

TEST REPORT

Compiled by

(position+printed name+signature)..: File administrators Jinghua Xiao

Supervised by

(position+printed name+signature)..: Project Engineer Xudong Zhang

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue...... July 30, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name Shenzhen Xin times chain technology Co., LTD

6 / F, Block F, Huachuangda Science Park, 176 Hangcheng Avenue,

Jangtua sorono

Address...... Hangcheng Street, Sanwei Community, Baoan District, Shenzhen,

Guangdong, China

Test specification....::

IEC 62209-2:2010; IEEE 1528:2013; FCC 47 CFR Part 2.1093;

Standard ANSI/IEEE C95.1:2005; Reference FCC KDB 447498;

KDB 865664; KDB 248227; KDB 941225; KDB 616217

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description.....: Tablet computer

Trade Mark..... N/A

Manufacturer...... Shenzhen Xin times chain technology Co., LTD

Model/Type reference X30Pro

T106, X30, X35, X70, X75, X70Pro, X50, X55, X50Pro, X90, X95,

CTATES

X107Pro

Rating DC 3.7V From Battery and DC 5.0V From external circuit

Result..... PASS

Report No.: CTA24062700509 Page 2 of 103

REPORT TEST

Equipment under Test Tablet computer

Model /Type X30Pro

CTATESTING T106, X30, X35, X70, X75, X70Pro, X50, X55, X50Pro, X90, X95, Listed Models

X90Pro, X101, X101Pro, X103, X103Pro, X105, X105Pro, X107,

X107Pro

Shenzhen Xin times chain technology Co., LTD **Applicant**

6 / F, block F, huachuangda Science Park, No. 176, Hangcheng Address

Avenue, Sanwei community, Hangcheng street, Bao'an District,

Shenzhen, China

Shenzhen Xin times chain technology Co., LTD Manufacturer

Address 6 / F, block F, huachuangda Science Park, No. 176, Hangcheng

Avenue, Sanwei community, Hangcheng street, Bao'an District,

	Shenzh	en, China	
CTATES	CTING		
	Test Result:	PASS	
		CIA	

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 3 of 103 Report No.: CTA24062700509

*** * * Revision History * ***

TESTING	※ ※ Revision History	y
REV.	ISSUED DATE	DESCRIPTION
Rev.1.0	July 30, 2024	Initial Test Report Release
	CON.	TATESTA
		(E) CI

CTATESTING

Contents

	2.1 2.2	Deceria	ll Remarks otion of Equipment Under Test (E	:I IT\		TES"	
		Descrip	Category and SAR Limits	.01)	C/P		
	2.3	Device	Category and SAR Limits		G		/
	2.4	Applied	Standard			•••••	د
	2.5		cility				
511	2.6		nment of Test Site				
^	2.7		onfiguration				
3	•		sorption Rate (SAR)				
	3.1	Introduc	ction		STIME		10
	3.2	SAR De	efinitionurefinitionurement System	AZS	~ · · · · · · · · · · · · · · · · · · ·		10
4			-				
	4.1		Probe				
	4.2	Data Ac	equisition Electronics (DAE)				12
	4.3						
	4.4		ement Server				
	4.5		m				
	4.6		Holder				
	4.7		torage and Evaluation				
5	Test	Equip	ment List				17
6	Tissu	ıe Sim	ulating Liquids				18
7			rification Procedures				
8	EUT	Testin	g Position				22
	8.1	Body-S	upported Device Configurations				22
9	Meas		ent Procedures				
	9.1	Spatial	Peak SAR Evaluation				23
	9.2	Power F	Reference Measurement				23
	9.3		can Procedures				
	9.4		Scan Procedures				
	9.5	Volume	Scan Procedures				25
	9.6	Power [Drift Monitoring				25
10	TEST	T CON	IDITIONS AND RESULT	īS		CIP	26
	10.1	Conduc	cted Power Results				26
	10.2	Transm	iit Antennas				37
	10.3	SAR Te	est Exclusion and Estimated SAF	₹			38
	10.4	SAR Te	est Results				40
	10.5	SAR Me	easurement Variability	GING			43
	10.6	Simulta	neous Transmission Analysis	TE			44
11	Meas		ent Uncertainty			SESTING.	45
	pendi		EUT Photos and Test	Setup Photos	AZ		47
•	pendi		Plots of SAR System (`hack			48

Report No.: CTA24062700		Page 5 of 103
II D D 101/		54 60
Appendix D. DASY	System Calibration Certificate	CTATESTING
	ATESTING GIAT	ESTING GTA CTA TESTING
CTATESTING	CTATESTING	CTATESTING
	ATESTING CTATI	ESTING EM CTATESTING
CTATESTING	CTA TESTING	TATESTING
		CIN CIT

Report No.: CTA24062700509 Page 6 of 103

Statement of Compliance

<Highest SAR Summary>

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

-55	IN ^G	ighest SAR Summary>	
CTATEST	Frequency Band	Highest Reported 1g-SAR(W/Kg)	Simultaneous Reported SAR
	ricquency band	Body (0mm)	(W/Kg)
	LTE Band 2	0.620	. (
	LTE Band 4	0.648	ESTIN
	LTE Band 12/17	0.504	0.954
G	WLAN2.4G	0.281	0.954
	WLAN5.2G	0.306	
	WLAN5.8G	0.227	
	SAR Test Limit (W/Kg)	1.60	
	Test Result	PASS	

Note: LTE band 17 SAR was covered by LTE Band 12 according to April 2015 TCB workshop, SAR test for overlapping LTE bands can be reduced if a. the maximum output power, including tolerance, for the smaller band is ≤ the larger band to qualify for the SAR test exclusion. b. the channel bandwidth and other operating parameters for the smaller band are fully CTATES supported by the larger band.

Report No.: CTA24062700509 Page 7 of 103

General Information

2.1 General Remarks

2.1 General Remarks			
Date of receipt of test sample		July 16, 2024	TESTING
Testing commenced on	:	July 22, 2024	CACTA
Testing concluded on	:	July 29, 2024	

2.2 Description of Equipment Under Test (EUT)

CIL		
	Product Name:	Tablet computer
	Model/Type reference:	X30Pro
	Power supply:	DC 3.7V From Battery and DC 5.0V From external circuit
		Model: YJZN-012 Input: AC 100-240V 50/60Hz 0.3A Output: DC 5.0V 2.0A
	Adapter information:	Input: AC 100-240V 50/60Hz 0.3A
G		Output: DC 5.0V 2.0A
	Testing sample ID:	CTA240627005-1# (Engineer sample)
	resulty sample ID.	CTA240627005-2# (Normal sample)
	Hardware version:	V1.0
	Software version:	V1.0
		SRD:
		BT:2402~2480MHz 2.4G WIFI: 2412~2462MHz
		2.4G WIFI: 2412~2462MHz
		5G WIFI: 5180~5240MHz, 5745~5825MHz
	Tx Frequency:	LTE:
_c		FDD Band 2: TX: 1850~1909MHz
CTATE		FDD Band 4: TX: 1710~1755MHz
C 11		FDD Band 12: TX: 699~716MHz
		FDD Band 17: TX: 704~716MHz
		BT: GFSK, П/4DQPSK, 8DPSK
	Type of Modulation:	2.4G WIFI: BPSK, QPSK,16QAM,64QAM
	Type of Modulation.	2.4G WIFI: BPSK, QPSK,16QAM,64QAM 5G WIFI: BPSK, QPSK,16QAM,64QAM, 256QAM LTE: QPSK.16QAM
		LTE: QPSK,16QAM
G	Category of device:	Portable device
	Remark:	

The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

2.3 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within CTATES 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

Report No.: CTA24062700509 Page 8 of 103

2.4 Applied Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093:2013)
- ANSI/IEEE C95.1:2005
- IEEE Std 1528:2013
- KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- KDB 865664 D02 RF Exposure Reporting v01r02
- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 248227 D01 802 11 Wi-Fi SAR v02r02
- KDB 941225 D05 SAR for LTE Devicesv02r05
- KDB 616217 D04 SAR for laptop and tablets v01r02

2.5 Test Facility

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

ISED#: 27890 CAB identifier: CN0127

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

Page 9 of 103 Report No.: CTA24062700509

2.6 **Environment of Test Site**

Items	Required		Actual	
Temperature (°C)	18-25		22~23	
Humidity (%RH)	30-70	CVI CVI	55~65	
				CIP

2.7 Test Configuration

The device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during all tests. For WLAN SAR testing, WLAN engineering testing software installed on the EUT can CTA CTA provide continuous transmitting RF signal.

Report No.: CTA24062700509 Page 10 of 103

Specific Absorption Rate (SAR)

3.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

3.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation CTA TESTING description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

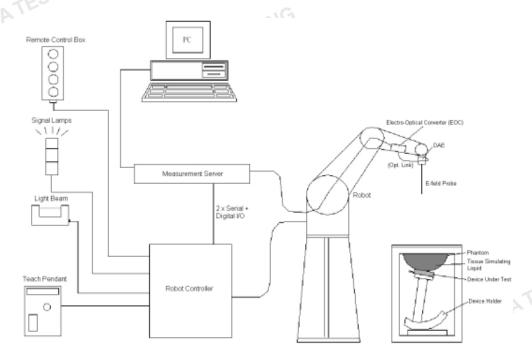
SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity, δT is the temperature rise and δtisthe exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$


Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

Report No.: CTA24062700509 Page 11 of 103

SAR Measurement System

DASY System Configurations

The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- \triangleright A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY software
- CTA TESTING Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid \triangleright
- Dipole for evaluating the proper functioning of the system

components are described in details in the following sub-sections.

4.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special CTATES calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. CTATESTING

Report No.: CTA24062700509

> E-Field Probe Specification

<EX3DV4 Probe>

Construction	Symmetrical design with triangular core	-
	Built-in shielding against static charges	
	PEEK enclosure material (resistant to organic	
	solvents, e.g., DGBE)	
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB	
Directivity	± 0.3 dB in HSL (rotation around probe axis)	>
	± 0.5 dB in tissue material (rotation normal to	
Ç.	probe axis)	
Dynamic Range	10 μW/g to 100 W/kg; Linearity: ± 0.2 dB (noise:	_
	typically< 1 μW/g)	
Dimensions	Overall length: 330 mm (Tip: 20 mm)	
	Tip diameter: 2.5 mm (Body: 12 mm)	Photo of EX3DV4
	Typical distance from probe tip to dipole	TESTIN
	centers: 1 mm	CTA

> E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

4.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Photo of DAE

Report No.: CTA24062700509 Page 13 of 103

4.3 Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controllersystem, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäublirobot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- > Jerk-free straight movements
- ➤ Low ELF interference (the closed metallic construction shields against motor control fields)

Photo of DASY5

4.4 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Photo of Server for DASY5

Report No.: CTA24062700509 Page 14 of 103

4.5 Phantom

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm;		Ole.
	Center ear point: 6 ± 0.2 mm		
Filling Volume	Approx. 25 liters	11 to 110	The state of the s
Dimensions	Length: 1000 mm; Width: 500 mm;	The same	
	Height: adjustable feet		
Measurement Areas	Left Hand, Right Hand, Flat Phantom		
	TATESTING	STIN	Photo of SAM Phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI4 Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)		
Filling Volume	Approx. 30 liters		
Dimensions	Major ellipse axis: 600 mm Minor axis:400 mm		
		Photo of ELI4 Phantom	

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

4.6 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Report No.: CTA24062700509 Page 15 of 103

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Device Holder

4.7 Data Storage and Evaluation

Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [W/kg]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

> Probe parameters: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}

> > - Conversion factor ConvF_i

- Diode compression point dcpi CTATESTING

Device parameters: - Frequency f

> - Crest factor cf

- Conductivity Media parameters:

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field Probes:
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H-field Probes:
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with V_i = compensated signal of channel i,(i= x, y, z)

Norm_i= sensor sensitivity of channel i, (i= x, y, z), $\mu V/(V/m)^2$ for E-field Probes

ConvF= sensitivity enhancement in solution

aii= sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i= electric field strength of channel iin V/m

H_i= magnetic field strength of channel iin A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude): CTATESTING

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in W/kg

E_{tot}= total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

CTATES" Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Test Equipment List

	Name of Emiliament	T /84 - 1-1	O and all Normalisms	Calibration	
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	750MHz System Validation Kit	D750V3	1194	Feb. 17,2023	Feb. 16,2026
SPEAG	1800MHz System Validation Kit	D1800V2	2d158	Dec. 17,2021	Dec. 16,2024
SPEAG	1900MHz System Validation Kit	D1900V2	5d002	Aug. 25,2023	Aug. 24,2026
SPEAG	2450MHz System Validation Kit	D2450V2	745	Aug. 28,2023	Aug. 27,2026
SPEAG	5GHz System Validation Kit	D5GHzV2	1301	Feb.16, 2023	Feb.15, 2026
Rohde & Schwarz	UNIVERSAL RADIO COMMUNICATION TESTER	CMW500	1201.0002K50- 104209-JC	Nov.05, 2023	Nov.04, 2024
SPEAG	Data Acquisition Electronics	DAE3	428	Aug.30,2023	Aug.29,2024
SPEAG	Dosimetric E-Field Probe	EX3DV4	7624	Sep. 06,2023	Sep. 05,2024
Agilent	ENA Series Network Analyzer	E5071C	MY46317418	Oct.25, 2023	Oct.24, 2024
SPEAG	DAK	DAK-3.5	1226	NCR	NCR
SPEAG	SAM Twin Phantom	QD000P40CD	1802	NCR	NCR
SPEAG	ELI Phantom	QDOVA004AA	2058	NCR	NCR
AR	Amplifier	ZHL-42W	QA1118004	NCR	NCR
Agilent	Power Meter	N1914A	MY50001102	Oct.25, 2023	Oct.24, 2024
Agilent	Power Sensor	N8481H	MY51240001	Oct.25, 2023	Oct.24, 2024
R&S	Spectrum Analyzer	N9020A	MY51170037	Oct.25, 2023	Oct.24, 2024
Agilent	Signal Generation	N5182A	MY48180656	Oct.25, 2023	Oct.24, 2024
Worken	Directional Coupler	0110A05601O-10	COM5BNW1A2	Oct.25, 2023	Oct.24, 2024

Note:

- 1. The calibration certificate of DASY can be referred to appendix C of this report.
- The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer 3. and compensated during system check.
- The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.
- In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise 5. power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it CTATES.

Report No.: CTA24062700509 Page 18 of 103

Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed:

Photo of Liquid Height

The following table gives the recipes for tissue simulating liquid.

			•			22 41			
	Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
	(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	(σ)	(εr)
TATES					For He	ead			
	835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
	1800,1900,2000	55.2	0	0	0.3	0	44.5	1.40	40.0
	2450	55.0	0	0	0	OFES	45.0	1.80	39.2
	2600	54.8	0	0	0.1	C 0	45.1	1.96	39.0
					For Bo	ody			
	835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
	1800,1900,2000	70.2	0	0	0.4	0	29.4	1.52	53.3
	2450	68.6	0	0	0	0	31.4	1.95	52.7
	2600	65.5	0	0	0	G 0	31.5	2.16	52.5
				CTATE	.51		CT	ATESTING	

The following table shows the measuring results for simulating liquid.

	Measured	Target ⁻	Tissue		Measure	ed Tissue		Liquid		
	Frequency (MHz)	εr	σ	εr	Dev. (%)	σ	Dev. (%)	Liquid Temp.	Test Data	
	750	41.9	0.89	40.978	-2.20%	0.870	-2.21%	22.6	07/22/2024	
	1750	40.1	1.37	39.098	-2.50%	1.336	-2.46%	22.5	07/23/2024	
	1900	40.0	1.40	41.304	3.26%	1.331	-4.92%	22.6	07/24/2024	CTATES
	2450	39.2	1.80	39.039	-0.41%	1.738	-3.47%	22.7	07/25/2024	
CTATES	5250	35.9	4.71	35.670	-0.64%	4.702	-0.18%	22.2	07/26/2024	
	5750	35.4	5.22	34.480	-2.60%	5.365	2.77%	22.3	07/29/2024	
		CIN CI			Com Co	TATEST	Ulle		TATESTING	

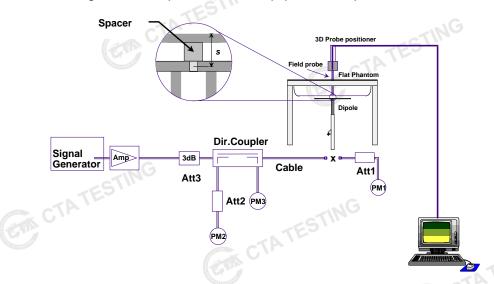
CTATESTING

CTATESTING

CTATESTING

Report No.: CTA24062700509 Page 20 of 103

7 System Verification Procedures


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

System Setup for System Evaluation

Report No.: CTA24062700509 Page 21 of 103

Photo of Dipole Setup

Validation Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

(-	Date	Frequency (MHz)	Power fed onto reference dipole (mW)	Targeted SAR 1g (W/kg)	Measured SAR1g (W/kg)	Normalized SAR (W/kg)	Deviation (%)	
	07/22/2024	750	250	8.57	2.16	8.64	1.02%	
1	07/23/2024	1750	250	39.2	10.18	40.72	3.88%	TATES
	07/24/2024	1900	250	40.1	9.66	38.64	-3.69%	CIL
.0	07/25/2024	2450	250	52.7	12.99	51.96	-1.44%	
CTATES	07/26/2024	5250	100	77.7	7.78	77.80	0.12%	
C /,	07/29/2024	5750	100	78.0	7.95	79.50	1.98%	
		CTA		CTA.	TESTING	CT CT	ATESTING	3

Report No.: CTA24062700509 Page 22 of 103

8 EUT Testing Position

8.1 Body-Supported Device Configurations

According to KDB 616217 section 4.3, SAR should be separately assessed with each surface and separation distance positioned against the flat phantom that correspond to the intended use as specified by the manufacturer. The antennas in tablets are typically located near the back (bottom) surface and/or along the edges of the devices; therefore, SAR evaluation is required for these configurations. Exposures from antennas through the front (top) surface of the display section of a full-size tablet, away from the edges, are generally limited to the user's hands. Exposures to hands for typical consumer transmitters used in tablets are not expected to exceed the extremity SAR limit; therefore, SAR evaluation for the front surface of tablet display screens are generally not necessary, except for tablets that are designed to require continuous operations with the hand(s) next to the antenna(s).

- > To position the device parallel to the phantom surface with either keypad up or down.
- To adjust the device parallel to the flat phantom.
- > To adjust the distance between the device surface and the flat phantom to 0 mm.
- ➤ When each surface is measurement, the SAR Test Exclusion Threshold in KDB 447498 should be applied.

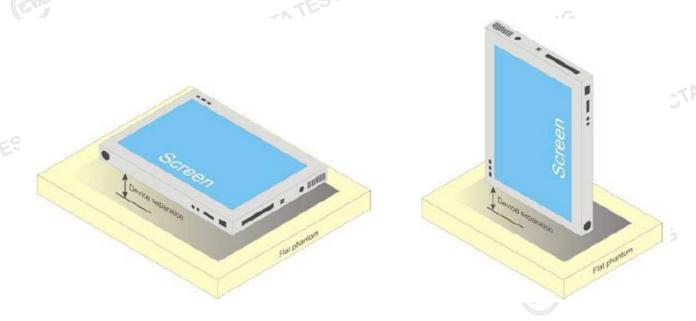


Fig.81 Illustration for Body Position

Page 23 of 103 Report No.: CTA24062700509

Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the middle channel.
- (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as setup photos demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- Measure SAR transmitting at the middle channel for all applicable exposure positions.
- (g) Identify the exposure position and device configuration resulting the highest SAR
- (h) Measure SAR at the lowest and highest channels attheworst exposure position and device configuration if applicable.

According to the test standard, the recommended procedure for assessing the peak spatial-average CTATES SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a province.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- Calculation of the averaged SAR within masses of 1g and 10g

9.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface CTATES: determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Report No.: CTA24062700509

9.3 Area Scan Procedures

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

	≤3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 mm ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	.16
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	ESTING
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension measurement plane orientat above, the measurement res corresponding x or y dimen at least one measurement po	ion, is smaller than the olution must be \leq the sion of the test device with	

9.4 Zoom Scan Procedures

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			≤3 GHz	> 3 GHz
Maximum zoom scan	spatial res	olution: Δx_{Zoom} , Δy_{Zoom}	\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm*	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	$3 - 4 \text{ GHz}$: $\leq 4 \text{ mm}$ $4 - 5 \text{ GHz}$: $\leq 3 \text{ mm}$ $5 - 6 \text{ GHz}$: $\leq 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded grid	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz:} \le 3 \text{ mm}$ $4 - 5 \text{ GHz:} \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$
	gna	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoo}$	om(n-1) mm
Minimum zoom scan volume	x, y, z		≥ 30 mm	$3 - 4 \text{ GHz}$: $\geq 28 \text{ mm}$ $4 - 5 \text{ GHz}$: $\geq 25 \text{ mm}$ $5 - 6 \text{ GHz}$: $\geq 22 \text{ mm}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No.: CTA24062700509 Page 25 of 103

9.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregateSAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

10 TEST CONDITIONS AND RESULTS

10.1 Conducted Power Results

<LTE Conducted Power>

LTE Cond	ducted Power		ts CTATE			TESTING	
			L	TE Band 2			
DW				Cha	nnel/Frequency(MHz)	Torres our Carte
BW (MHz)	Modulation	RB Size	RB Offset	18700	18900	19100	Tune-up limit (dBm)
(1011 12)				1860	1880	1900	(dbiii)
20	QPSK	1	0	23.27	23.18	23.02	
20	QPSK	1	49	23.72	23.55	23.29	23.0
20	QPSK	1	99	23.65	23.76	23.38	=
20	QPSK	50	0	22.10	22.29	22.17	
20	QPSK	50	24	22.41	22.31	22.11	TESTIN
20	QPSK	50	50	22.37	22.11	22.28	22.0
20	QPSK	100	0	22.39	22.22	22.34	_
20	16QAM	1	0	22.08	22.22	22.40	
20	16QAM	1	49	22.26	22.31	22.39	22.0
20	16QAM	1	99	22.11	22.12	22.01	
20	16QAM	50	0	21.21	21.17	21.20	
20	16QAM	50	24	21.33	21.29	21.37	
20	16QAM	50	50	21.46	21.29	21.42	22.0
20	16QAM	100	0	21.24	21.37	21.24	
				Cha	nnel/Frequency(MHz)	_
BW	Modulation	RB Size	RB Offset	18675	18900	19125	Tune-up limit
(MHz)				1857.5	1880	1902.5	(dBm)
15	QPSK	1	0	23.63	23.53	23.45	
15	QPSK	1	37	23.13	23.72	23.94	23.0
15	QPSK	1	74	23.18	23.13	23.64	_
15	QPSK	36	0	22.37	22.22	22.43	
15	QPSK	36	20	22.02	22.32	22.08	STIN
15	QPSK	36	39	22.34	22.36	22.32	22.0
15	QPSK	75	0	22.07	22.10	22.27	
15	16QAM	1	0	22.29	22.45	22.05	
15	16QAM	1	37	22.33	22.05	22.14	22.0
15	16QAM	1	74	22.07	22.02	22.44	=
15	16QAM	36	0	21.31	21.34	21.38	
15	16QAM	36	20	21.53	21.20	21.15	1
15	16QAM	36	39	21.49	21.50	21.37	22.0
15	16QAM	75	0	21.53	21.48	21.45	1
							(en

CIA	-611						
	TESTING			TING			
				Cha	nnel/Frequency(l	MHz)	
BW (MHz)	Modulation	RB Size	RB Offset	18650	18900	19150	Tune-up lin (dBm)
,				1855	1880	1905	, ,
10	QPSK	1	0	23.90	23.03	23.70	
10	QPSK	1	25	23.39	23.94	23.11	24.0
10	QPSK	1	49	23.38	23.98	23.04	1000
10	QPSK	25	0	22.39	22.27	22.08	
10	QPSK	25	12	22.25	22.10	22.16	00.0
10	QPSK	25	25	22.44	22.11	22.35	23.0
10	QPSK	50	0	22.45	22.29	22.34	
10	16QAM	1	0	22.38	22.10	22.16	
10	16QAM	1	25	22.05	22.04	22.20	23.0
10	16QAM	1	49	22.15	22.29	22.02	\r
10	16QAM	25	0	21.32	21.38	21.15	
10	16QAM	25	12	21.48	21.55	21.44	1
10	16QAM	25	25	21.31	21.43	21.51	22.0
10	16QAM	50	0	21.20	21.39	21.50	
DW/				Cha	nnel/Frequency(l	MHz)	Tune-up lir
	BW Modulation	n RB Size	RB Offset	18625	18900	19175	(dBm)
(1711 12)				1852.5	1880	1907.5	(dbiii)
5	QPSK	1	0	23.87	23.35	23.93	
5	QPSK	1	12	23.26	23.49	23.23	24.0
5	QPSK	1	24	23.06	23.63	23.52	
5	QPSK	12	0	22.19	22.32	22.31	2311
5	QPSK	12	7	22.44	22.35	22.20	1
5	QPSK	12	13	22.09	22.25	22.03	23.0
5	QPSK	25	0	22.04	22.40	22.25	1
5	16QAM	1	0	22.42	22.04	22.33	
5	16QAM	1	12	22.28	22.17	22.03	23.0
5	16QAM	1	24	22.14	22.29	22.31	(b)
	16QAM	12	0	21.39	21.27	21.31	
5	16QAM	12	7	21.33	21.15	21.50	<u> </u>
5 5			13	21.42	21.47	21.28	22.0
	16QAM	12					

BW				Cha	annel/Frequency	(MHz)	Tune-up limit
(MHz)	Modulation	RB Size	RB Offset	18615	18900	19185	(dBm)
(1411 12)				1851.5	1880	1908.5	(dDiii)
3	QPSK	1	0	23.20	23.42	23.42	
3	QPSK	1	8	23.91	23.70	23.74	24.0
3	QPSK	1	14	23.29	23.93	23.78	
3	QPSK	8	0	22.39	22.34	22.27	
3	QPSK	8	4	22.33	22.11	22.33	23.0
3	QPSK	8	7	22.06	22.21	22.20	23.0
3 3	QPSK	15	0	22.45	22.03	22.13	
3	16QAM	1	0	22.33	22.05	22.38	
3	16QAM	1	8	22.12	22.12	22.30	23.0
3	16QAM	1	14	22.27	22.19	22.10	
3	16QAM	8	0	21.54	21.51	21.52	CTIN
3	16QAM	8	4	21.21	21.43	21.17	TATES
3	16QAM	8	7	21.51	21.37	21.52	22.0
3	16QAM	15	0	21.22	21.47	21.34	
BW				Cha	annel/Frequency	(MHz)	Tune-up limit
(MHz)	Modulation	RB Size	RB Offset	18607	18900	19193	(dBm)
				1850.7	1880	1909.3	
1.4	QPSK	1	0	23.95	23.87	23.56	
1.4	QPSK	1	3	23.59	23.37	23.35	24.0
1.4	QPSK	1	5	23.61	23.58	23.46	
1.4	QPSK	3	0	22.34	22.04	22.45	Ja 13
1.4	QPSK	3	1	22.20	22.36	22.14	23.0
1.4	QPSK	3	3	22.29	22.18	22.16	23.0
1.4	QPSK	6	0	22.10	22.02	22.21	
1.4	16QAM	1	0	22.08	22.23	22.32	
1.4	16QAM	1	3	22.25	22.23	22.17	23.0
1.4	16QAM	1	5	22.10	22.39	22.43	
1.4	16QAM	3	0	21.37	21.32	21.38	CTIN
1.4	16QAM	3	1	21.17	21.17	21.44	22.0
1.4	16QAM	3	3	21.50	21.54	21.29	22.0
	16QAM	6	0	21.32	21.34	21.43	

[<u>(G</u>		LT	E Band 4			
						nnel/Frequency(M	Hz)	
	BW	Modulation	RB Size	RB Offset		1 1		Tune-up limi
	(MHz)			-	20050 1720	20175 1747.5	20300 1775	(dBm)
	20	QPSK	1	0	23.42	23.70	23.58	
	20	QPSK	1	49	23.42	23.68	23.08	24.0
	20	QPSK	1	99	23.14	23.02	23.55	24.0
	20	QPSK	50	0	23.14	22.37	22.11	
TATES	20	QPSK	50	24	22.23	22.15	22.11	
TAY	20	QPSK	50	50	22.23	22.13	22.14	23.0
		QPSK	100	0	22.30	22.13	22.28	
	20	16QAM	1	0	22.10	22.13	22.04	
	20	16QAM	1	49	22.10	22.04	22.34	23.0
	20	16QAM	1	99	22.03	22.05	22.34	23.0
ŀ					Variation of the second		21.44	KA
,	20	16QAM	50	0	21.21	21.42		_
	20	16QAM	50	24	21.15	21.41	21.38	22.0
	20	16QAM	50	50	21.35	21.41	21.17	
	20	16QAM	100	0	21.44	21.20	21.49	
	BW				Cha	nnel/Frequency(M	Hz)	Tune-up limi
	(MHz)	Modulation	RB Size	RB Offset	20025	20175	20325	(dBm)
	(IVII 12)				1717.5	1747.5	1777.5	_ (dBiii)
	15	QPSK	1	0	23.39	23.75	23.83	
	15	QPSK	1	37	23.92	23.05	23.93	24.0
	15	QPSK	1	74	23.36	23.26	23.32	Jen 14
	15	QPSK	36	0	22.42	22.34	22.39	Constitution of the second
TES	15	QPSK	36	20	22.39	22.29	22.26	
TATES	15	QPSK	36	39	22.13	22.32	22.01	23.0
	15	QPSK	75	0	22.14	22.14	22.29	=
	15	16QAM	1	0	22.24	22.14	22.15	
	15	16QAM	1	37	22.13	22.15	22.34	23.0
	15	16QAM	1	74	22.21	22.24	22.25	TESI
	15	16QAM	36	0	21.19	21.39	21.55	(P)
	15	16QAM	36	20	21.36	21.49	21.42	
	15	16QAM	36	39	21.52	21.40	21.15	22.0
						21.40	21.26	
(15	TES	E	CTATES	TING	CTA	TESTING	

BW		0509	т	1		Pay	ge 30 of 103
				Cha	nnel/Frequency	(MHz)	Tune-up limit
(MHz)	Modulation	RB Size	RB Offset	20000	20175	20350	(dBm)
(1411.12)				1715	1747.5	1780	_ (dBiii)
10	QPSK	1	0	23.46	23.26	23.18	
10	QPSK	1	25	23.83	23.01	23.97	24.0
10	QPSK	1	49	23.49	23.20	23.55	7
10	QPSK	25	0	22.36	22.28	22.05	
10	QPSK	25	12	22.03	22.22	22.04	
10	QPSK	25	25	22.35	22.15	22.40	23.0
10	QPSK	50	0	22.05	22.20	22.44	7
10	16QAM	1	0	22.10	22.04	22.06	
10	16QAM	1	25	22.29	22.41	22.29	23.0
10	16QAM	1	49	22.41	22.21	22.13	_
10	16QAM	25	0	21.39	21.46	21.17	TIN
10	16QAM	25	12	21.24	21.22	21.43	TESI
10	16QAM	25	25	21.36	21.16	21.39	22.0
10	16QAM	50	0	21.55	21.46	21.17	_
BW					nnel/Frequency		Tura un limit
(MHz)	Modulation	RB Size	RB Offset	19975	20175	20375	Tune-up limit (dBm)
(IVIIIZ)				1712.5	1747.5	1782.5	_ (ubiii)
5	QPSK	1	0	23.00	23.16	23.06	
5	QPSK	1	12	23.97	23.01	23.58	24.0
5	QPSK	1	24	23.44	23.96	23.82	
5	QPSK	12	0	22.22	22.05	22.44	
5	QPSK	12	7	22.25	22.31	22.17	No. of the last
	QPSK	12	13	22.23	22.30	22.28	23.0
5						+	
5		25	0	22.05	22.11	22.05	
5 5 5	QPSK	25 1	0	22.05	22.11 22.15	22.05	
5 5	QPSK 16QAM	1	0	22.02	22.15	22.34	23.0
5 5 5	QPSK 16QAM 16QAM	1	0 12	22.02 22.37	22.15 22.39	22.34 22.44	23.0
5 5	QPSK 16QAM 16QAM 16QAM	1 1 1	0	22.02 22.37 22.40	22.15	22.34 22.44 22.32	23.0
5 5 5 5 5	QPSK 16QAM 16QAM 16QAM 16QAM	1 1 1 12	0 12 24 0	22.02 22.37 22.40 21.49	22.15 22.39 22.32 21.47	22.34 22.44 22.32 21.28	TESTING
5 5 5 5	QPSK 16QAM 16QAM 16QAM	1 1 1	0 12 24	22.02 22.37 22.40	22.15 22.39 22.32	22.34 22.44 22.32	23.0

BW				Cha	annel/Frequency((MHz)	Tune-up limit
(MHz)	Modulation	RB Size	RB Offset	19665	20175	20385	(dBm)
(1411 12)				1711.5	1747.5	1783.5	(dDiii)
3	QPSK	1	0	23.09	23.37	23.95	
3	QPSK	1	8	23.35	23.60	23.52	24.0
3	QPSK	1	14	23.30	23.71	23.97	
3	QPSK	8	0	22.15	22.38	22.25	
3	QPSK	8	4	22.44	22.11	22.01	23.0
3	QPSK	8	7	22.25	22.33	22.27	23.0
3 3	QPSK	15	0	22.09	22.41	22.33	
3	16QAM	1	0	22.23	22.01	22.36	
3	16QAM	1	8	22.29	22.34	22.08	23.0
3	16QAM	1	14	22.26	22.23	22.19	
3	16QAM	8	0	21.17	21.50	21.19	CTIN
3	16QAM	8	4	21.31	21.47	21.31	TATES
3	16QAM	8	7	21.28	21.42	21.21	22.0
3	16QAM	15	0	21.38	21.40	21.22	
BW				Cha	annel/Frequency((MHz)	Tune-up limit
(MHz)	Modulation	RB Size	RB Offset	19957	20175	20393	(dBm)
				1710.7	1747.5	1784.3	
1.4	QPSK	1	0	23.84	23.59	23.90	
1.4	QPSK	1	3	23.27	23.94	23.84	24.0
1.4	QPSK	1	5	23.30	23.07	23.30	
1.4	QPSK	3	0	22.19	22.23	22.38	
1.4	QPSK	3	1	22.08	22.06	22.41	23.0
1.4	QPSK	3	3	22.20	22.15	22.22	23.0
1.4	QPSK	6	0	22.41	22.05	22.01	
1.4	16QAM	1	0	22.30	22.06	22.10	
1.4	16QAM	1	3	22.21	22.19	22.06	23.0
1.4	16QAM	1	5	22.06	22.18	22.07	
1.4	16QAM	3	0	21.45	21.33	21.47	TIN
1.4	16QAM	3	1	21.45	21.16	21.47	22.0
1.4	16QAM	3	3	21.20	21.19	21.21	22.0
1.4	16QAM	6	0	21.45	21.47	21.34	

			LT	E Band 12			
DIM				Cha	nnel/Frequency(N	лнz)	Tupo un limit
	Modulation	RB Size	RB Offset	23060	23095	23130	Tune-up limit (dBm)
(1711 12)				704	707.5	711	(ubiii)
10	QPSK	1	0	23.67	23.21	23.52	
10	QPSK	1	25	23.00	23.50	23.33	25.0
10	QPSK	1	49	23.55	23.77	23.34	12.10
10	QPSK	25	0	22.27	22.08	22.05	To use units
10	QPSK	25	12	22.18	22.17	22.06	24.0
10	QPSK	25	25	22.34	22.11	22.34	
10	QPSK	50	0	22.11	22.36	22.13	24.0
10	16QAM	1	0	22.08	22.37	22.22	
10	16QAM	1	25	22.32	22.01	22.35	24.0
10	16QAM	1	49	22.07	22.38	22.11	TATES
10	16QAM	25	0	21.19	21.33	21.55	157
10	16QAM	25	12	21.46	21.37	21.19	23.0
10	16QAM	25	25	21.26	21.33	21.19	
10	16QAM	50	0	21.33	21.53	21.53	23.0
BW		Channel/Frequency(MHz)					Tune-up limit
	Modulation	RB Size	RB Offset	23035	23095	23155	(dBm)
(701.5	707.5	713.5	()
5	QPSK	1	0	23.43	23.78	23.19	
5	QPSK	1	12	23.06	23.13	23.06	25.0
5	QPSK	1	24	23.45	23.28	23.47	and to
5	QPSK	12	0	22.28	22.32	22.34	Manus est followers
5	QPSK	12	7	22.22	22.22	22.29	24.0
			•	22.32	22.22	22.29	24.0
5	QPSK	12	13	22.32	22.22	22.32	24.0
5 5 5	QPSK QPSK				+		24.0
		12	13	22.08	22.32	22.32	
5	QPSK	12 25	13	22.08 22.15	22.32 22.21	22.32 22.11	
5 5	QPSK 16QAM	12 25 1	13 0 0	22.08 22.15 22.18	22.32 22.21 22.27	22.32 22.11 22.12	24.0
5 5 5	QPSK 16QAM 16QAM	12 25 1 1	13 0 0 12	22.08 22.15 22.18 22.14	22.32 22.21 22.27 22.02	22.32 22.11 22.12 22.05	24.0
5 5 5 5	QPSK 16QAM 16QAM 16QAM	12 25 1 1 1	13 0 0 12 24	22.08 22.15 22.18 22.14 22.18	22.32 22.21 22.27 22.02 22.23	22.32 22.11 22.12 22.05 22.35	24.0
5 5 5 5 5	QPSK 16QAM 16QAM 16QAM 16QAM	12 25 1 1 1 1	13 0 0 12 24 0	22.08 22.15 22.18 22.14 22.18 21.52	22.32 22.21 22.27 22.02 22.23 21.51	22.32 22.11 22.12 22.05 22.35 21.37	24.0
	10 10 10 10 10 10 10 10 10 10 10 10 10 1	(MHz) Modulation 10 QPSK 10 QPSK 10 QPSK 10 QPSK 10 QPSK 10 QPSK 10 16QAM 5 QPSK 5 QPSK 5 QPSK 5 QPSK 5 QPSK 5 QPSK	(MHz) Modulation RB Size 10 QPSK 1 10 QPSK 1 10 QPSK 1 10 QPSK 25 10 QPSK 25 10 QPSK 25 10 QPSK 50 10 16QAM 1 10 16QAM 1 10 16QAM 25 10 16QAM 25 10 16QAM 25 10 16QAM 50 BW (MHz) Modulation RB Size 5 QPSK 1 5 QPSK 1 5 QPSK 1 5 QPSK 1 5 QPSK 1	(MHz) Modulation RB Size RB Offset 10 QPSK 1 0 10 QPSK 1 25 10 QPSK 1 49 10 QPSK 25 0 10 QPSK 25 12 10 QPSK 50 0 10 16QAM 1 0 10 16QAM 1 25 10 16QAM 1 49 10 16QAM 25 0 10 16QAM 25 12 10 16QAM 25 25 10 16QAM 25 25 10 16QAM 50 0 BW (MHz) Modulation RB Size RB Offset 5 QPSK 1 0 5 QPSK 1 24 5 QPSK 1 24	BW (MHz) Modulation RB Size RB Offset 23060 10 QPSK 1 0 23.67 10 QPSK 1 25 23.00 10 QPSK 1 49 23.55 10 QPSK 25 0 22.27 10 QPSK 25 12 22.18 10 QPSK 25 25 22.34 10 QPSK 25 25 22.34 10 QPSK 50 0 22.11 10 16QAM 1 0 22.08 10 16QAM 1 25 22.32 10 16QAM 1 49 22.07 10 16QAM 25 0 21.19 10 16QAM 25 12 21.46 10 16QAM 25 25 21.26 10 16QAM 50 0 21.33 EW	Modulation RB Size RB Offset 23060 23095 704 707.5 704 707.5 704 707.5 704 707.5 704 707.5 704 707.5 707.5 707.5 707.5 708 7095 704 707.5 708 7095 704 707.5 707.5 7095 7095 701.5 707.5 7095 701.5 707.5 70.5	BW (MHz) Modulation RB Size RB Offset 23060 23095 23130 704 707.5 711 711 704 707.5 711 711 704 707.5 711 704 707.5 711 704 707.5 711 704 707.5 711 704 707.5 711 704 707.5 711 704 707.5 711 704 707.5 711 704 707.5 711 704 707.5 711 704 707.5 711 704 707.5 707.5 713.5 707.5 713.5 707.5 713.5 707.5 713.5 707.5 713.5 707.5 713.5 707.5 713.5 707.5 713.5 707.5 713.5 707.5 713.5 707.5 713.5 707.5 713.5 707.5 713.5 707.5 707.5 713.5 707.5 707.5 707.5 713.5 707.5

	: CTA2406270			Ob -	e 33 of 103		
BW	Madulation DD Cine		DD 0" .	Cha	Tune-up limit		
(MHz)	Modulation	RB Size	RB Offset	23025	23095	23165	(dBm)
				700.5	707.5	714.5	
3	QPSK	1	0	23.60	23.71	23.25	
3	QPSK	1	8	23.51	23.51	23.86	25.0
3	QPSK	1	14	23.78	23.08	23.84	
3	QPSK	8	0	22.40	22.07	22.19	
3	QPSK	8	4	22.35	22.12	22.35	24.0
3	QPSK	8	7	22.30	22.16	22.25	
3 3	QPSK	15	0	22.23	22.12	22.34	24.0
3	16QAM	1	0	22.05	22.08	22.30	
3	16QAM	1	8	22.33	22.11	22.24	24.0
3	16QAM	1	14	22.16	22.18	22.17	
3	16QAM	8	0	21.48	21.18	21.26	TIN
3	16QAM	8	4	21.22	21.44	21.17	23.0
3	16QAM	8	7	21.34	21.43	21.39	
3	16QAM	15	0	21.45	21.42	21.25	23.0
BW		RB Size	RB Offset	Channel/Frequency(MHz)			Tune-up limit
(MHz)	Modulation			23017	23095	23173	(dBm)
(1711 12)				699.7	707.5	715.3	(dDIII)
1.4	QPSK	1	0	23.41	23.31	23.26	
1.4	QPSK	1	3	23.96	23.68	23.66	25.0
1.4	QPSK	1	5	23.91	23.63	23.25	
1.4	QPSK	3	0	22.11	22.03	22.06	
1.4	QPSK	3	1	22.20	22.11	22.16	24.0
						_	
1.4	QPSK	3	3	22.12	22.31	22.21	
1.4	QPSK QPSK	6	3	22.12 22.17	22.31 22.13	22.21 22.34	24.0
1.4	QPSK	6	0	22.17	22.13	22.34	24.0
1.4	QPSK 16QAM	6	0	22.17 22.36	22.13 22.41	22.34 22.35	
1.4 1.4 1.4	QPSK 16QAM 16QAM	6 1 1	0 0 3	22.17 22.36 22.33	22.13 22.41 22.11	22.34 22.35 22.04	24.0
1.4 1.4 1.4 1.4	QPSK 16QAM 16QAM 16QAM	6 1 1 1	0 0 3 5	22.17 22.36 22.33 22.43	22.13 22.41 22.11 22.36	22.34 22.35 22.04 22.13	
1.4 1.4 1.4 1.4 1.4	QPSK 16QAM 16QAM 16QAM	6 1 1 1 3	0 0 3 5	22.17 22.36 22.33 22.43 21.43	22.13 22.41 22.11 22.36 21.35	22.34 22.35 22.04 22.13 21.53	24.0
1.4 1.4 1.4 1.4	QPSK 16QAM 16QAM 16QAM	6 1 1 1	0 0 3 5	22.17 22.36 22.33 22.43	22.13 22.41 22.11 22.36	22.34 22.35 22.04 22.13	

[.xG		1.7	E Band 17			
	BW	Modulation	RB Size	RB Offset	23780	nnel/Frequency(M 23790	23800	Tune-up limit
	(MHz)				709	710	711	(dBm)
	10	QPSK	1	0	23.16	23.29	23.02	
	10	QPSK	1	25	23.42	23.65	23.49	25.0
	10	QPSK	1	49	23.03	23.14	23.58	20.0
	4.0	QPSK	25	0	22.25	22.45	22.24	72344
TES	10	QPSK	25	12	22.31	22.07	22.27	24.0
TATES	10	QPSK	25	25	22.43	22.34	22.41	
	10	QPSK	50	0	22.34	22.41	22.05	24.0
	10	16QAM	1	0	22.08	22.21	22.15	
	10	16QAM	1	25	22.38	22.35	22.10	24.0
	10	16QAM	1	49	22.10	22.07	22.16	TESI
	10	16QAM	25	0	21.38	21.51	21.16	
5	10	16QAM	25	12	21.45	21.42	21.37	23.0
	10	16QAM	25	25	21.29	21.32	21.47	
	10	16QAM	50	0	21.50	21.31	21.30	23.0
		100,						
	BW	Modulation	on RB Size	DD 0" 1	Channel/Frequency(MHz)			Tune-up limit
	(MHz)			RB Offset	23755	23790	23825	(dBm)
					706.5	710	713.5	
	5	QPSK	1	0	23.43	23.32	23.46	
	5	QPSK	1	12	23.28	23.20	23.05	25.0
	5	QPSK	1	24	23.13	23.61	23.25	
	5	QPSK	12	0	22.14	22.39	22.07	The state of the s
TATES	5	QPSK	12	7	22.30	22.06	22.43	24.0
	5	QPSK	12	13	22.44	22.02	22.07	
	5	QPSK	25	0	22.04	22.08	22.35	24.0
	5	16QAM	1	0	22.08	22.39	22.24	
	5	16QAM	1	12	22.29	22.35	22.04	24.0
	5	16QAM	1	24	22.14	22.24	22.27	-ATES!
	5	16QAM	12	0	21.37	21.35	21.27	1
)	5	16QAM	12	7	21.26	21.28	21.23	23.0
	5	16QAM	12	13	21.21	21.20	21.46	
	5	16QAM	25	0	21.27	21.27	21.17	23.0
	GTA CTA			CTATES	STING	CTA.	TESTING	

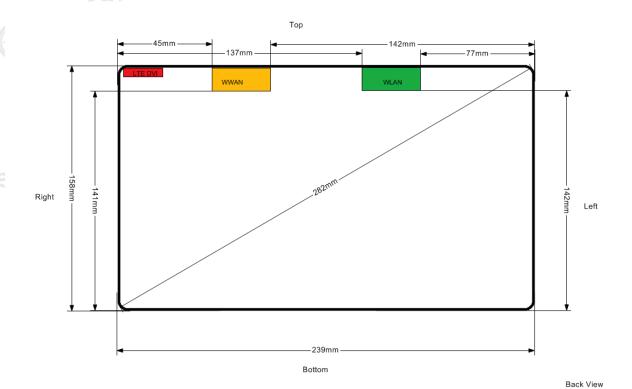
Report No.: CTA24062700509 Page 35 of 103

<WLAN 2.4GHz Conducted Power>

	Mode	Channel	Frequency (MHz)	Conducted Peak Output Power(dBm)	Conducted Average Output Power(dBm)	Tune-up limit (dBm)	
		1	2412	14.59	13.08	13.5	
	802.11b	6	2437	13.12	11.53	12.0	
		11	2462	12.90	11.32	12.0	
		1	2412	14.24	10.81	11.0	TA
	802.11g	6	2437	12.00	8.44	9.0	, , ,
		11	2462	13.89	10.43	11.0	
		1	2412	14.24	10.38	11.0	
TE	802.11n(HT20)	6	2437	12.31	8.66	9.0	
TA	802.11n(HT20)	11	2462	13.98	10.34	11.0	
		3	2422	13.48	9.90	10.0	
	802.11n(HT40)	6	2437	13.56	9.54	10.0	
,	9	2452	11.63	7.77	8.0		

<WLAN 5.2GHz Conducted Power>

002.1111(11170)	O.	2701	10.00		J.J .	10.0
	9	2452	11.6	3	7.77	8.0
/LAN 5.2GHz Con	iducted Po	wer>		CTATE	5	-61
Туре	Char	nnel	Frequency (MHz)		cted Average t Power(dBm)	Tune-up limit (dBm)
802.11a	36		5180 5220		13.70 13.24	14.0 14.0
	48		5240		12.85	14.0
802.11n(HT20)	44	1	5180 5220 5240	3	13.80 13.25 13.00	14.0 14.0 14.0
802.11n(HT40)	38	3	5190 5230		12.41 12.78	13.0
802.11ac(HT20)	36	1	5180 5220		14.19 13.37	15.0 14.0
902 11 co/UT40\	38		5240 5190		12.73 12.53	13.0 13.0
802.11ac(HT40) 802.11ac(HT80)	46		5230 5210		12.28 12.99	13.0 13.0


Туре	Channel	Frequency (MHz)	Conducted Average Output Power(dBm)	Tune-up limi (dBm)
	149	5745	10.34	12.0
802.11a	157	5785	11.68	12.0
	165	5825	11.43	12.0
	149	5745	10.11	12.0
802.11n(HT20)	157	5785	11.47	12.0
· ·	165	5825	11.22	12.0
000 44 = (LIT40)	151	5755	9.52	G 11.0
802.11n(HT40)	159	5795	10.51	11.0
	149	5745	10.21	11.0
802.11ac(HT20)	157	5785	11.81	12.0
	165	5825	11.58	12.0
902 44cc/UT40\	151	5755	9.96	11.0
802.11ac(HT40)	159	5795	10.93	11.0
802.11ac(HT80)	155	5775	10.53	11.0
		CTATESTIN	CTATE CTATE	STING

Report No.: CTA24062700509

<Bluetooth Conducted Power>

Mode	Channel	Frequency (MHz)	Conducted Peak Output Power(dBm)	Tune-up limit (dBm)
GFSK	0	2402	-1.61	-1.0
	39	2441	0.58	1.0
	78	2480	0.79	1.0
	0	2402	-0.14	1.0
π/4DQPSK	39	2441	-0.67	1.0
	78	2480	2.45	3.0
	0	2402	0.40	3.0 1.0 3.0
8DPSK	39	2441	2.29	3.0
	78	2480	2.58	3.0
	0	2402	-1.07	-1.0
BLE 1M	19	2440	-1.99	-1.0
BLE 1M	39	2480	-2.33	-2.0
	0	2402	-1.23	-1.0
BLE 2M	19	2440	-2.17	-1.0
	39	2480	-1.54	-1.0
			-1.54 G	CX CTATESTING

Report No.: CTA24062700509 10.2 Transmit Antennas

Antennas	Back	Top Side	Bottom Side	Left Side	Right Side
WWAN Main	<5mm	0mm	141mm	142mm	45mm
WLAN	<5mm	0mm	142mm	77mm	137mm

STING

Report No.: CTA24062700509 Page 38 of 103

10.3 SAR Test Exclusion and Estimated SAR

SAR Test Exclusion Considerations

Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz.
- Power and distance are rounded to the nearest mW and mm before calculation.
- The result is rounded to one decimal place for comparison.

Per KDB 447498 D01v06, at 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following:

- a) [Threshold at 50mm)+(test separation distance-50mm)*(f(MHz)/150)]mW, at 100MHz to 1500MHz
- b) [Threshold at 50mm)+(test separation distance-50mm)*10]mW at > 1500MHz and ≤ 6GHz

Estimated SAR

Per KDB447498 requires when the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion;

• (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [√ f(GHz)/x] W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

• 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm

The below table, exemption limits for routine evaluation based on frequency and separation distance was according to SAR-based Exemption – §1.1307(b)(3)(i)(B).

			Sta	ndalone SAF	R Test Exclus	sion and Estim	nated SAR		
Wireless	Frequency	Configuration		. Power tune-up	Distance	Calculation	SAR Exclusion	Standalone SAR	Estimated SAR
Interface	(MHz)		dBm	mW	(mm)	Result	Thresholds	Exclusion	(W/Kg)
	114	Back	24	251.189	5	42.2	G 3	No	N/A
LTEL	LTE Lower	Left edge	24	251.189	142	251.189	612	Yes	0.400
LTE Lower 707.5	Right edge	24	251.189	45	4.7	3	No	N/A	
pand		Top edge	24	251.189	5	42.2	3	No	N/A
		Bottom edge	24	251.189	141	251.189	608	Yes	0.400
		Back	24	251.189	5	68.8	3	No	N/A
ITC Himbon		Left edge	24	251.189	142	251.189	1029	Yes	0.400
LTE Higher	1880	Right edge	24	251.189	45	7.600	3	No	N/A
band	TES	Top edge	24	251.189	5	68.8	3	No	N/A
AND CO.		Bottom edge	24	251.189	141	251.189	1019	Yes	0.400
way water		Back	13.5	22.387	5	6.9	3	No	N/A
2.4GHz	2450	Left edge	13.5	22.387	77	22.387	366	Yes	0.400
WLAN	2400	Right edge	13.5	22.387	137	22.387	966	Yes	0.400
		Top edge	13.5	22.387	5	6.9	3	No	N/A

Report No.: CTA24062700509 Page 39 of 103

•								•	
	12	Bottom edge	13.5	22.387	142	22.387	1016	Yes	0.400
	TESTI	Back	15.0	31.623	5	14.7	3	No	N/A
500U		Left edge	15.0	31.623	77	31.623	335	Yes	0.400
6.41	5250	Right edge	15.0	31.623	137	31.623	935	Yes	0.400
WLAN		Top edge	15.0	31.623	5	14.7	3	No	N/A
		Bottom edge	15.0	31.623	142	31.623	985	Yes	0.400
	5785	Back	12.0	15.849	5	7.7	3	No	N/A
5.0.011		Left edge	12.0	15.849	77	15.849	332	Yes	0.400
. C.		Right edge	12.0	15.849	137	15.849	932	Yes	0.400
WLAN		Top edge	12.0	15.849	5	7.7	3	No	N/A
		Bottom edge	12.0	15.849	142	15.849	982	Yes	0.400
		Back	3.0	1.995	5	0.6	3	Yes	0.083
Bluetooth	Site tid	Left edge	3.0	1.995	77	1.995	366	Yes	0.400
	2450	Right edge	3.0	1.995	137	1.995	966	Yes	0.400
		Top edge	3.0	1.995	5	0.6	3	Yes	0.083
		Bottom edge	3.0	1.995	142	1.995	1016	Yes	0.400
	5.2GHz WLAN 5.8 GHz WLAN	5250 WLAN 5250 WLAN 5785	Sack	Back 15.0	5.2GHz WLAN 5250 Back 15.0 31.623 Number 15.0 WLAN 5250 Right edge 15.0 31.623 Number 15.0 Bottom edge 15.0 31.623 Bottom edge 15.0 31.623 Back 12.0 15.849 Left edge 12.0 15.849 Right edge 12.0 15.849 Bottom edge 12.0 15.849 Bottom edge 12.0 15.849 Back 3.0 1.995 Left edge 3.0 1.995 Top edge 3.0 1.995 Top edge 3.0 1.995	5.2GHz WLAN 5250 Back 15.0 31.623 5 WLAN 5250 Right edge 15.0 31.623 137 Top edge 15.0 31.623 5 Bottom edge 15.0 31.623 142 Back 12.0 15.849 5 Left edge 12.0 15.849 77 Right edge 12.0 15.849 137 Top edge 12.0 15.849 5 Bottom edge 12.0 15.849 5 Bottom edge 12.0 15.849 142 Bluetooth 2450 Right edge 3.0 1.995 77 Right edge 3.0 1.995 77 Top edge 3.0 1.995 5	5.2GHz WLAN Back 15.0 31.623 5 14.7 5.2GHz WLAN 15.0 31.623 77 31.623 Right edge 15.0 31.623 137 31.623 Top edge 15.0 31.623 5 14.7 Bottom edge 15.0 31.623 142 31.623 Back 12.0 15.849 5 7.7 Left edge 12.0 15.849 77 15.849 Top edge 12.0 15.849 137 15.849 Top edge 12.0 15.849 5 7.7 Bottom edge 12.0 15.849 142 15.849 Back 3.0 1.995 5 0.6 Left edge 3.0 1.995 77 1.995 Top edge 3.0 1.995 137 1.995 Top edge 3.0 1.995 5 0.6	Back 15.0 31.623 5 14.7 3 Left edge 15.0 31.623 77 31.623 335 WLAN Fight edge 15.0 31.623 137 31.623 935 Top edge 15.0 31.623 5 14.7 3 Bottom edge 15.0 31.623 5 14.7 3 Bottom edge 15.0 31.623 5 14.7 3 Back 12.0 15.849 5 7.7 3 Left edge 12.0 15.849 5 7.7 3 Right edge 12.0 15.849 137 15.849 932 Top edge 12.0 15.849 5 7.7 3 Bottom edge 12.0 15.849 5 7.7 3 Bottom edge 12.0 15.849 5 7.7 3 Bottom edge 12.0 15.849 142 15.849 982 Back 3.0 1.995 5 0.6 3 Left edge 3.0 1.995 77 1.995 366 Bright edge 3.0 1.995 137 1.995 966	Back 15.0 31.623 5 14.7 3 No Left edge 15.0 31.623 77 31.623 335 Yes Right edge 15.0 31.623 137 31.623 935 Yes Top edge 15.0 31.623 5 14.7 3 No Bottom edge 15.0 31.623 5 14.7 3 No Bottom edge 15.0 31.623 142 31.623 985 Yes Back 12.0 15.849 5 7.7 3 No Left edge 12.0 15.849 77 15.849 332 Yes Right edge 12.0 15.849 137 15.849 932 Yes Top edge 12.0 15.849 5 7.7 3 No Bottom edge 12.0 15.849 137 15.849 932 Yes Back 3.0 1.995 5 0.6 3 Yes Left edge 3.0 1.995 77 1.995 366 Yes Right edge 3.0 1.995 137 1.995 966 Yes Top edge 3.0 1.995 5 0.6 3 Yes

Remark:

- 1. Maximum average power including tune-up tolerance;
- When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion
- 3. when the distance is < 50 mm exclusion threshold is "Ratio", when the distance is > 50 mm exclusion threshold is "mW".

Report No.: CTA24062700509 Page 40 of 103

10.4 SAR Test Results

General Note:

1 Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

- a) Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
- b) For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
- For WLAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tuneup scaling factor
- Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 3 Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.

Report No.: CTA24062700509

<Body SAR>

Note: We tested all Models and recorded the worst case as follows:

SAR Values [LTE Band 2]

	Plot No.	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR1g (W/kg)	Reported SAR1g (W/kg)	
			N	leasured	/ Reporte	d SAR numb	ers-Body di	stance 0mr	n			
	#1	20MHz/1RB#99	Back	18900	1880	23.76	24.00	1.057	0.05	0.587	0.620	TATE
		20MHz/1RB#99	Right Edge	18900	1880	23.76	24.00	1.057	0.01	0.245	0.259	CAL
	TIN	20MHz/1RB#99	Top Edge	18900	1880	23.76	24.00	1.057	-0.02	0.546	0.577	
TATES	,	20MHz/50RB#24	Back	18700	1860	22.41	23.00	1.146	0.08	0.425	0.487	
		20MHz/50RB#24	Right Edge	18700	1860	22.41	23.00	1.146	0.04	0.083	0.095	
		20MHz/50RB#24	Top Edge	18700	1860	22.41	23.00	1.146	-0.02	0.382	0.438	

SAR Values [LTE Band 4]

				SAR V	alues [LT	E Band 4]				
Plot No.	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR1g (W/kg)	Reported SAR1g (W/kg)
		N	leasured	/ Reporte	d SAR numb	ers-Body di	stance 0mr	n		
#2	20MHz/1RB#0	Back	20175	1747.5	23.70	24.00	1.072	-0.05	0.605	0.648
	20MHz/1RB#0	Right Edge	20175	1747.5	23.70	24.00	1.072	0.11	0.262	0.281
6.,118	20MHz/1RB#0	Top Edge	20175	1747.5	23.70	24.00	1.072	-0.01	0.561	0.601
- N. I.	20MHz/50RB#0	Back	20050	1720	22.44	23.00	1.138	-0.11	0.528	0.601
	20MHz/50RB#0	Right Edge	20050	1720	22.44	23.00	1.138	0.08	0.179	0.204
	20MHz/50RB#0	Top Edge	20050	1720	22.44	23.00	1.138	0.09	0.484	0.551

SAR Values [LTE Band 12]

					-			•			
TATES	Plot No.	Mode	Test Position	Ch.	Freq.	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
		N	Measured / F	Reported	SAR nu	mbers-Boo	ly& hotspo	t open dis	tance 10	mm	
	#3	10MHz/1RB#49	Back	23095	707.5	23.77	24.0	1.054	0.03	0.478	0.504
		10MHz/1RB#49	Right Edge	23095	707.5	23.77	24.0	1.054	0.07	0.129	0.136
		10MHz/1RB#49	Top Edge	23095	707.5	23.77	24.0	1.054	0.13	0.435	0.459
		10MHz/25RB#25	Back	23060	704	22.34	23.0	1.164	-0.04	0.422	0.491
		10MHz/25RB#25	Right Edge	23060	704	22.34	23.0	1.164	-0.04	0.080	0.093
		10MHz/25RB#25	Top Edge	23060	704	22.34	23.0	1.164	0.12	0.377	0.439
		CTATESTI	10		CTAT	ESTING	5		16	TING	

SAR Values [WIFI 2.4G]

Plot No.	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm) pers-Body di	Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
#4	802.11b	Back	01	2412	13.08	13.5	1.102	-0.10	0.255	0.281
	802.11b Top l	Top Edge	01	2412	13.08	13.5	1.102	-0.04	0.232	0.256

Remark: The highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power was <1.2W/kg, So ODFM SAR test is not required.

SAR Values [WIFI 5.2G]

Plot No.	Mode	Test Position	Ch. leasured	Freq. (MHz) / Reporte	Average Power (dBm) d SAR numb	Tune-Up Limit (dBm) ers-Body di	Scaling Factor stance 0mn	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
#5	802.11ac(HT20)	Back	36	5180	14.19	15.0	1.205	0.07	0.254	0.306
	802.11ac(HT20)	Top Edge	36	5180	14.19	15.0	1.205	-0.03	0.240	0.289

SAR Values [WIFI 5.8G]

	-	INIC		_							1
Plot No.	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)	
		N	leasured	/ Reporte	d SAR numb	ers-Body di	stance 0mr	n			
#6	802.11ac(HT20)	Back	157	5785	11.81	12.0	1.045	-0.10	0.217	0.227	
	802.11ac(HT20)	Top Edge	157	5785	11.81	12.0	1.045	-0.04	0.205	0.214	75
TIN	G						The second			C VIA	CTAI

ESTING

Report No.: CTA24062700509 Page 43 of 103

10.5 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. The following procedures are applied to determine if repeated measurements are required.

- Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps

 2) through 4) do not apply.
- When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥1.45 W/kg (~ 10% from the 1-g SAR limit).
- Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated CTA CTA measurements is > 1.20.

SAR Measurement Variability

Band	Mode	Test Position	Ch.	Original SAR (W/kg)	First Repeated SAR (W/kg)	The Ratio	Second Repeated SAR (W/kg)
	1	1	1	ig i	1	1	1
		GM CTA			CTAT		

Report No.: CTA24062700509 Page 44 of 103

10.6 Simultaneous Transmission Analysis

Per FCC KD B447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the transmitting antenna in a specific a physical test configuration is ≤1.6 W/Kg. When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

Ratio=
$$\frac{(SAR_1+SAR_2)^{1.5}}{(peak location separation,mm)} < 0.04$$

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

Application Simultaneous Transmission information:

No.	Simultaneous Transmission Configurations	Body-worn
1	WWAN (2/3/4G) + WLAN 2.4GHz	Yes
2	WWAN (2/3/4G) + WLAN 5GHz	Yes
3	WWAN (2/3/4G) + Bluetooth	Yes

Note: WLAN and BT share the same antenna and cannot transmitting at the same time.

Evaluation of Simultaneous SAR

Simultaneous transmission SAR for WIFI/BT and GSM/WCDMA/ LTE

		1	2	3	4					
		MAX. WWAN	MAX.	MAX.		1+2	1+3	1+4		
	Exposure	Reported SAR	WLAN2.4G	WLAN5G	Bluetooth	Summed	Summed	Summed		
	Position	Neported SAN	Reported SAR	Reported SAR		1g SAR	1g SAR	1g SAR	SFLSK	TATES
		1g SAR	1g SAR	1g SAR	1g SAR	(W/kg)	(W/kg)	(W/kg)		CIR
		(W/kg)	(W/kg)	(W/kg)	(W/kg)					
CTATES	Back	0.648	0.281	0.306	0.083	0.929	0.954	0.731	N/A	
CIL	Left Edge	0.400	0.400	0.400	0.400	0.800	0.800	0.800	N/A	
	Right Edge	0.281	0.400	0.400	0.400	0.681	0.681	0.681	N/A	
	Top Edge	0.601	0.256	0.289	0.083	0.857	0.890	0.684	N/A	5
	Bottom Edge	0.400	0.400	0.400	0.400	0.800	0.800	0.800	N/A	
4										

 $MAX.\ \Sigma SAR_{1g} = \textbf{0.954}\ W/kg < 1.6\ W/kg,\ so\ the\ Simultaneous\ transmission\ SAR\ with\ volume\ scan\ are\ not\ required.$

Report No.: CTA24062700509 Page 45 of 103

11 Measurement Uncertainty

0. 4 7 4.7 9.4 1.0 4.7 1.0 0.3 0.8	N Instr N R R R R R N	$ \begin{array}{c c} 1 \\ $	1 0.7 0.7 1 1	1 0.7 0.7 1 1	3.5 1.9 3.9 0.6 2.7	3.5 1.9 3.9 0.6 2.7	9 ∞ ∞ ∞
4.7 9.4 1.0 4.7 1.0 0.3	R R R R	$ \begin{array}{c c} 2 \\ \hline \sqrt{3} \\ \hline $	1 0.7 0.7 1	0.7 0.7 1	1.9 3.9 0.6 2.7	1.9 3.9 0.6	ω ω ω
4.7 9.4 1.0 4.7 1.0 0.3	R R R R	$ \begin{array}{c} $	0.7 0.7 1	0.7 0.7 1	1.9 3.9 0.6 2.7	1.9 3.9 0.6	ω ω ω
9.4 1.0 4.7 1.0 0.3	R R R		0.7	0.7	3.9 0.6 2.7	3.9	∞ ∞
1.0 4.7 1.0 0.3	R R R	$\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$	1 1	1 571111	0.6	0.6	∞
4.7 1.0 0.3	R R	$\sqrt{3}$ $\sqrt{3}$	1E	571NV	2.7		
1.0	R	$\sqrt{3}$	7 / .			2.7	8
0.3	10		1	1	0.6		
	N				0.6	0.6	∞
0.8		'	1	1	0.3	0.3	∞
	R	_ √3	1	1	0.5	0.5	∞
2.6	R	_ √3	1	1	1.5	1.5	∞
3.0	R	√3	1	1	1.7	1.7	∞
3.0	TR	√3	1	1	1.7	1.7	∞
h. 0.4	R		1	1	0.2	0.2	∞
h 2.9	R	√3	1	1	1.7	1.7	∞
1.0	R	_ √3	1	1	0.6	0.6	∞
ESTING				STING	3		ESTIN
1	3.0 n. 0.4 n 2.9	3.0 R 1. 0.4 R 1. 2.9 R 1.0 R	3.0 R $\frac{1}{\sqrt{3}}$ n. 0.4 R $\frac{1}{\sqrt{3}}$ n. 2.9 R $\frac{1}{\sqrt{3}}$ 1.0 R $\frac{1}{\sqrt{3}}$	3.0 R $\sqrt{3}$ 1 1.0 0.4 R $\sqrt{3}$ 1 2.9 R $\sqrt{3}$ 1 1.0 R $\sqrt{3}$ 1	3.0 R $\sqrt{3}$ 1 1 1 0.4 R $\sqrt{3}$ 1	3.0 R $\sqrt{3}$ 1 1 1.7 n. 0.4 R $\sqrt{3}$ 1 1 0.2 n 2.9 R $\sqrt{3}$ 1 1 1.7 1.0 R $\sqrt{3}$ 1 1 0.6	3.0 R $\sqrt{3}$ 1 1 1.7 1.7 1.7 1.7 0.4 R $\sqrt{3}$ 1 1 1 0.2 0.2 1 1 2.9 R $\sqrt{3}$ 1 1 1 1.7 1.7 1.7 1.0 R $\sqrt{3}$ 1 1 0.6 0.6

Report No.: CTA24062700509 Page 46 of 103

	•								_		
		-ING		Test samp	le rel	ated					
	16	Device positioning	3.8	N	1	1	1	3.8	3.8	99	
Jian Jian	17	Device holder	5.1	N	NT	1	1	5.1	5.1	5	
	18	Drift of output power	5.0	R	√3	1	1	2.9	2.9	∞	
				Phantom a	ınd s	et-up		TATE	2,1		
	19	Phantom uncertainty	4.0	R		1	1	2.3	2.3	∞	CTATES
	20	Liquid conductivity (target)	5.0	R	- √3	0.64	0.43	1.8	1.2	∞	CTA
TEST	21	Liquid conductivity (meas)	2.5	N	1	0.64	0.43	1.6	1.2	8	
ATEST	22	Liquid Permittivity (target)	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.5	∞	
	23	Liquid Permittivity (meas)	2.5	N	1	0.6	0.49	1.5	1.2	∞	
	C	Combined standard		RSS	H.	$=\sqrt{\sum_{i=1}^{n}C_{i}}$	$^{2}U^{2}$	11.4%	11.3%	236	G
	Expanded uncertainty(P=95%)		$U = k U$ c $\sqrt{\frac{2}{5}} K = 2$			22.8%	22.6%	TESTI			
									CVA CV		-

Report No.: CTA24062700509 Page 47 of 103

Appendix A. EUT Photos and Test Setup Photos

CTATESTING

CTATESTING

CTATESTING

Report No.: CTA24062700509 Page 48 of 103

Date: 07/22/2024

Appendix B. Plots of SAR System Check

750MHz System Check

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1194

Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 750 MHz; $\sigma = 0.870 \text{ S/m}$; $\varepsilon_r = 40.978$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 – SN7624; ConvF(10.58, 10.58, 10.58); Calibrated: Sep. 06, 2023

Sensor-Surface: 2mm (Mechanical Surface Detection)

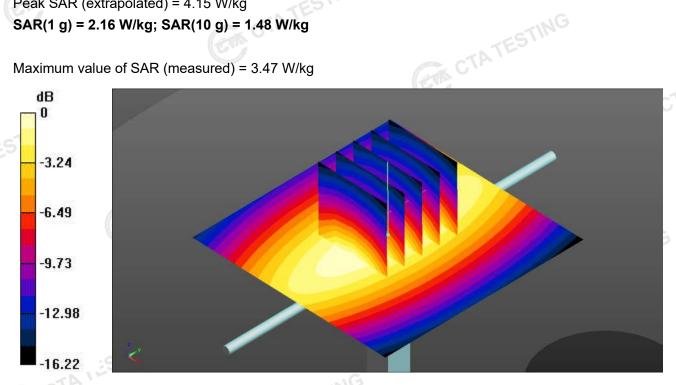
• Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: SAM 2; Type: QD000P40CC; Serial: TP:1474

• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.63 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 60.25 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 4.15 W/kg

SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.48 W/kg

Maximum value of SAR (measured) = 3.47 W/kg

0 dB = 3.47 W/kg

CTA TESTING System Performance Check 750MHz 250mW

Report No.: CTA24062700509 Page 49 of 103

Date: 07/23/2024

1750 MHz System Check

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: 2d158

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1750 MHz; $\sigma = 1.336 \text{ S/m}$; $\epsilon_r = 39.098$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7624; ConvF(8.66, 8.66, 8.66); Calibrated: Sep. 06, 2023

• Sensor-Surface: 2mm (Mechanical Surface Detection)

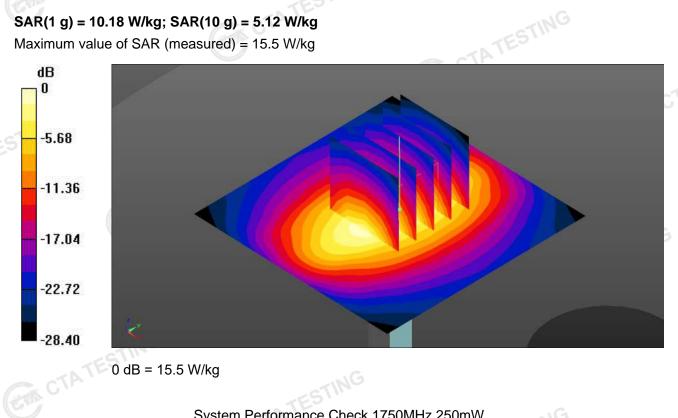
Electronics: DAE3 Sn428; Calibrated: 08/30/2023

• Phantom: SAM 2; Type: QD000P40CC; Serial: TP:1474

• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 16.41 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 85.59 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 21.9 W/kg

SAR(1 g) = 10.18 W/kg; SAR(10 g) = 5.12 W/kg

Maximum value of SAR (measured) = 15.5 W/kg

CTATESTING System Performance Check 1750MHz 250mW

Report No.: CTA24062700509 Page 50 of 103

1900MHz System Check Date: 07/24/2024

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d002

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.331 \text{ S/m}$; $\epsilon r = 41.304$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7624; ConvF(8.35, 8.35, 8.35); Calibrated: Sep. 06, 2023

• Sensor-Surface: 2mm (Mechanical Surface Detection)

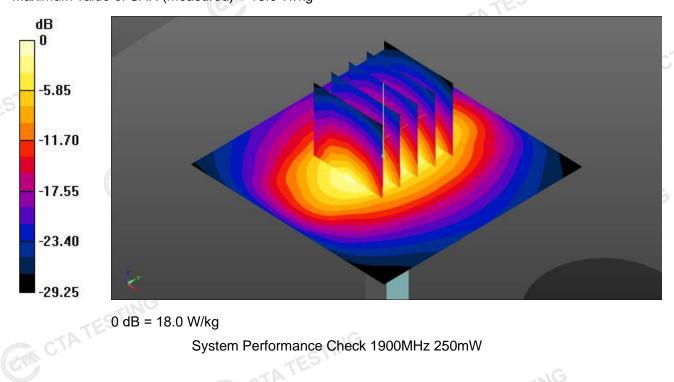
Electronics: DAE3 Sn428; Calibrated: 08/30/2023

• Phantom: SAM 2; Type: QD000P40CC; Serial: TP:1474

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 18.2 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 88.69 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 28.5 W/kg

SAR(1 g) = 9.66 W/kg; SAR(10 g) = 5.13 W/kg

Maximum value of SAR (measured) = 18.0 W/kg

System Performance Check 1900MHz 250mW CTATESTING

2450MHz System Check Date: 07/25/2024

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 745

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 1.738 \text{ S/m}$; $\epsilon r = 39.039$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7624; ConvF(7.85, 7.85, 7.85); Calibrated: Sep. 06, 2023

Sensor-Surface: 2mm (Mechanical Surface Detection)

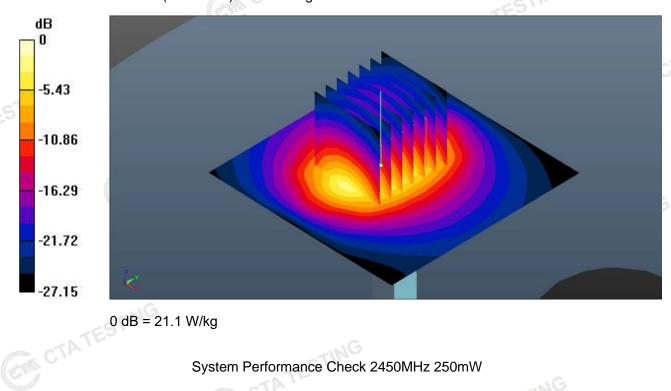
• Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: SAM 2; Type: QD000P40CC; Serial: TP:1474

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 20.4 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.87 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 28.5 W/kg

SAR(1 g) = 12.99 W/kg; SAR(10 g) = 6.20 W/kg

Maximum value of SAR (measured) = 21.1 W/kg

CTA TESTING System Performance Check 2450MHz 250mW

5250MHz System Check Date: 07/26/2024

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: 1301

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5250 MHz; $\sigma = 4.702 \text{ S/m}$; $\epsilon r = 35.670$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7624; ConvF(5.55, 5.55, 5.55); Calibrated: Sep. 06, 2023

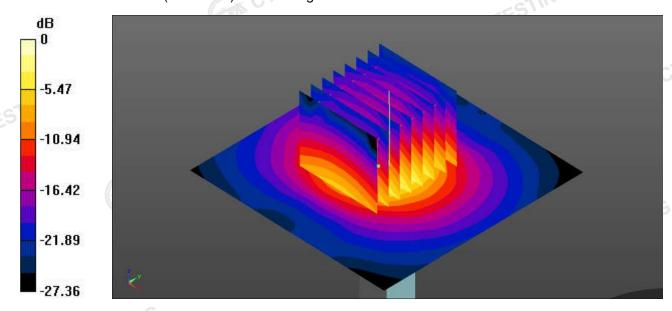
Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: SAM 2; Type: QD000P40CC; Serial: TP:1474

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 9.65 W/kg


Zoom Scan (7x7x13): Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 33.78 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.37 W/kg

Maximum value of SAR (measured) = 9.85 W/kg

0 dB = 9.85 W/kg

System Performance Check 5250MHz 100mW

5750MHz System Check Date: 07/29/2024

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: 1301

Communication System: CW; Frequency: 5750 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5750 MHz; $\sigma = 5.365 \text{ S/m}$; $\epsilon r = 34.480$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7624; ConvF(4.98, 4.98, 4.98); Calibrated: Sep. 06, 2023

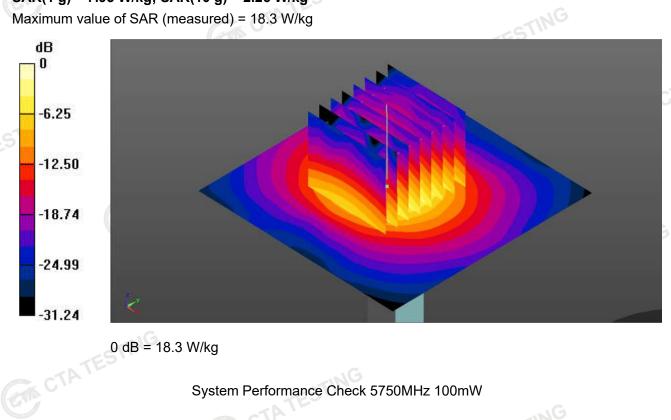
Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: SAM 2; Type: QD000P40CC; Serial: TP:1474

• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.4 W/kg


Zoom Scan (7x7x13): Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 42.24 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 20.57 W/kg

SAR(1 g) = 7.95 W/kg; SAR(10 g) = 2.26 W/kg

Maximum value of SAR (measured) = 18.3 W/kg

System Performance Check 5750MHz 100mW CTATESTING Report No.: CTA24062700509 Page 54 of 103

Appendix C. Plots of SAR Test Data

Date: 07/24/2024

LTE Band 2_20MHz/1RB#99_Back_0mm_Ch18900

Communication System: UID 0, Generic LTE (0); Frequency: 1880.0 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1880.0 MHz; $\sigma = 1.415 \text{ S/m}$; $\epsilon r = 39.836$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7624; ConvF(8.35, 8.35, 8.35); Calibrated: Sep. 06, 2023

Sensor-Surface: 2mm (Mechanical Surface Detection)

Phantom: SAM 2; Type: QD000P40CC; Serial: TP:1474

DASY52 52.10.2(1495): SEMOAR 3

Area Scan (81x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.98 W/kg

Zoom Scan (5x5x7)/Cube 0:Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.254 V/m; Power Drift =-0.07 dB

Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 0.587 W/kg; SAR(10 g) = 0.279 W/kg

Maximum value of SAR (measured) = 1.11 W/kg

0 dB = 1.11 W/kg

Report No.: CTA24062700509 Page 55 of 103

#2

Date: 07/23/2024

LTE Band 4_20MHz/1RB#0_Back_0mm_Ch20175

Communication System: UID 0, Generic LTE (0); Frequency: 1747.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1747.5 MHz; $\sigma = 1.385 \text{ S/m}$; $\epsilon r = 41.147$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7624; ConvF(8.66, 8.66, 8.66); Calibrated: Sep. 06, 2023

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: SAM 2; Type: QD000P40CC; Serial: TP:1474

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (81x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.11 W/kg

Zoom Scan (5x5x7)/Cube 0:Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.47 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.55 W/kg

SAR(1 g) = 0.605 W/kg; SAR(10 g) = 0.311 W/kg

Maximum value of SAR (measured) = 1.15 W/kg

CTA TESTING

Page 56 of 103 Report No.: CTA24062700509

#3

Date: 07/22/2024

LTE Band 12_10MHz/1RB#49_Back_0mm_Ch23095

Communication System: UID 0, Generic LTE (0); Frequency: 707.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 1.375 \text{ S/m}$; $\epsilon r = 41.179$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7624; ConvF(10.58, 10.58, 10.58); Calibrated: Sep. 06, 2023

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: SAM 2; Type: QD000P40CC; Serial: TP:1474

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (81x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.663 W/kg

Zoom Scan (5x5x7)/Cube 0:Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.25 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.478 W/kg; SAR(10 g) = 0.262 W/kg

Maximum value of SAR (measured) = 0.711 W/kg

CTA TESTING

Report No.: CTA24062700509 Page 57 of 103

#4

Date: 07/25/2024

WIFI2.4G_DSSS_Back _0mm_Ch01

Communication System: UID 0, Generic WIFI (0); Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.755 \text{ S/m}$; $\epsilon r = 39.548$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7624; ConvF(7.85, 7.85, 7.85); Calibrated: Sep. 06, 2023

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: SAM 2; Type: QD000P40CC; Serial: TP:1474

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (51x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.475 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.524 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.662 W/kg

SAR(1 g) = 0.255 W/kg; SAR(10 g) = 0.112 W/kg

Maximum value of SAR (measured) = 0.429 W/kg

0 dB = 0.429 W/kg

#5

Date: 07/26/2024

WLAN 5.2GHz_802.11ac(HT20)_Back_0mm_CH36

Communication System: UID 0, Generic WLAN (0); Frequency: 5180 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5180 MHz; $\sigma = 4.665 \text{ S/m}$; $\epsilon r = 36.441$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7624; ConvF(5.55, 5.55, 5.55); Calibrated: Sep. 06, 2023

• Sensor-Surface: 2mm (Mechanical Surface Detection)

Phantom: SAM 2; Type: QD000P40CC; Serial: TP:1474
 DASY52 52.10 2(1495): SERICATE II

• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (91x91x1): Measurement grid: dx=1.000mm, dy=1.000mm

Maximum value of SAR (interpolated) = 0.623 W/Kg

Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 5.542 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) =1.47 W/kg

SAR(1 g) = 0.254 W/kg; SAR(10 g) = 0.085 W/kg

Maximum value of SAR (measured) = 0.530 W/Kg

0 dB = 0.530 W/kg

Report No.: CTA24062700509 Page 59 of 103

#6

Date: 07/29/2024

WLAN 5.8GHz_802.11ac(HT20)_Back_0mm_CH157

Communication System: UID 0, Generic WLAN (0); Frequency: 5785 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5785 MHz; $\sigma = 5.374 \text{ S/m}$; $\epsilon r = 34.646$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7624; ConvF(4.98, 4.98, 4.98); Calibrated: Sep. 06, 2023

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: SAM 2; Type: QD000P40CC; Serial: TP:1474
 DASY52 52.10.2(1495): SEMCAD X 44.3 (14.3)

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (91x101x1): Measurement grid: dx=1.000mm, dy=1.000mm

Maximum value of SAR (interpolated) = 0.452 W/Kg

Zoom Scan (8x8x8): Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 3.674 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.854 W/kg

SAR(1 g) = 0.217 W/kg; SAR(10 g) = 0.049 W/kg

Maximum value of SAR (measured) = 0.554 W/kg

0 dB = 0.554 W/kg

Report No.: CTA24062700509 Page 60 of 103

Appendix D. DASY System Calibration Certificate

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Certificate No: J23Z60222

CALIBRATION CERTIFICATE

Object EX3DV4 - SN: 7624

INNOWAVE

Calibration Procedure(s)

Client

FF-Z11-004-02

Calibration Procedures for Dosimetric E-field Probes

Calibration date: September 06, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID# (Cal Date(Calibrated by, Certificate No.) Scheduled	Calibration
Power Meter NRP2	101919	12-Jun-23(CTTL, No.J23X05435)	Jun-24
Power sensor NRP-Z91	101547	12-Jun-23(CTTL, No.J23X05435)	Jun-24
Power sensor NRP-Z91	101548	12-Jun-23(CTTL, No.J23X05435)	Jun-24
Reference 10dBAttenuator	18N50W-10dB	19-Jan-23(CTTL, No.J23X00212)	Jan-25
Reference 20dBAttenuator	18N50W-20dB	19-Jan-23(CTTL, No.J23X00211)	Jan-25
Reference Probe EX3DV4	SN 3846	31-May-23(SPEAG, No.EX-3846_May23)	May-24
DAE4	SN 549	24-Jan-23(SPEAG, No.DAE4-549_Jan23)	Jan-24
DAE4	SN 1744	30-Aug-22(SPEAG, No.DAE4-1744_Aug22)	Aug-23
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGenerator MG3700A	6201052605	12-Jun-23(CTTL, No.J23X05434)	Jun-24
Network Analyzer E5071C	MY46110673	10-Jan-23(CTTL, No.J23X00104)	Jan-24
Reference 10dBAttenuator	BT0520	11-May-23(CTTL, No.J23X04061)	May-25
Reference 20dBAttenuator	BT0267	11-May-23(CTTL, No.J23X04062)	May-25
OCP DAK-3.5	SN 1040	18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_Jan	

0.111	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	2 Carlos
Reviewed by:	Lin Hao	SAR Test Engineer	11/62
Approved by:	Qi Dianyuan	SAR Project Leader	

Issued: September 12, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: J23Z60222

Page 1 of 9

Page 61 of 103 Report No.: CTA24062700509

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged

- Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z^*$ frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:J23Z60222

Page 2 of 9

Report No.: CTA24062700509 Page 62 of 103

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7624

Basic Calibration Parameters

Sensor X	Sensor Y	Sensor Z	Unc (k=2)
0.57	0.59	0.58	±10.0%
112.6	113.4		10.076
		0.57 0.59	0.57 0.59 0.58

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (<i>k</i> =2)
0 CM	CM	X	0.0	0.0	1.0	0.00	200.3	±4.7%
		Υ	0.0	0.0	1.0		212.4	
		Z	0.0	0.0	1.0		202.8	1

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4).

B Numerical linearization parameter: uncertainty not required.

E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:J23Z60222

Page 3 of 9

Report No.: CTA24062700509 Page 63 of 103

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7624

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.58	10.58	10.58	0.20	1.06	±12.7%
835	41.5	0.90	10.19	10.19	10.19	0.19	1.20	±12.7%
1750	40.1	1.37	8.66	8.66	8.66	0.21	1.13	
1900	40.0	1.40	8.35	8.35	8.35	0.33	0.91	±12.7%
2100	39.8	1.49	8.27	8.27	8.27	0.23	1.08	±12.7%
2300	39.5	1.67	8.13	8.13	8.13	0.58	0.67	±12.7%
2450	39.2	1.80	7.85	7.85	7.85	0.63	0.66	±12.7%
2600	39.0	1.96	7.66	7.66	7.66	0.65	0.66	±12.7%
3500	37.9	2.91	7.20	7.20	7.20	0.34	1.00	±13.9%
3700	37.7	3.12	7.00	7.00	7.00	0.36	1.07	±13.9%
3900	37.5	3.32	6.85	6.85	6.85	0.30	1.50	
4100	37.2	3.53	6.78	6.78	6.78	0.30	1.35	±13.9%
4200	37.1	3.63	6.68	6.68	6.68	0.30	1.45	±13.9%
4400	36.9	3.84	6.61	6.61	6.61	0.30	1.45	±13.9%
4600	36.7	4.04	6.47	6.47	6.47	0.40	1.30	±13.9%
4800	36.4	4.25	6.37	6.37	6.37	0.40	1.40	The State of the S
4950	36.3	4.40	6.08	6.08	6.08	0.40	1.40	±13.9%
5250	35.9	4.71	5.55	5.55	5.55	0.40		±13.9%
5600	35.5	5.07	4.96	4.96	4.96	0.40	1.50	±13.9%
5750	35.4	5.22	4.98	4.98	4.98	0.35	1.70 1.80	±13.9%

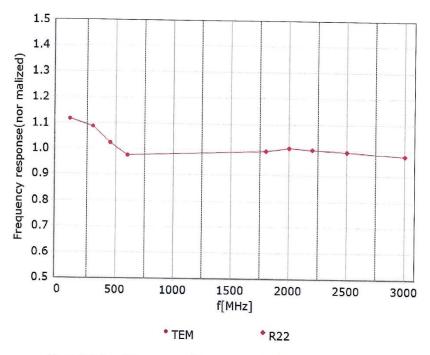
^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No:J23Z60222

Page 4 of 9

F At frequency up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Report No.: CTA24062700509 Page 64 of 103

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

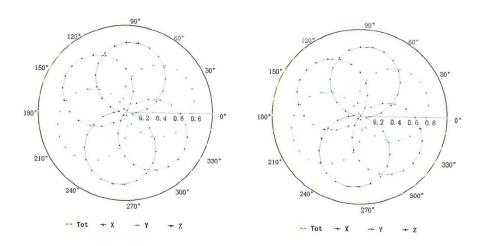
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

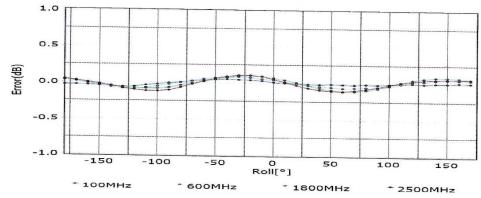
Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:J23Z60222

Page 5 of 9

Report No.: CTA24062700509 Page 65 of 103




Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Receiving Pattern (Φ), θ =0°

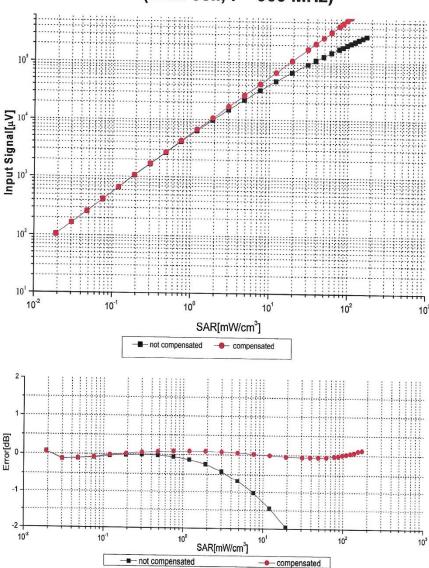
f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: $\pm 1.2\%$ (k=2)

Certificate No:J23Z60222

Page 6 of 9


Report No.: CTA24062700509 Page 66 of 103

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

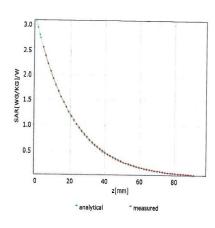
Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)

Certificate No:J23Z60222

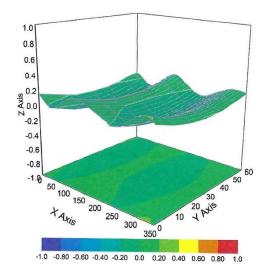
Page 7 of 9

Report No.: CTA24062700509 Page 67 of 103




Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Conversion Factor Assessment


f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:J23Z60222

Page 8 of 9

Report No.: CTA24062700509 Page 68 of 103

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7624

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	151.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:J23Z60222

Page 9 of 9

