

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai CTATES !! Street, Bao'an District, Shenzhen, China

Report Reference No:	CTA24062700507
CC ID	2BHYZ-X30PRO
Compiled by position+printed name+signature) .:	File administrators Jinghua Xiao
Supervised by position+printed name+signature) .:	Project Engineer Xudong Zhang
Approved by position+printed name+signature) .:	RF Manager Eric Wang
Date of issue	Jul. 23, 2024
Testing Laboratory Name	Shenzhen CTA Testing Technology Co., Ltd.
Address	Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Baoʻan District, Shenzhen, China
Applicant's name	Shenzhen Xin times chain technology Co., LTD
Address	6 / F, Block F, Huachuangda Science Park, 176 Hangcheng Avenue, Hangcheng Street, Sanwei Community, Baoan District, Shenzhen, Guangdong, China
Test specification	- CTATES -
Standard	FCC CFR Title 47 Part 2, Part 27 ANSI/TIA-603-E-2016
Shenzhen CTA Testing Technology	KDB 971168 D01 7 Co., Ltd. All rights reserved.
Shenzhen CTA Testing Technology C naterial. Shenzhen CTA Testing Tech or damages resulting from the reade context.	n whole or in part for non-commercial purposes as long as the o., Ltd. is acknowledged as copyright owner and source of the mology Co., Ltd. takes no responsibility for and will not assume liability r's interpretation of the reproduced material due to its placement and
Test item description:	Tablet computer
Frade Mark	N/A CTA
Manufacturer	Shenzhen Xin times chain technology Co., LTD
Model/Type reference	X30Pro
Ratings	DC 3.7V From Battery and DC 5.0V From external circuit
Nodulation	QPSK, 16QAM
Frequency	E-UTRA Band 12
Result	PASS

 Tablet computer X30Pro X30Pro T106, X30, X X90Pro, X10 X107Pro Shenzhen X 6 / F, Block F Hangcheng S Guangdong, Shenzhen X 6 / F, Block F Hangcheng S Guangdong, 	K35, X70, X75, X70 01, X101Pro, X103 Xin times chain F, Huachuangda So Street, Sanwei Co China F, Huachuangda So Street, Sanwei Co China with the standards mple.	70Pro, X50, X55, X 3, X103Pro, X105, X n technology Co Science Park, 176 H ommunity, Baoan D n technology Co Science Park, 176 H ommunity, Baoan D Pass *	X105Pro, X10 ., LTD Hangcheng Av District, Shenzh Hangcheng Av District, Shenzh Hangcheng Av Hangcheng Av
 X30Pro T106, X30, X X90Pro, X10 X107Pro Shenzhen X 6 / F, Block F Hangcheng S Guangdong, Shenzhen X 6 / F, Block F Hangcheng S Guangdong, It 	K35, X70, X75, X70 01, X101Pro, X103 Xin times chain F, Huachuangda So Street, Sanwei Co China F, Huachuangda So Street, Sanwei Co China with the standards mple.	70Pro, X50, X55, X 3, X103Pro, X105, X n technology Co Science Park, 176 H ommunity, Baoan D n technology Co Science Park, 176 H ommunity, Baoan D Pass *	50Pro, X90, X X105Pro, X10 ., LTD Hangcheng Av District, Shenzh Hangcheng Av District, Shenzh
 X30Pro T106, X30, X X90Pro, X10 X107Pro Shenzhen X 6 / F, Block F Hangcheng S Guangdong, Shenzhen X 6 / F, Block F Hangcheng S Guangdong, It 	K35, X70, X75, X70 01, X101Pro, X103 Xin times chain F, Huachuangda So Street, Sanwei Co China F, Huachuangda So Street, Sanwei Co China with the standards mple.	3, X103Pro, X105, . n technology Co Science Park, 176 H ommunity, Baoan D n technology Co Science Park, 176 H ommunity, Baoan D Pass * Is specified page 4	X105Pro, X10 ., LTD Hangcheng Av District, Shenzh Hangcheng Av District, Shenzh Hangcheng Av Hangcheng Av
 T106, X30, X X90Pro, X10 X107Pro Shenzhen X 6 / F, Block F Hangcheng S Guangdong, Shenzhen X 6 / F, Block F Hangcheng S Guangdong, 	21, X101Pro, X103 Xin times chain F, Huachuangda So Street, Sanwei Co China F, Huachuangda So Street, Sanwei Co China with the standards mple.	3, X103Pro, X105, . n technology Co Science Park, 176 H ommunity, Baoan D n technology Co Science Park, 176 H ommunity, Baoan D Pass * Is specified page 4	X105Pro, X10 ., LTD Hangcheng Av District, Shenzh Hangcheng Av District, Shenzh Hangcheng Av Hangcheng Av
 T106, X30, X X90Pro, X10 X107Pro Shenzhen X 6 / F, Block F Hangcheng S Guangdong, Shenzhen X 6 / F, Block F Hangcheng S Guangdong, 	21, X101Pro, X103 Xin times chain F, Huachuangda So Street, Sanwei Co China F, Huachuangda So Street, Sanwei Co China with the standards mple.	3, X103Pro, X105, . n technology Co Science Park, 176 H ommunity, Baoan D n technology Co Science Park, 176 H ommunity, Baoan D Pass * Is specified page 4	X105Pro, X10 ., LTD Hangcheng Av District, Shenzh Hangcheng Av District, Shenzh Hangcheng Av Hangcheng Av
 X90Pro, X10 X107Pro Shenzhen X 6 / F, Block F Hangcheng S Guangdong, Shenzhen X 6 / F, Block F Hangcheng S Guangdong, 	21, X101Pro, X103 Xin times chain F, Huachuangda So Street, Sanwei Co China F, Huachuangda So Street, Sanwei Co China with the standards mple.	3, X103Pro, X105, . n technology Co Science Park, 176 H ommunity, Baoan D n technology Co Science Park, 176 H ommunity, Baoan D Pass * Is specified page 4	X105Pro, X10 ., LTD Hangcheng Av District, Shenzh Hangcheng Av District, Shenzh Hangcheng Av Hangcheng Av
 6 / F, Block F Hangcheng S Guangdong, Shenzhen Z 6 / F, Block F Hangcheng S Guangdong, It he EUT complied woonds to the test sarracts of these test rest rest rest rest rest rest r	F, Huachuangda So Street, Sanwei Co China Xin times chain F, Huachuangda So Street, Sanwei Co China with the standards mple.	Science Park, 176 H community, Baoan D n technology Co Science Park, 176 H community, Baoan D Pass *	Angcheng Av District, Shenzh , LTD Hangcheng Av District, Shenzh
 6 / F, Block F Hangcheng S Guangdong, Shenzhen Z 6 / F, Block F Hangcheng S Guangdong, It he EUT complied woonds to the test sarracts of these test rest rest rest rest rest rest r	F, Huachuangda So Street, Sanwei Co China Xin times chain F, Huachuangda So Street, Sanwei Co China with the standards mple.	Science Park, 176 H community, Baoan D n technology Co Science Park, 176 H community, Baoan D Pass *	Angcheng Av District, Shenzh , LTD Hangcheng Av District, Shenzh
Hangcheng S Guangdong, : Shenzhen 2 : 6 / F, Block F Hangcheng S Guangdong, It he EUT complied w ponds to the test sar	Street, Sanwei Co China Xin times chain F, Huachuangda So Street, Sanwei Co China with the standards mple.	ommunity, Baoan D n technology Co Science Park, 176 H ommunity, Baoan D Pass *	District, Shenzh Angcheng Av District, Shenzh
Hangcheng S Guangdong, : Shenzhen 2 : 6 / F, Block F Hangcheng S Guangdong, It he EUT complied w ponds to the test sar	Street, Sanwei Co China Xin times chain F, Huachuangda So Street, Sanwei Co China with the standards mple.	ommunity, Baoan D n technology Co Science Park, 176 H ommunity, Baoan D Pass *	District, Shenzh Angcheng Av District, Shenzh
: 6 / F, Block F Hangcheng S Guangdong, It he EUT complied v ponds to the test sar acts of these test re	F, Huachuangda So Street, Sanwei Co China with the standards	Science Park, 176 F community, Baoan D Pass *	Hangcheng Av District, Shenzł
: 6 / F, Block F Hangcheng S Guangdong, It he EUT complied v ponds to the test sar acts of these test re	F, Huachuangda So Street, Sanwei Co China with the standards	Science Park, 176 F community, Baoan D Pass *	Hangcheng Av District, Shenzł
Hangcheng S Guangdong, It he EUT complied v ponds to the test sar acts of these test re	Street, Sanwei Co China with the standards	Pass *	District, Shenzt
Hangcheng S Guangdong, It he EUT complied v ponds to the test sar acts of these test re	Street, Sanwei Co China with the standards	Pass *	District, Shenzt
he EUT complied v bonds to the test sar acts of these test re	mple.	ls specified page 4	
he EUT complied v bonds to the test sar acts of these test re	mple.	ls specified page 4	
he EUT complied v bonds to the test sar acts of these test re	mple.	ls specified page 4	
	CTATESTI		
		A CTATESTING	

4

5

1 1.1 1.2 Test Description......4 1.3 Address of the test laboratory......4 1.4 Test Facility4 Statement of the measurement uncertainty5 1.5 2 2.12.22.3 Equipments Used during the Test......7 2.42.5 2.6, CTA TEST CONDITIONS AND RESULTS......9 3 3.1 Peak-to-Average Ratio (PAR).....15 3.2

33	Occupied Bandwidth and Emission Bandwidth	16
	Band Edge compliance	
	Spurious Emission	
3.6	Frequency Stability under Temperature & Voltage Variations	
Test S	Setup Photos of the EUT	
Photo	os of the EUT	24

SUMMARY 1

1.1 TEST STANDARDS

The tests were performed according to following standards: FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES

AND REG-ULATIONS

FCC Part 27 : MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

ANSI/TIA-603-E-2016: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

ANSI C63.26-2015: IEEE/ANSI Standard for Compliance Testing of Transmitters Used in Licensed CTATES Radio Services

FCCKDB971168D01 Power Meas License Digital Systems

1.2 **Test Description**

Test Item	Section in CFR 47	Result
RF Output Power	Part 2.1046 Part 27.50(c)(10)	Pass
Peak-to-Average Ratio	Part 27.50(d)(4)	Pass
99% & -26 dB Occupied Bandwidth	Part 2.1049 Part 27.53(h)	Pass
Spurious Emissions at Antenna Terminal	Part 2.1051 Part 27.53(h)	Pass
Field Strength of Spurious Radiation	Part 2.1053 Part 27.53(h)	Pass
Out of band emission, Band Edge	Part 2.1051 Part 27.53(h)	Pass
Frequency stability	Part 2.1055 Part 27.54	Pass
.3 Address of the test laboratory		CTA CTA

1.3 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 CTATESTING SVSWR requirement for radiated emission above 1GHz.

1.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Industry Canada Registration Number. Is: 27890 CAB identifier: CN0127

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-

4:2010.

1.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01"Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 1"and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 2" and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	5 4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)5
Conducted Power	9KHz~18GHz	0.61 dB	(1)
Spurious RF Conducted Emission	9KHz~40GHz	1.22 dB	(1)
Band Edge Compliance of RF Emission	9KHz~40GHz	1.22 dB	(1)
Occupied Bandwidth	9KHz~40GHz	-	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

GENERAL INFORMATION 2

2.1 Environmental conditions

	Jun 27, 2024
	. 6
:	Jun 27, 2024
	TES
	Jul. 23, 2024

During the measurement the environmental co	onditions were within the listed ranges:	
Normal Temperature:	25°C	A
Relative Humidity:	55 %	
Air Pressure:	101 kPa	

2.2 General Description of EUT

	Product Name:	Tablet computer
	Model/Type reference:	X30Pro
	Power supply:	DC 3.7V From Battery and DC 5.0V From external circuit
	Adapter information:	Model: YJZN-012 Input: AC 100-240V 50/60Hz 0.3A Output: DC 5.0V 2.0A
	Hardware version:	V1.0
	Software version:	V1.0
	Testing sample ID :	CTA240627005-1# (Engineer sample) CTA240627005-2# (Normal sample)
	LTE	
	Operation Band:	E-UTRA Band 12
	Support Bandwidth:	Band 12: 1.4MHz, 3MHz, 5MHz, 10MHz,
	TX/RXFrequency Range:	E-UTRA Band 12(699 MHz -716MHz)
	Modulation Type:	QPSK, 16QAM
P	Release Version:	Release 9
	Category:	Cat 4
	Antenna Type:	PIFA antenna
Γ	Antenna Gain:	1.0 dBi

2.3 Description of Test Modes and Test Frequency

The EUT has been tested under typical operating condition. The CMW500 used to control the EUT staying in continuous transmitting and receiving mode for testing. Regards to the frequency band operation: the lowest, middle and highest frequency of channel were selected to perform the test, CTA TESTING then shown on this report.

2.4 Equipments	Used during the	Test			
Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01
LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01
EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01
EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01
Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01
Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01
Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01
Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01
WIDEBAND RADIO COMMUNICATIO N TESTER	CMW500	R&S	CTA-302	2023/08/02	2024/08/01
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01
Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01
Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01
Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01
Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01
69		TATES	Version	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	number	Date	Due Date
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A

Report No.: CTA240	62700507			Pag	je 8 of 24	
					«S\"	_
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A	

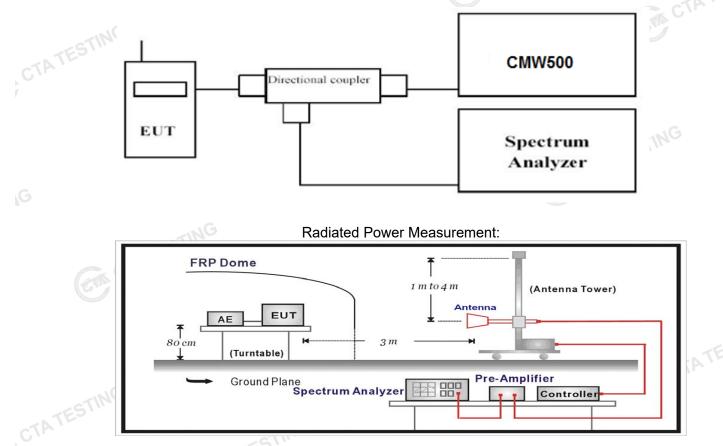
2.5 **Related Submittal(s) / Grant (s)**

This submittal(s) (test report) is intended for FCC ID: 2BHYZ-X30PRO filing to comply with of the FCC Part 27 Rules.

2.6 Modifications

No modifications were implemented to meet testing criteria.

3 TEST CONDITIONS AND RESULTS


3.1 **Output Power**

<u>LIMIT</u>

According to § 27.50 C(10): Portable stations (hand-held devices) in the 600 MHz uplink band and the 698-746 MHz band, and fixed and mobile stations in the 600 MHz uplink band are limited to 3 watts ERP."

TEST CONFIGURATION

Conducted Power Measurement

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c) EUT Communicate with CMW500 then selects a channel for testing.
- d) Add a correction factor to the display of spectrum, and then test.

Radiated Power Measurement:

- a) The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b) The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c) The output of the test antenna shall be connected to the measuring receiver.
- d) The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.

- The test antenna shall be raised and lowered through the specified range of height until a e) maximum signal level is detected by the measuring receiver.
- The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum f) signal level is detected by the measuring receiver.
- The test antenna shall be raised and lowered again through the specified range of height until a g) maximum signal level is detected by the measuring receiver.
- The maximum signal level detected by the measuring receiver shall be noted. h)
- The transmitter shall be replaced by a substitution antenna. i)
- The substitution antenna shall be orientated for vertical polarization and the length of the j) substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k) The substitution antenna shall be connected to a calibrated signal generator.
- If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to I) increase the sensitivity of the measuring receiver.
- m) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- CTPn) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
 - The measurement shall be repeated with the test antenna and the substitution antenna O) orientated for horizontal polarization.
 - p) The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
 - Test site anechoic chamber refer to ANSI C63.4. q)

TES

TES

TEST RESULTS

JG

CTP

cTA

Conducted Measurement:

	weasurement	•	LTE Band	12		
BW			Channel/Frequency(MHz)			
(MHz)	Modulation	RB Size	RB Offset	23060	23095	23130
, , ,				704	707.5	711
10	QPSK	1	0	23.67	23.21	23.52
10	QPSK	1	25	23.00	23.50	23.33
10	QPSK	1	49	23.55	23.77	23.34
10	QPSK	25	0	22.27	22.08	22.05
10	QPSK	25	12	22.18	22.17	22.06
10	QPSK	25	25	22.34	22.11	22.34
10	QPSK	50	0	22.11	22.36	22.13
10	16QAM	1	0	22.08	22.37	22.22
10	16QAM	1	25	22.32	22.01	22.35
10	16QAM	1	49	22.07	22.38	22.11
10	16QAM	25	0	21.19	21.33	21.55
10	16QAM	25	12	21.46	21.37	21.19
10	16QAM	25	25	21.26	21.33	21.19
10	16QAM	50	0	21.33	21.53	21.53
BW				Channel/Frequency(MHz)		1Hz)
(MHz)	Modulation	RB Size	RB Offset	23035	23095	23155
				701.5	707.5	713.5
5	QPSK	1	0	23.43	23.78	23.19
5	QPSK	1	12	23.06	23.13	23.06
5	QPSK	1	24	23.45	23.28	23.47
5	QPSK	12	0	22.28	22.32	22.34
5	QPSK	12	7	22.32	22.22	22.29
5	QPSK	12	13	22.08	22.32	22.32
5	QPSK	25	0	22.15	22.21	22.11
5	16QAM	1	0	22.18	22.27	22.12
5	16QAM	1	12	22.14	22.02	22.05
5	16QAM	1	24	22.18	22.23	22.35
5	16QAM	12	0	21.52	21.51	21.37
5	16QAM	12	7	21.37	21.29	21.49
5	16QAM	12	13	21.21	21.37	21.31
5	16QAM	25	0	21.48	21.54	21.33
	16QAM 16QAM	ATED		TATESTING		

Report No.: CTA24062700507

dulationRB SQPSK1QPSK1QPSK1QPSK8QPSK8QPSK8QPSK156QAM16QAM16QAM86QAM86QAM86QAM86QAM156QAM756QAM86QAM	0 8 14 0 4 7 5 0 0 0 8 14 0 8 14 0 4 7 5 0	23025 700.5 23.60 23.51 23.78 22.40 22.35 22.30 22.23 22.05 22.33 22.05 22.33 22.16 21.48 21.22 21.34 21.45	707.5 23.71 23.51 23.08 22.07 22.12 22.16 22.12 22.08 22.11 22.18 22.11 22.18 21.18 21.44 21.43 21.42 Channel/Frequen	23165 714.5 23.25 23.86 23.84 22.19 22.35 22.25 22.35 22.25 22.34 22.30 22.24 22.17 21.26 21.17 21.39 21.25 cy(MHz)	
QPSK1QPSK1QPSK1QPSK8QPSK8QPSK8QPSK156QAM16QAM16QAM86QAM86QAM86QAM156QAM156QAM86QAM <t< td=""><td>0 8 14 0 4 7 5 0 0 0 8 14 0 8 14 0 4 7 5 0 0</td><td>23025 700.5 23.60 23.51 23.78 22.40 22.35 22.30 22.23 22.05 22.33 22.16 21.48 21.22 21.34 21.45 set 23017</td><td>707.5 23.71 23.51 23.08 22.07 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.13 22.14 22.18 21.48 21.43 21.42 Channel/Frequen</td><td>714.5 23.25 23.86 23.84 22.19 22.35 22.25 22.30 22.24 22.17 21.26 21.17 21.39 21.39 21.25</td><td></td></t<>	0 8 14 0 4 7 5 0 0 0 8 14 0 8 14 0 4 7 5 0 0	23025 700.5 23.60 23.51 23.78 22.40 22.35 22.30 22.23 22.05 22.33 22.16 21.48 21.22 21.34 21.45 set 23017	707.5 23.71 23.51 23.08 22.07 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.13 22.14 22.18 21.48 21.43 21.42 Channel/Frequen	714.5 23.25 23.86 23.84 22.19 22.35 22.25 22.30 22.24 22.17 21.26 21.17 21.39 21.39 21.25	
QPSK 1 QPSK 1 QPSK 8 QPSK 8 QPSK 8 QPSK 8 QPSK 15 6QAM 1 6QAM 1 6QAM 8 6QAM 8 6QAM 8 6QAM 15 6QAM 8	8 14 0 4 7 0 0 0 0 0 0 0 0 0 0 4 0 4 7 0 0 4 7 0 0	700.5 23.60 23.51 23.78 22.37 22.35 22.33 22.05 22.33 22.16 21.22 21.34 21.34 21.45 set 23017	707.5 23.71 23.51 23.08 22.07 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.12 22.13 22.14 22.18 21.48 21.43 21.42 Channel/Frequen	714.5 23.25 23.86 23.84 22.19 22.35 22.25 22.30 22.24 22.17 21.26 21.17 21.39 21.39 21.25	TE
QPSK 1 QPSK 1 QPSK 8 QPSK 8 QPSK 8 QPSK 8 QPSK 15 6QAM 1 6QAM 1 6QAM 8 6QAM 8 6QAM 8 6QAM 15 6QAM 8	8 14 0 4 7 0 0 0 0 0 0 0 0 0 0 4 0 4 7 0 0 4 7 0 0	23.60 23.51 23.78 22.40 22.35 22.30 22.23 22.05 22.33 22.16 21.48 21.22 21.34 21.45 set 23017	23.71 23.51 23.08 22.07 22.12 22.16 22.16 22.12 22.08 22.11 22.18 21.18 21.44 21.43 21.42 Channel/Frequen	23.25 23.86 23.84 22.19 22.35 22.25 22.30 22.24 22.30 22.24 22.17 21.26 21.17 21.39 21.25 cy(MHz)	TE
QPSK 1 QPSK 1 QPSK 8 QPSK 8 QPSK 8 QPSK 8 QPSK 15 6QAM 1 6QAM 1 6QAM 8 6QAM 8 6QAM 8 6QAM 15 6QAM 8	8 14 0 4 7 0 0 0 0 0 0 0 0 0 0 4 0 4 7 0 0 4 7 0 0	23.51 23.78 22.40 22.35 22.30 22.23 22.05 22.33 22.16 21.48 21.22 21.34 21.45 21.45	23.51 23.08 22.07 22.12 22.16 22.16 22.12 22.08 22.11 22.18 21.18 21.44 21.43 21.42 Channel/Frequen	23.86 23.84 22.19 22.35 22.25 22.24 22.30 22.24 22.17 21.26 21.17 21.39 21.25 cy(MHz)	TE
PSK 1 PSK 8 PSK 8 PSK 8 PSK 8 PSK 15 6QAM 1 6QAM 1 6QAM 1 6QAM 8 6QAM 8 6QAM 8 6QAM 15 6QAM 8	14 0 4 7 0 0 0 8 14 0 4 7 5 0	23.78 22.40 22.35 22.30 22.23 22.05 22.33 22.16 21.48 21.22 21.34 21.45 set 23017	23.08 22.07 22.12 22.16 22.12 22.16 22.12 22.08 22.11 22.18 21.18 21.44 21.43 21.44 21.43 21.42 Channel/Frequen	23.84 22.19 22.35 22.25 22.34 22.30 22.24 22.17 21.26 21.17 21.39 21.25 cy(MHz)	TE
PSK 8 PSK 8 PSK 15 6QAM 1 6QAM 1 6QAM 1 6QAM 1 6QAM 1 6QAM 1 6QAM 8 6QAM 8 6QAM 8 6QAM 15 dulation RB S	0 4 7 6 0 0 8 14 0 4 7 6 0	22.40 22.35 22.30 22.23 22.05 22.33 22.16 21.48 21.22 21.34 21.34 21.45 set 23017	22.07 22.12 22.16 22.12 22.08 22.11 22.18 22.18 21.18 21.44 21.43 21.42 Channel/Frequen	22.19 22.35 22.25 22.34 22.30 22.24 22.17 21.26 21.17 21.39 21.25 cy(MHz)	TE TE
PSK 8 PSK 15 6QAM 1 6QAM 1 6QAM 1 6QAM 8 6QAM 8 <	4 7 0 0 8 8 14 0 4 7 5 0	22.35 22.30 22.23 22.05 22.33 22.16 21.48 21.22 21.34 21.45 set 23017	22.12 22.16 22.12 22.08 22.11 22.18 21.18 21.44 21.43 21.42 Channel/Frequen	22.35 22.25 22.34 22.30 22.24 22.17 21.26 21.17 21.39 21.25 cy(MHz)	TE TE
QPSK 8 QPSK 15 6QAM 1 6QAM 1 6QAM 1 6QAM 8 6QAM 8 6QAM 8 6QAM 15 6QAM 8 6QAM 75	7 0 0 8 14 0 4 7 5 0	22.30 22.23 22.05 22.33 22.16 21.48 21.22 21.34 21.45 set 23017	22.16 22.12 22.08 22.11 22.18 21.18 21.44 21.43 21.42 Channel/Frequen	22.25 22.34 22.30 22.24 22.17 21.26 21.17 21.39 21.25 cy(MHz)	TE
QPSK 15 6QAM 1 6QAM 1 6QAM 1 6QAM 8 6QAM 8 6QAM 8 6QAM 15 6QAM 8 6QAM 15 dulation RB S	0 0 8 14 0 4 7 0	22.23 22.05 22.33 22.16 21.48 21.22 21.34 21.45 set 23017	22.12 22.08 22.11 22.18 21.18 21.44 21.43 21.42 Channel/Frequen	22.34 22.30 22.24 22.17 21.26 21.17 21.39 21.25 cy(MHz)	TE TE
6QAM 1 6QAM 1 6QAM 1 6QAM 8 6QAM 8 6QAM 8 6QAM 15 dulation RB S	0 8 14 0 4 7 5 0	22.05 22.33 22.16 21.48 21.22 21.34 21.45 set 23017	22.08 22.11 22.18 21.18 21.44 21.43 21.42 Channel/Frequen	22.30 22.24 22.17 21.26 21.17 21.39 21.25 cy(MHz)	, ,, , ,,
6QAM 1 6QAM 1 6QAM 8 6QAM 8 6QAM 8 6QAM 15 6QAM 15 dulation RB S	8 14 0 4 7 5 0	22.33 22.16 21.48 21.22 21.34 21.45 set 23017	22.11 22.18 21.18 21.44 21.43 21.42 Channel/Frequen	22.24 22.17 21.26 21.17 21.39 21.25 cy(MHz)	,TA
6QAM16QAM86QAM86QAM86QAM156QAMRB S	14 0 4 7 5 0	22.16 21.48 21.22 21.34 21.45 set 23017	22.18 21.18 21.44 21.43 21.42 Channel/Frequen	22.17 21.26 21.17 21.39 21.25 cy(MHz)	
6QAM86QAM86QAM86QAM15dulationRB S	0 4 7 5 0	21.48 21.22 21.34 21.45 23017	21.18 21.44 21.43 21.42 Channel/Frequen	21.26 21.17 21.39 21.25 cy(MHz)	
6QAM86QAM86QAM15dulationRB S	4 7 0 0	21.22 21.34 21.45 set 23017	21.44 21.43 21.42 Channel/Frequen	21.17 21.39 21.25 cy(MHz)	
6QAM 8 6QAM 15 dulation RB S	7 5 0	21.34 21.45 set 23017	21.43 21.42 Channel/Frequen	21.39 21.25 cy(MHz)	
6QAM 15 dulation RB S	0	set 23017	Channel/Frequen	21.25 cy(MHz)	_
dulation RB S		set23017	Channel/Frequen	cy(MHz)	
	ize RB Ofi	23017	7 23005		
				00170	
				23173	
QPSK 1	0	23.41		23.26	
QPSK 1	3	23.41		23.66	
QPSK 1	5	23.90		23.25	
QPSK 3	0	23.91		23.25	
QPSK 3	1	22.11		22.00	
QPSK 3	3	22.20		22.10	
QPSK 6	0	22.12		22.21	
					TATE
	0	21.50	21.43		<u></u>
6 6 6 6 6 6	QAM1QAM1QAM3QAM3QAM3QAM6	QAM 1 0 QAM 1 3 QAM 1 5 QAM 3 0 QAM 3 1 QAM 3 3	QAM 1 0 22.36 QAM 1 3 22.33 QAM 1 5 22.43 QAM 3 0 21.43 QAM 3 1 21.24 QAM 3 1 21.24 QAM 3 3 21.39	QAM 1 0 22.36 22.41 QAM 1 3 22.33 22.11 QAM 1 5 22.43 22.36 QAM 3 0 21.43 21.35 QAM 3 1 21.24 21.50 QAM 3 3 21.39 21.27	QAM1022.3622.4122.35QAM1322.3322.1122.04QAM15 22.43 22.3622.13QAM3021.4321.35 21.53 QAM3121.2421.5021.20QAM3321.3921.2721.36

Radiated Measurement: Remark:

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 12; recorded worst case for each Channel Bandwidth of LTE FDD Band 12.

2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Ag}(dB)+G_{a}(dBi)$

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
699.7	-20.04	2.31	8.16	2.15	36.7	20.36	34.77	-14.41	V
707.5	-19.49	2.34	8.19	2.15	36.7	20.91	34.77	-13.86	V
715.3	-20.00	2.38	8.23	2.15	36.7	20.40	34.77	-14.37	V CTP

LTE FDD Band 12 Channel Bandwidth 1.4MHz QPSK

CTA	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization		
	700.5	-18.02	2.31	8.16	2.15	36.7	22.38	34.77	-12.39	V		
	707.5	-19.86	2.34	8.19	2.15	36.7	20.54	34.77	-14.23	VG		
	714.5	-18.30	2.38	8.23	2.15	36.7	22.10	34.77	-12.67	S V		
	C. TATE									TEC		
	LTE FDD Band 12_Channel Bandwidth 5MHz_QPSK											
				G				R.				

LTE FDD Band 12_Channel Bandwidth 5MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization		
701.5	-20.42	2.31	8.16	2.15	36.7	19.98	34.77	-14.79	V		
707.5	-18.85	2.34	8.19	2.15	36.7	21.55	34.77	-13.22	V		
713.5	-20.92	2.38	8.23	2.15	36.7	19.48	34.77	-15.29	V		
LTE FDD Band 12_Channel Bandwidth 10MHz_QPSK											
			C				 				

LTE FDD Band 12 Channel Bandwidth 10MHz QPSK

	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization	TEST
	704.0	-19.40	2.31	8.16	2.15	36.7	21.00	34.77	-13.77	V	
	707.5	-18.19	2.34	8.19	2.15	36.7	22.21	34.77	-12.56	V	
ATA	711.0	-20.41	2.38	8.23	2.15	36.7	19.99	34.77	-14.78	V	
CV.				GTIN							-

LTE FDD Band 12_Channel Bandwidth 1.4MHz_16QAM

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	G₂ Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
699.7	-20.22	2.31	8.16	2.15	36.7	20.18	34.77	-14.59	V
707.5	-21.70	2.34	8.19	2.15	36.7	18.70	34.77	-16.07	V
715.3	-21.32	2.38	8.23	2.15	36.7	19.08	34.77	-15.69	V

LTE FDD Band 12_Channel Bandwidth 3MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB))P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization	
700.5	-21.31	2.31	8.16	2.15	36.7	19.09	34.77	-15.68	V	
707.5	-19.47	2.34	8.19	2.15	36.7	20.93	34.77	-13.84	V	
714.5	-21.25	2.38	8.23	2.15	36.7	19.15	34.77	-15.62	V	12-
STING						C.			COA CTA	TESI

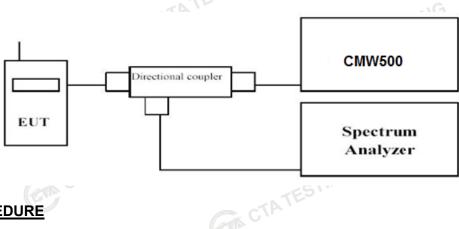
Page 14 of 24

LTE FDD Band 12_Channel Bandwidth 5MHz_16QAM

Report No.:		Page 14 of 24										
LTE FDD Band 12_Channel Bandwidth 5MHz_16QAM												
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G₂ Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization			
701.5	-20.06	2.31	8.16	2.15	36.7	20.34	34.77	-14.43	V			
707.5	-19.40	2.34	8.19	2.15	36.7	21.00	34.77	-13.77	V			
713.5	-20.31	2.38	8.23	2.15	36.7	20.09	34.77	-14.68	V			

LTE FDD Band 12 Channel Bandwidth 10MHz 16QAM

Frequence (MHz)	y P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization	TE
704.0	-19.95	2.31	8.16	2.15	36.7	20.45	34.77	-14.32	V	
707.5	-20.93	2.34	8.19	2.15	36.7	19.47	34.77	-15.30	V	
711.0	-20.82	2.38	8.23	2.15	36.7	19.58	34.77	-15.19	V	
			TESTIN		CTAT	ESTING				



3.2 Peak-to-Average Ratio (PAR)

LIMIT

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

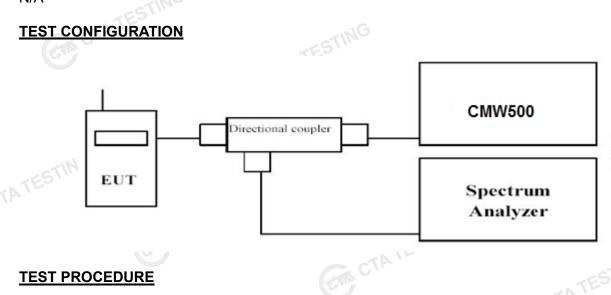
TEST PROCEDURE

- 1. Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;
- 2. Set resolution/measurement bandwidth \geq signal's occupied bandwidth;
- 3. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 4. Set the measurement interval as follows:
 - 1). for continuous transmissions, set to 1 ms,

2). for burst transmissions, employ an external trigger that is synchronized with the EUT burst CTATEST timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.

Passed-----ESTING

5. Record the maximum PAPR level associated with a probability of 0.1%.


TEST RESULTS

Please refer to the appendix test data.

Occupied Bandwidth and Emission Bandwidth 3.3

LIMIT

N/A

TEST PROCEDURE

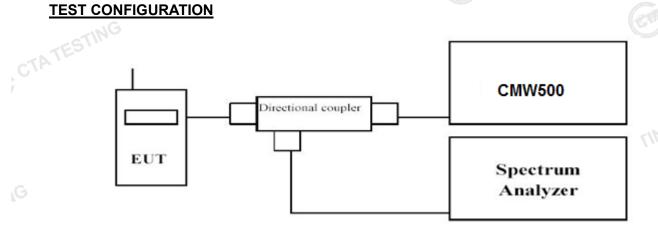
The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at low, middle and high channel in each band. The -26dBc Emission bandwidth was also measured and recorded.

Set RBW was set to about 1% of emission BW, VBW≥3 times RBW.

-26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace. -----Passed-----

TEST RESULTS

JSE I Please refer to the appendix test data.


3.4 Band Edge compliance

LIMIT

According to Part §27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. CTATES In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

TEST PROCEDURE

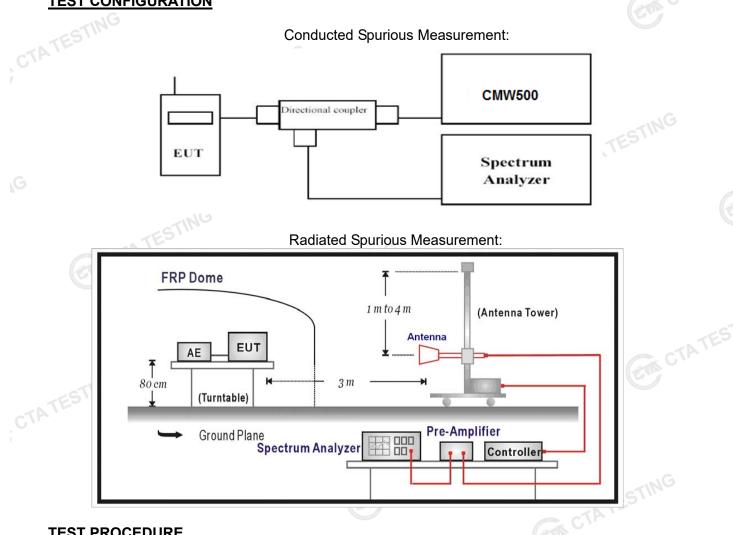
- 1. The transmitter output port was connected to base station.
- The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.

GTA TESTING

- 3. Set EUT at maximum power through base station.
- 4. Select lowest and highest channels for each band and different modulation.
- 5. Measure Band edge using RMS (Average) detector by spectrum

TEST RESULTS

Please refer to the appendix test data.


3.5 Spurious Emission

LIMIT

According to Part §27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. CTATES' In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Conducted Spurious Measurement:

- a. Place the EUT on a bench and set it in transmitting mode.
- b. Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c. EUT Communicate with CMW500 then selects a channel for testing.
- d. Add a correction factor to the display of spectrum, and then test.
- e. The resolution bandwidth of the spectrum analyzer was set sufficient scans were taken to show the out of band Emission if any up to 10th harmonic.

CTATESTING

Radiated Spurious Measurement:

- a. The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c. The output of the test antenna shall be connected to the measuring receiver.
- d. The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f. The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- The test antenna shall be raised and lowered again through the specified range of height until a g. maximum signal level is detected by the measuring receiver.
- h. The maximum signal level detected by the measuring receiver shall be noted.
- The transmitter shall be replaced by a substitution antenna. ì.
- The substitution antenna shall be orientated for vertical polarization and the length of the j. substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k. The substitution antenna shall be connected to a calibrated signal generator.
- If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to Ι. increase the sensitivity of the measuring receiver.
- m. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p. The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- CTATEST q. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for Part 22 and 1MHz for Part 24. The frequency range was checked up to 10th harmonic.
- r. Test site anechoic chamber refer to ANSI C63.

TEST RESULTS

Conducted Measurement:

Page 20 of 24

ľG

-----Passed------

Please refer to the appendix test data.

Radiated Measurement:

Remark:

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 12

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Distance (m)	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1408.0	-43.87	2.86	3.00	7.25	-39.48	-13.00	-26.48	Н
2112.0	-54.88	2.94	3.00	9.53	-48.29	-13.00	-35.29	H CTP
1408.0	-40.47	2.86	3.00	7.25	-36.08	-13.00	-23.08	V
2112.0	-50.42	2.94	3.00	9.53	-43.83	-13.00	-30.83	V

LTE FDD Band 12 Channel Bandwidth 10MHz QPSK Low Channel

LTE FDD Band 12_Channel Bandwidth 10MHz_QPSK_ Middle Channel

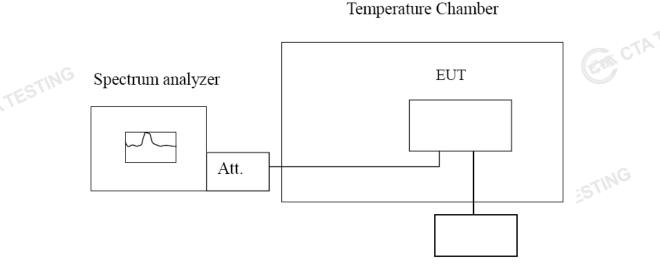
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Distance (m)	G _a Antenna Gain(dB)	EIRP (dBm)	CLimit (dBm)	Margin (dB)	Polarization
1415.0	-44.80	2.88	3.00	7.31	-40.37	-13.00	-27.37	STH
2122.5	-53.30	2.97	3.00	9.55	-46.72	-13.00	-33.72	H
1415.0	-40.71	2.88	3.00	7.31	-36.28	-13.00	-23.28	V
2122.5	-48.68	2.97	3.00	9.55	-42.10	-13.00	-29.10	V

LTE FDD Band 12_Channel Bandwidth 10MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Distance (m)	G _a Antenna Gain(dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization				
1422.0	-44.32	2.91	3.00	7.82	-39.41	-13.00	-26.41	Н				
2133.0	-51.02	3.05	3.00	9.66	-44.41	-13.00	-31.41	Н				
1422.0	-43.70	2.91	3.00	7.82	-38.79	-13.00	-25.79	V	~			
2133.0	-50.41	3.05	3.00	9.66	-43.80	-13.00	-30.80	V	TES			
Notes:												
1.All channel b												
2. EIRP=PMea(dBm)-Pcl(dB)+PAg(dB)+Ga(dBi)												

3. ERP = EIRP – 2.15dBi as EIRP by subtracting the gain of the dipole.

4. Margin = EIRP – Limit


CTATESTING 5. We measured all modes and only recorded the worst case.

3.6 Frequency Stability under Temperature & Voltage Variations

LIMIT

According to §27.54, §2.1055 requirement, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation and should not exceed CTATESTING 2.5ppm.

TEST CONFIGURATION

Variable Power Supply

Page 22 of 24

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Frequency Stability under Temperature Variations:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER.

- Measure the carrier frequency at room temperature. 1.
- Subject the EUT to overnight soak at -30°C. 2.
- With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call 3. on middle channel for LTE band 12, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 1.5 4. hours at each temperature, unpowered, before making measurements.
- Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage 5. from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any selfheating to stabilize, before continuing.
- Subject the EUT to overnight soak at +50℃. 6.
- 7. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- Repeat the above measurements at 10 °C increments from +50 °C to -30 °C. Allow at least 1.5 8. hours at each temperature, unpowered, before making measurements

At all temperature levels hold the temperature to $+/-0.5^{\circ}$ during the measurement procedure. 9. Frequency Stability under Voltage Variations:

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.

CTATES Test Setup Photos of the EUT 4 CTATEST CTATEST LAAAAA CTATESTING Photos of the EUT Reference to the test report No. CTA24062700501. CTATESTING