Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Compiled by

(position+printed name+signature) .: File administrators Jinghua Xiao

Supervised by

(position+printed name+signature) .: Project Engineer Xudong Zhang

Approved by

(position+printed name+signature) .: RF Manager Eric Wang

Date of issue Sep. 05, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... Shenzhen Wenfengsheng Electronics Co., Ltd.

Street, Baoan District, Shenzhen, Guangdong, China

Test specification:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Wireless Earphone

Trade Mark: N/A

Manufacturer Shenzhen Wenfengsheng Electronics Co., Ltd.

Model/Type reference OWS-A16 Mini Pro

Listed Models OWS-A16 Pro, OWS-A16 Pro2

Modulation GFSK, Π/4DQPSK

Frequency From 2402MHz to 2480MHz

Result: PASS

Page 2 of 40 Report No.: CTA24090300902

TEST REPORT

Equipment under Test Wireless Earphone

Model /Type OWS-A16 Mini Pro

OWS-A16 Pro, OWS-A16 Pro2 **Listed Models**

Shenzhen Wenfengsheng Electronics Co., Ltd. Applicant

Address 5F, Building 7, Zhongzheng Science Park, Xintian Community, Fuhai

Street, Baoan District, Shenzhen, Guangdong, China

Shenzhen Wenfengsheng Electronics Co., Ltd. Manufacturer

5F, Building 7, Zhongzheng Science Park, Xintian Community, Fuhai Address

Street, Baoan District, Shenzhen, Guangdong, China

Test Result: **PASS**

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 3 of 40 Report No.: CTA24090300902

Contents

		Contents	
	1	TEST STANDARDS	4
	C C	CTIVE	<u> </u>
	CALL	1E3	C -
	<u>2</u>	SUMMARY	<u>5</u>
	2.1	General Remarks	5 5 5
	2.2	Product Description	5
	2.3	Equipment Under Test	5
	2.4	Short description of the Equipment under Test (EUT)	5
	2.5	EUT operation mode	6
	2.6	Block Diagram of Test Setup	6
	2.7	Related Submittal(s) / Grant (s)	6
STAIL	2.8	Modifications	6
C.	2.0	Modifications	ŭ
	<u>3</u>	TEST ENVIRONMENT	
	3.1	Address of the test laboratory Test Facility	- 2 4G
	3.1	Address of the test laboratory	-ES141
		Test Facility	CTATES 77 7 8 8 8
	3.3	Environmental conditions	CIT
	3.4	Summary of measurement results	8
	3.5	Statement of the measurement uncertainty	8
	3.6	Equipments Used during the Test	9
	<u>4</u>	TEST CONDITIONS AND RESULTS	11
	_	TATE IG	
	STORES C	CTINO	
	4.1	AC Power Conducted Emission	11 14 20 21 24 26 28
	4.2	Radiated Emission	TING 14
	4.3	Maximum Peak Output Power	20
	4.4	20dB Bandwidth	21
	4.5	Frequency Separation	24
	4.6	Number of hopping frequency	26
	4.7		To the state of th
	4.8	Out-of-band Emissions	31
	4.9	Antenna Requirement	38
	5111		
TATE	_	TEST SETUP PHOTOS OF THE EUT	20
CTATE	<u>5</u>	1E31 3E10F FRO103 OF THE E01	
	<u>6</u>	PHOTOS OF THE EUT	40
	<u> </u>	-65	
		CTATES!	CTATESTING
			CTA
P			

Page 4 of 40 Report No.: CTA24090300902

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

Page 5 of 40 Report No.: CTA24090300902

SUMMARY

2.1 General Remarks

Date of receipt of test sample		Aug. 31, 2024
[- -	34	
Testing commenced on	J. Carrelle	Aug. 31, 2024
Testing concluded on	:	Sep. 05, 2024

2.2 Product Description

-	Testing commenced on	Wat the state of t	Aug. 31, 2024	- CTA
-	Testing concluded on	:	Sep. 05, 2024	CIA CTA
	2.2 Product Descrip	tion		
TATE	Product Name:	Wireless E	arphone	
71	Model/Type reference:	OWS-A16	Mini Pro	
	Power supply:	DC 3.7V F	rom battery and DC 5	i.0V From external circuit
	Adapter information (Auxiliary test supplied by test Lab):	Model: EP- Input: AC 1 Output: DC	00-240V 50/60H	ATESTING
	Hardware version:	V1.0		
-	Software version:	V1.0		
	Testing sample ID:		3009-1# (Engineer sa 3009-2# (Normal sam	
	Bluetooth :			
or other transfer of the second	Supported Type:	Bluetooth E	BR/EDR	
1	Modulation:	GFSK, π/4	DQPSK	ESTING
-	Operation frequency:	2402MHz~	2480MHz	CTATA
-	Channel number:	79		CIP TAT
-	Channel separation:	1MHz		(EW)
75.	Antenna type:	ceramic an	tenna	
A	Antenna gain:	1.66 dBi	G	

2.3 Equipment Under Test

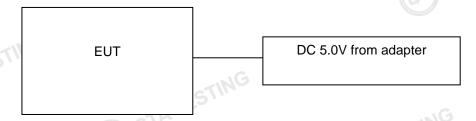
CTATES			-ING	>
2.3 Equipment Under Test			ESI	
Power supply system utilise	d	CTA		
Power supply voltage	: (230V / 50 Hz	0	120V / 60Hz
	(12 V DC	0	24 V DC
		Other (specified in b	lank below)	(EVA)

DC 3.7V From battery and DC 5.0V From external circuit

2.4 Short description of the Equipment under Test (EUT)

This is a Wireless Earphone.

For more details, refer to the user's manual of the EUT.


Page 6 of 40 Report No.: CTA24090300902

2.5 EUT operation mode

The Applicant provides communication tools software (Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

provided to the EUT and Channel 00/39/78 were selection		
Operation Frequency:	CTATESTING	
Channel	Frequency (MHz)	
00	2402	
01	2403	
TING		ATTITUDE OF THE PARTY OF THE PA
38	2440	
39	2441	
40	2442	
	ESTINE	
77	2479	(
78	2480	

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria.

Page 7 of 40 Report No.: CTA24090300902

TEST ENVIRONMENT

Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory
Accreditation to perform electromagnetic emission measurement

CAB identifier: CN0127 ISED#: 27890

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

CTA TESTING During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

tadiated Elilicolorii	
Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

Temperature: 25 ° C	
TES!"	
Humidity:	46 %
Atmospheric pressure:	950-1050mbar

Conducted testina:

enaactaa taatiing.	
Temperature:	25 ° C
Humidity:	44 %
Training.	,
Atmospheric pressure:	950-1050mbar
CTATESIN	STIN

Page 8 of 40 Report No.: CTA24090300902

Summary of measurement results

	Test Specification clause	Test case	Test Mode	Test Channel		orded eport	Test result
	§15.247(a)(1)	Carrier Frequency separation	GFSK Π/4DQPSK	✓ Lowest✓ Middle✓ Highest	GFSK Π/4DQPSK		Compliant
	§15.247(a)(1)	Number of Hopping channels	GFSK Π/4DQPSK	⊠ Full	GFSK	⊠ Full	Compliant
	§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK Π/4DQPSK	✓ Lowest✓ Middle✓ Highest	GFSK Π/4DQPSK		Compliant
CTATE	§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK П/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	Compliant
	§15.247(b)(1)	Maximum output peak power	GFSK Π/4DQPSK	✓ Lowest✓ Middle✓ Highest	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	Compliant
	§15.247(d)	Band edgecompliance conducted	GFSK Π/4DQPSK	☑ Lowest☑ Highest	GFSK Π/4DQPSK	☑ Lowest☑ Highest	Compliant
(G	§15.205	Band edgecompliance radiated	GFSK Π/4DQPSK	Lowest	GFSK Π/4DQPSK	☑ Lowest☑ Highest	Compliant
	§15.247(d)	TX spuriousemissions conducted	GFSK Π/4DQPSK	✓ Lowest✓ Middle✓ Highest	GFSK Π/4DQPSK	☐ Lowest☐ Middle☐ Highest	Compliant
	§15.247(d)	TX spuriousemissions radiated	GFSK Π/4DQPSK	✓ Lowest✓ Middle✓ Highest	GFSK	☑ Lowest☑ Middle☑ Highest	Compliant
	§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK	⊠ Middle	Compliant
	§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK		Compliant

Remark:

- The measurement uncertainty is not included in the test result. 1.
- We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	1	0.57 dB	(1)

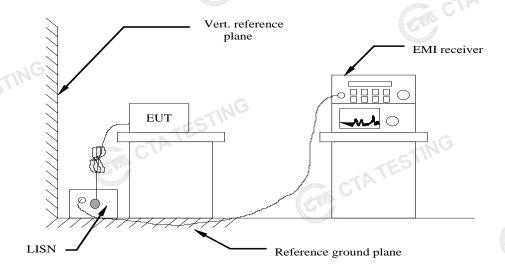
Spectrum bandwidth	/	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

			Equipment	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
Spectrum Analyzer	G R&S	FSU	CTA-337	2024/08/03	2025/08/02
Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2024/10/16
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
High-Pass Filter	G XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02
Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02

Report No.: CTA24090300902 Page 10 of 40


Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date	
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A	
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A	
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A	
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A	- 15
STING					GW C	TK.

Report No.: CTA24090300902 Page 11 of 40

TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

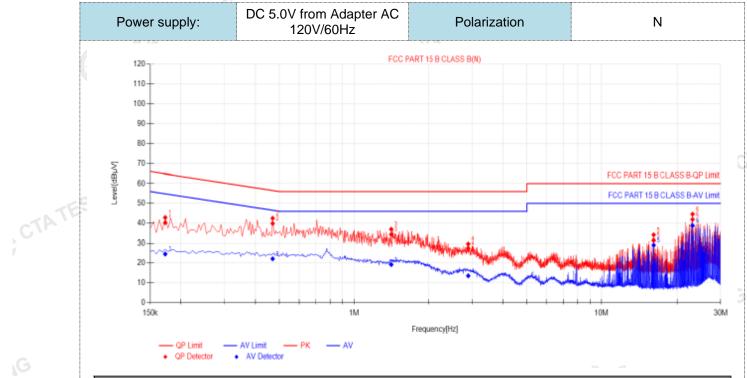
For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Eroguenov rengo (MHz)	Limit	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
* Decreases with the logarithm of the fre	equency.					
TEST RESULTS	CTATES	TATESTING				

TEST RESULTS

CTA TESTING

Page 12 of 40 Report No.: CTA24090300902



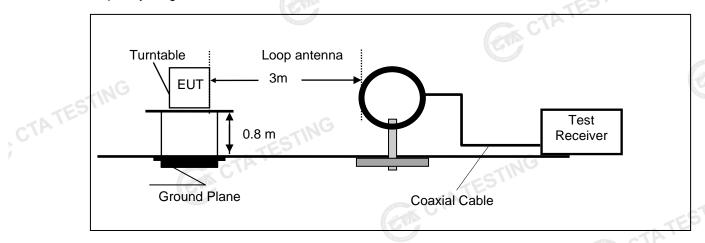
l Data Lis	st										
Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dΒμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict	
0.384	9.87	29.63	39.50	58.19	18.69	12.06	21.93	48.19	26.26	PASS	
0.7935	9.97	26.44	36.41	56.00	19.59	14.47	24.44	46.00	21.56	PASS	
1.5	9.90	23.26	33.16	56.00	22.84	9.11	19.01	46.00	26.99	PASS	
3.885	9.93	18.51	28.44	56.00	27.56	4.67	14.60	46.00	31.40	PASS	
16.2285	10.33	24.01	34.34	60.00	25.66	21.56	31.89	50.00	18.11	PASS	
23.127	10.48	27.29	37.77	60.00	22.23	25.02	35.50	50.00	14.50	PASS	
Factor (dE	3)=insert	ion loss o	of LISN (dB) + Ca	able loss	(dB)				EW	C TA
	0.384 0.7935 1.5 3.885 16.2285 23.127 .QP Value Factor (dE	(MHz) (dB) 0.384 9.87 0.7935 9.97 1.5 9.90 3.885 9.93 16.2285 10.33 23.127 10.48 .QP Value (dBµV)= Factor (dB)=insert	Freq. [MHz] Factor [dB] Reading[dB µV] 0.384 9.87 29.63 0.7935 9.97 26.44 1.5 9.90 23.26 3.885 9.93 18.51 16.2285 10.33 24.01 23.127 10.48 27.29 .QP Value (dBµV)= QP Reading[dB µV] Factor (dB)=insertion loss of	Freq. [MHz] Factor [dB] Reading[dB μV] Value [dBμV] 0.384 9.87 29.63 39.50 0.7935 9.97 26.44 38.41 1.5 9.90 23.26 33.16 3.885 9.93 18.51 28.44 16.2285 10.33 24.01 34.34 23.127 10.48 27.29 37.77 QP Value (dBμV)= QP Reading (dE Factor (dB)=insertion loss of LISN ($ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Freq. [MHz] Factor [dB] QP Reading[dB μV] QP Limit [dBμV] QP Margin [dBμV] AV Reading [dBμV] 0.384 9.87 29.63 39.50 58.19 18.69 12.08 0.7935 9.97 26.44 36.41 56.00 19.59 14.47 1.5 9.90 23.26 33.16 56.00 22.84 9.11 3.885 9.93 18.51 28.44 56.00 27.56 4.67 16.2285 10.33 24.01 34.34 60.00 25.66 21.56 23.127 10.48 27.29 37.77 60.00 22.23 25.02	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V)

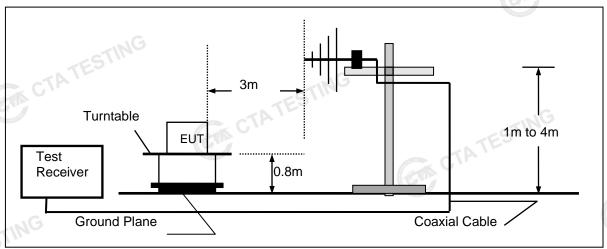
CTATES

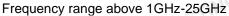
Page 13 of 40 Report No.: CTA24090300902

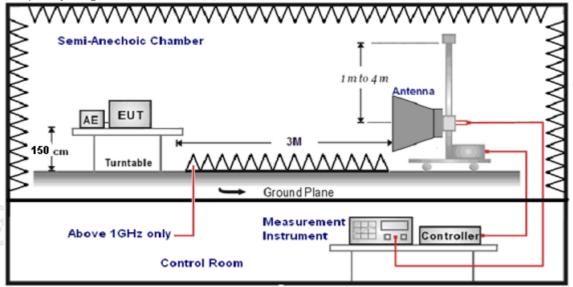
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict	
1	0.1725	10.07	30.14	40.21	64.84	24.63	14.53	24.60	54.84	30.24	PASS	
2	0.4695	9.99	29.85	39.84	56.52	16.68	12.21	22.20	46.52	24.32	PASS	
3	1.4145	10.15	24.15	34.30	56.00	21.70	9.12	19.27	46.00	26.73	PASS	
4	2.8905	10.22	17.24	27.46	56.00	28.54	3.35	13.57	46.00	32.43	PASS	
5	16.2285	10.45	20.99	31.44	60.00	28.56	18.60	29.05	50.00	20.95	PASS	
6	23.127	10.65	31.24	41.89	60.00	18.11	28.10	38.75	50.00	11.25	PASS	
ote:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)												


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ CTA TESTING

Page 14 of 40 Report No.: CTA24090300902


4.2 **Radiated Emission**


TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz - 1000MHz

Page 15 of 40 Report No.: CTA24090300902

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- Radiated emission test frequency band from 9KHz to 25GHz. 5.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	
9KHz-30MHz	Active Loop Antenna	3	Z5 us-13
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	
18GHz-25GHz	Horn Anternna	1	

Setting test receiver/spectrum as following table states:

Test Frequency range				
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP		
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP		
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP		
	Peak Value: RBW=1MHz/VBW=3MHz,			
1GHz-40GHz	Sweep time=Auto			
TGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,	Peak		
	Sweep time=Auto			

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

sample calculation is as follows:	ESTING				
FS = RA + AF + CL - AG	CTATES				
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)				
RA = Reading Amplitude	AG = Amplifier Gain				
AF = Antenna Factor	(Say				

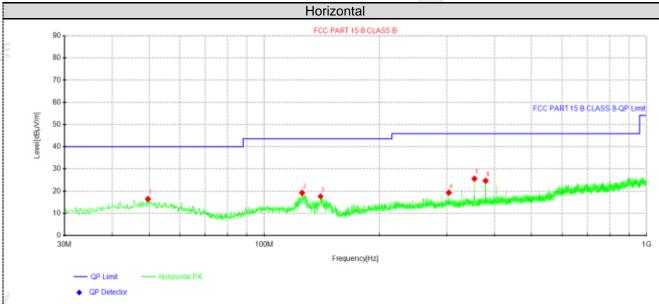
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBμV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

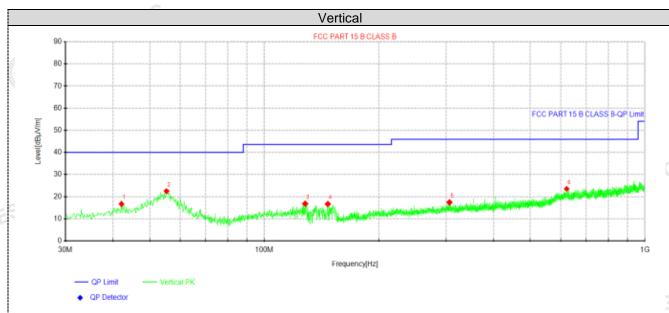

Page 16 of 40 Report No.: CTA24090300902

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- We measured Radiated Emission at GFSK, π/4 DQPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- For below 1GHz testing recorded worst at GFSK DH5 middle channel. 3.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz


Suspe	ected Data	List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolorita	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	49.6425	27.70	16.53	-11.17	40.00	23.47	100	114	Horizontal	
2	125.666	35.21	19.23	-15.98	43.50	24.27	100	360	Horizontal	
3	140.337	33.26	17.65	-15.61	43.50	25.85	100	149	Horizontal	
4	303.661	30.19	19.31	-10.88	46.00	26.69	100	355	Horizontal	
5	354.222	36.33	25.69	-10.64	46.00	20.31	100	275	Horizontal	
6	379.442	35.11	24.75	-10.36	46.00	21.25	100	219	Horizontal	

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTATESTIN'

Report No.: CTA24090300902 Page 17 of 40

Susp	ected Data	List								
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	42.125	28.49	16.76	-11.73	40.00	23.24	100	350	Vertical	
2	55.3412	34.14	22.51	-11.63	40.00	17.49	100	318	Vertical	
3	128.091	33.14	16.89	-16.25	43.50	26.61	100	306	Vertical	
4	146.885	32.22	16.73	-15.49	43.50	26.77	100	235	Vertical	
5	306.207	28.36	17.48	-10.88	46.00	28.52	100	0	Vertical	
6	622.791	29.31	23.60	-5.71	46.00	22.40	100	166	Vertical	

CTATE CTATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

For 1GHz to 25GHz

Note: GFSK , $\pi/4$ DQPSK all have been tested, only worse case GFSK is reported.

GFSK (above 1GHz)

Freque	Frequency(MHz):			2402		Polarity:		HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
4804.00	61.80	PK	74	12.20	66.07	32.33	5.12	41.72	-4.27		
4804.00	45.16	AV	54	8.84	49.43	32.33	5.12	41.72	-4.27		
7206.00	53.92	PK	74	20.08	54.44	36.6	6.49	43.61	-0.52		
7206.00	43.96	AV	54	10.04	44.48	36.6	6.49	43.61	-0.52		

Freque	ncy(MHz)	:	24	02	Pola	arity:	VERTICAL			
Frequency (MHz)	_	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	60.29	PK	74	13.71	64.56	32.33	5.12	41.72	-4.27	
4804.00	43.22	AV	54	10.78	47.49	32.33	5.12	41.72	-4.27	
7206.00	52.36	PK	74	21.64	52.88	36.6	6.49	43.61	-0.52	
7206.00	42.01	AV	54	11.99	42.53	36.6	6.49	43.61	-0.52	

Freque	Frequency(MHz):			2441		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4882.00	61.12	PK	74	12.88	65.00	32.6	5.34	41.82	-3.88	
4882.00	44.72	AV	54	9.28	48.60	32.6	5.34	41.82	-3.88	
7323.00	53.59	PK	74	20.41	53.70	36.8	6.81	43.72	-0.11	
7323.00	42.96	AV	54	11.04	43.07	36.8	6.81	343.72	-0.11	

Freque	ncy(MHz)	:	24	41	Pola	arity:		VERTICAL	-
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	59.26	PK	74	14.74	63.14	32.6	5.34	41.82	-3.88
4882.00	42.77	AV	54	11.23	46.65	32.6	5.34	41.82	-3.88
7323.00	51.31	PK	74	22.69	51.42	36.8	6.81	43.72	-0.11
7323.00	41.30	AV	54	12.70	41.41	36.8	6.81	43.72	-0.11
,	162							•	•

Freque	ncy(MHz)):	2480		80 Polarity: HORIZONTAL			AL	
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.15	PK	74	13.85	63.23	32.73	5.66	41.47	-3.08
4960.00	43.97	AV	54	10.03	47.05	32.73	5.66	41.47	-3.08
7440.00	52.81	PK	74	21.19	52.36	37.04	7.25	43.84	0.45
7440.00	42.17	PK	54	11.83	41.72	37.04	7.25	43.84	0.45

		JG.							
Freque	ncy(MHz):		2480		Polarity:		VERTICAL		•
Fraguanay	Emis	sion	Limit	Margin	Raw	Antenna	Cable	Pre-	Correction
Frequency (MHz)	Le	vel	(dBuV/m)		Value	Factor	Factor	amplifier	Factor
(IVITZ)	(dBu	V/m)	(ubu v/III)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4960.00	58.46	PK	74	15.54	61.54	32.73	5.66	41.47	-3.08
4960.00	42.02	AV	54	11.98	45.10	32.73	5.66	41.47	-3.08
7440.00	50.67	PK	74	23.33	50.22	37.04	7.25	43.84	0.45
7440.00	40.56	PK	54	13.44	40.11	37.04	7.25	43.84	0.45

Page 19 of 40 Report No.: CTA24090300902

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK, π/4 DQPSK all have been tested, only worse case GFSK is reported.

GFSK

Freque	ncy(MHz)	:	24	02	Pola	rity:	Н	IORIZONT	\L
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.33	PK	74 G	12.67	71.75	27.42	4.31	42.15	-10.42
2390.00	43.57	ΑV	54	10.43	53.99	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	02	Pola	rity:		VERTICAL	-
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.32	PK	74	14.68	69.74	27.42	4.31	42.15	-10.42
2390.00	41.50	ΑV	54	12.50	51.92	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	80	Pola	rity:	Н	IORIZONTA	\L
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	60.56	PK	74	13.44	70.67	27.7	4.47	42.28	-10.11
2483.50	42.70	AV	54	11.30	52.81	27.7	4.47	42.28	-10.11
Freque	ncy(MHz)	:	24	80	Pola	rity:	VERTICAL		•
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	58.69	PK	74	15.31	68.80	27.7	4.47	42.28	-10.11
2483.50	40.40	ΑV	54	13.60	50.51	27.7	4.47	42.28	-10.11

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- CTA TESTING 5. The other emission levels were very low against the limit.

Page 20 of 40 Report No.: CTA24090300902

Maximum Peak Output Power

Limit

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to CTATE the powersensor.

Test Configuration

Test Results

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	-2.37		TES
GFSK	39	-0.66	20.97	Pass
	78	-0.26		
la:	G 00	0.62		
π/4DQPSK	39	2.23	20.97	Pass
	78	2.60		
Note: 1.The test res	ults including the	cable lose.	CTATESTING	

Page 21 of 40 Report No.: CTA24090300902

20dB Bandwidth

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results


st Results			CTATESTING
Modulation	Channel	20dB bandwidth (MHz)	Result
TING	CH00	0.957	
GFSK	CH39	0.963]
CIP.	CH78	0.957	Deec
	CH00	1.347	Pass
π/4DQPSK	CH39	1.299	STING
	CH78	1.317	
		(Em)	CT CT
est plot as follows:			

Test plot as follows:

Report No.: CTA24090300902

Report No.: CTA24090300902

Page 24 of 40 Report No.: CTA24090300902

4.5 Frequency Separation

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS

	NIS.	ANALIZ		
TEST RESULTS				TATESTING
Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result
GFSK	CH38	1.312	25KHz or 2/3*20dB	Pass
GI SIX	CH39	1.512	bandwidth	r ass
π/4DQPSK	CH38	1.332	25KHz or 2/3*20dB	Dana
II/4DQPSK	CH39	1.332	bandwidth	Pass

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test plot as follows:

Report No.: CTA24090300902 Page 25 of 40

Page 26 of 40 Report No.: CTA24090300902

Number of hopping frequency

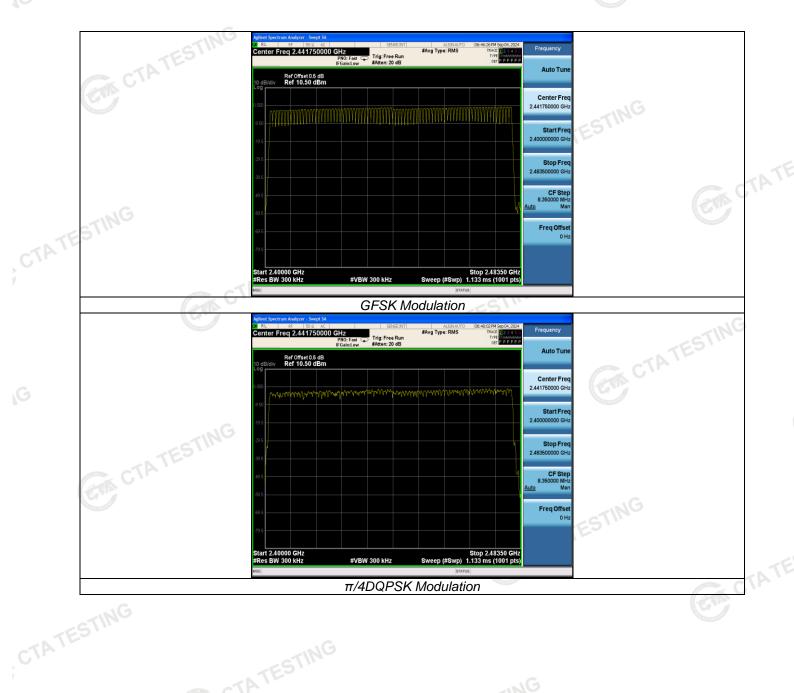
Limit

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration



Test Results

Test Results	CTAT	Es	STING
Modulation	Number of Hopping Channel	Limit	Result
GFSK	79	≥15	Pass
π/4DQPSK	79	215	Pass

Test plot as follows: CTATES

Report No.: CTA24090300902 Page 27 of 40

Page 28 of 40 Report No.: CTA24090300902

Time of Occupancy (Dwell Time)

Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

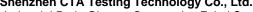
Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

Test Configuration

Test Results

Test Results			CTATES		TESTING
Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result
	DH1	0.380	0.122		
GFSK	DH3	1.640	0.262	0.40	Pass
TES	DH5	2.900	0.309		
CIL	2-DH1	0.390	0.125		
π/4DQPSK	2-DH3	1.640	0.262	0.40	Pass
	2-DH5	2.900	0.309	TESTIN	

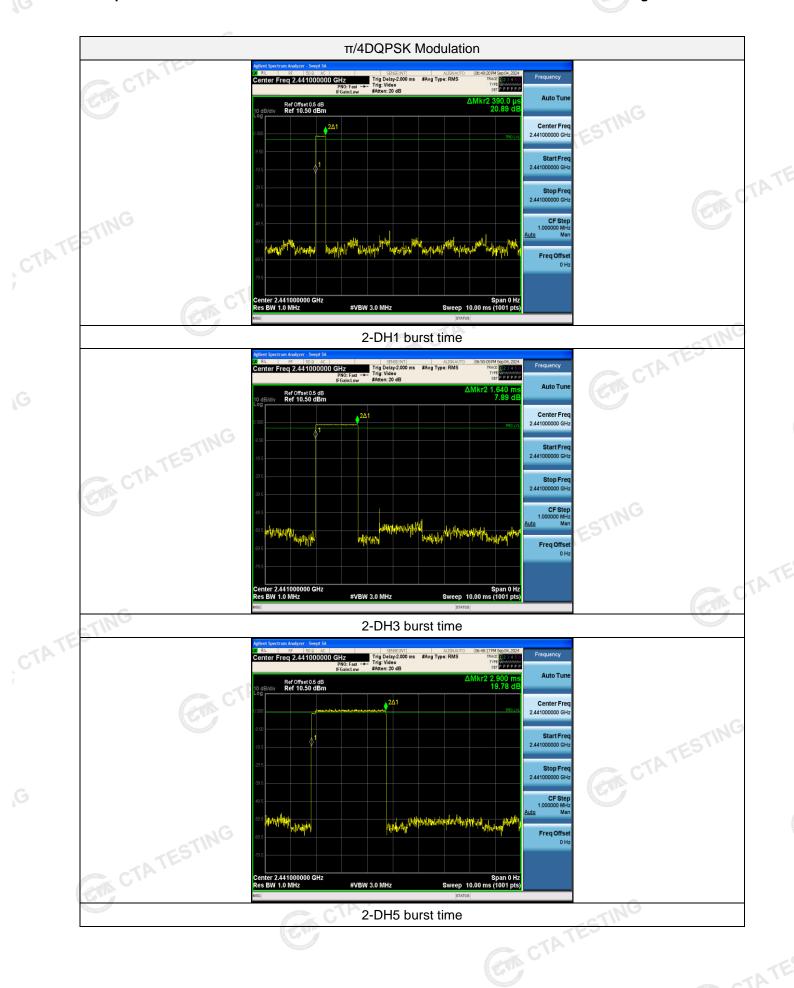

Note: We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3

Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5

CTA TESTING


Page 29 of 40 Report No.: CTA24090300902

Test plot as follows: **GFSK Modulation** Ref Offset 0.5 dB Ref 10.50 dBm Center Fred 2.441000000 GH: CTATE CTATESTING DH1 burst time CTATE CTA TESTING Freq Offset CTATE Span 0 Hz Sweep 10.00 ms (1001 pts) DH3 burst time Ref Offset 0.5 dB Ref 10.50 dBm CTA TESTING

DH5 burst time

CTATESTING

CTATESTING

Report No.: CTA24090300902 Page 31 of 40

Out-of-band Emissions 4.8

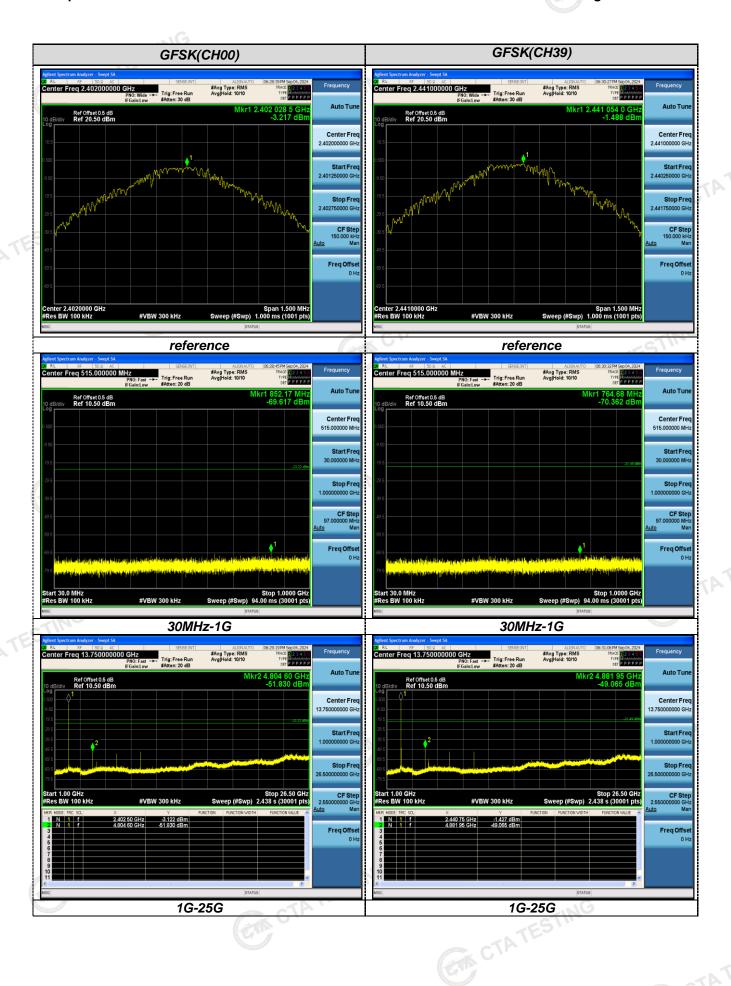
Limit

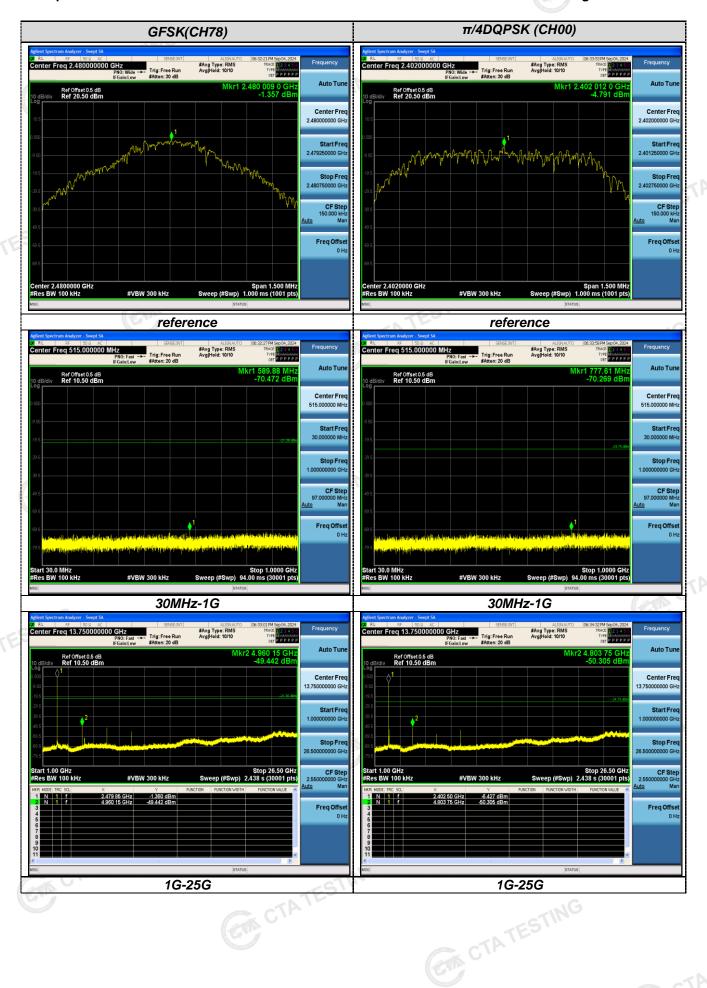
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

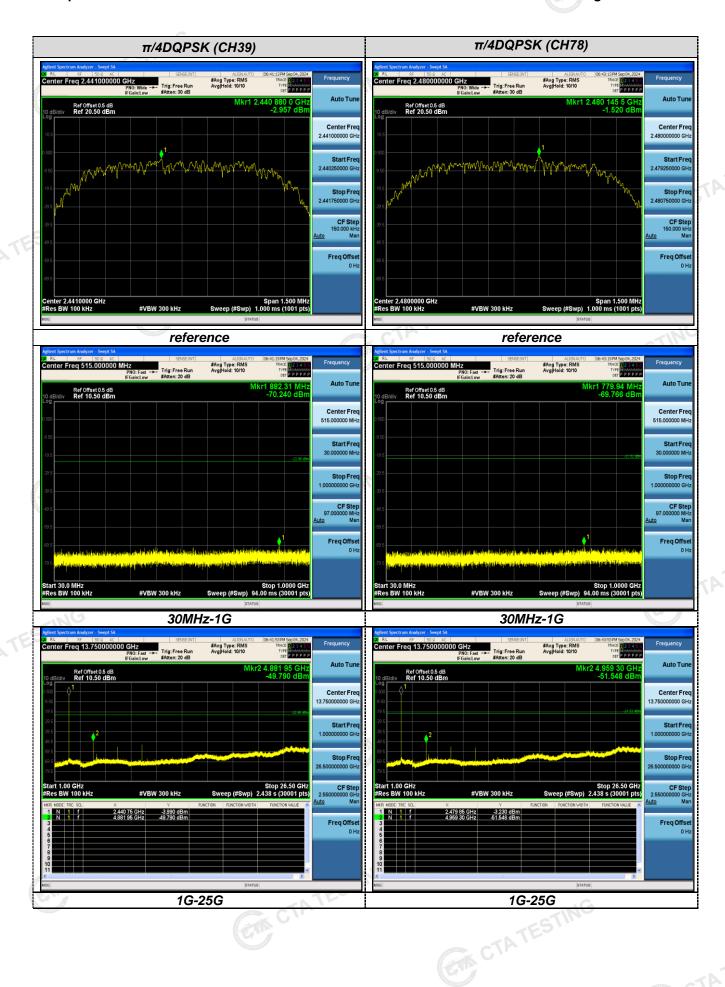
Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTATES made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration



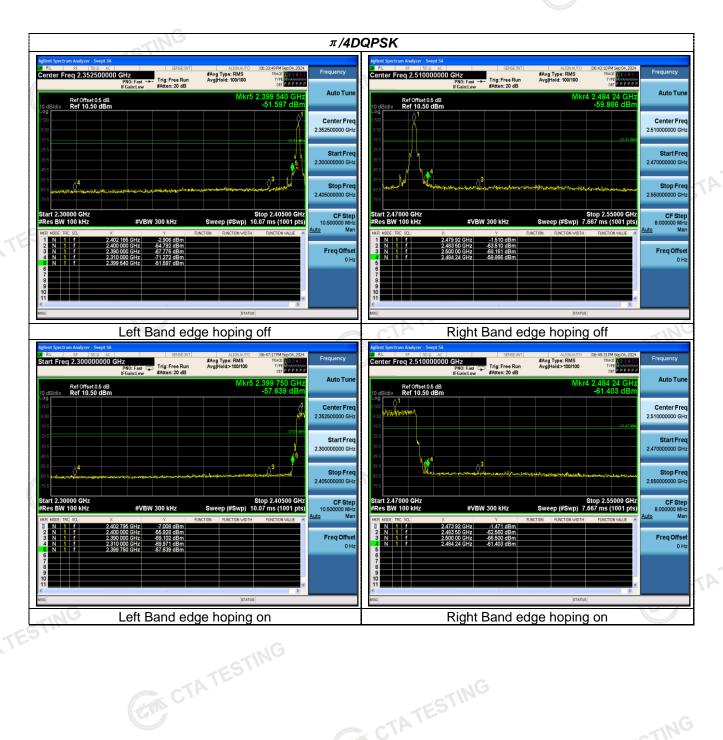

Test Results


Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5

Test plot as follows:

Page 35 of 40 Report No.: CTA24090300902


Band-edge Measurements for RF Conducted Emissions: **GFSK** #Avg Type: RMS Avg|Hold: 100/100 #Avg Type: RMS Avg|Hold: 100/100 Ref Offset 0.5 dB Ref 10.50 dBm Ref Offset 0.5 dB Ref 10.50 dBm Center Fre CF Step 10.500000 ML Stop 2.40500 GHz ep (#Swp) 10.07 ms (1001 pts) Freq Offse Freq Offset Right Band edge hoping off Left Band edge hoping off #Avg Type: RMS Avg|Hold:>100/100 Auto Tun Auto Tun Ref Offset 0.5 dB Ref 10.50 dBm Ref Offset 0.5 dB Ref 10.50 dBm 5 03 Stop Fre Stop Fre 2.550000000 GH CF Step #VBW 300 kHz

Left Band edge hoping on

CTA TESTING

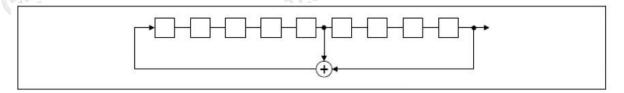
Right Band edge hoping on

Page 36 of 40 Report No.: CTA24090300902

Page 37 of 40 Report No.: CTA24090300902

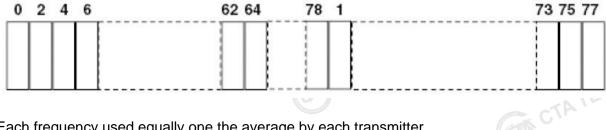
Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a) (1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement


The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals. CTATES:

Page 38 of 40 Report No.: CTA24090300902

4.9 **Antenna Requirement**

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

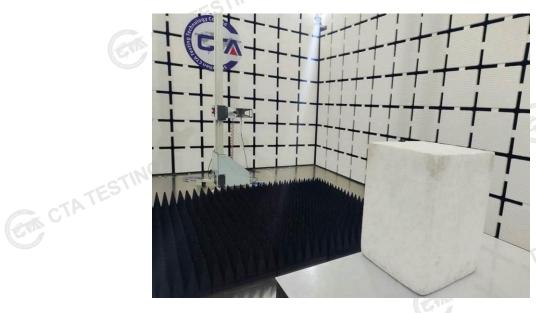
And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The maximum gain of antenna was 1.66 dBi.


Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTATES

Report No.: CTA24090300902 Page 39 of 40

Test Setup Photos of the EUT

Page 40 of 40 Report No.: CTA24090300902

Photos of the EUT

Reference to the test report No. CTA24090300901. CTA TESTING ************ End of Report *************