TR1-R01 27 / 28

9 Versions of test reports (change history)

Version	Applied changes	Date of release
R01	Initial release	2024-Nov-04

End Of Test Report

24-1-0039801T021_TR1-R01 28 / 28