

Project No.: ZHT-240711017E-1 Page 1 of 44

Report Number	: ZHT-240711017E-1
Date of Test	July 11, 2024 to July 23, 2024
Date of issue	July 29, 2024
Test Result	:: PASS
Testing Laboratory	: Guangdong Zhonghan Testing Technology Co., Ltd.
Address	: Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Communit Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Applicant's name	: Shenzhen Yuanyin Digital Technology Co. , Ltd.
Address	: No. 13 Tianbao Road, Shiyan Zhen, Baoan District, Shenzhen Cit Guangdong Province
Manufacturer's name	: Shenzhen Yuanyin Digital Technology Co. , Ltd.
Address	: No. 13 Tianbao Road, Shiyan Zhen, Baoan District, Shenzhen Cit Guangdong Province
Test specification:	
Standard	: FCC CFR Title 47 Part 15 Subpart C Section 15.247
	FCC CFR Title 47 Part 15 Subpart C Section 15.247 KDB558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013
Test procedure	KDB558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013
Test procedure Non-standard test method This device described above I test (EUT) is in compliance wi identified in the report. This report shall not be reproc be altered or revised by ZHT,	
Test procedure Non-standard test method This device described above H test (EUT) is in compliance wi identified in the report. This report shall not be reproc	: KDB558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013 : N/A has been tested by ZHT, and the test results show that the equipment unde th the FCC requirements. And it is applicable only to the tested sample duced except in full, without the written approval of ZHT, this document may personal only, and shall be noted in the revision of the document.
Test procedure Non-standard test method This device described above H test (EUT) is in compliance wi identified in the report. This report shall not be reproc be altered or revised by ZHT, Product name Trademark	 KDB558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013 N/A has been tested by ZHT, and the test results show that the equipment unde the FCC requirements. And it is applicable only to the tested sample duced except in full, without the written approval of ZHT, this document may personal only, and shall be noted in the revision of the document. MP3 music player
Test procedure Non-standard test method This device described above H test (EUT) is in compliance wi identified in the report. This report shall not be reproc be altered or revised by ZHT, Product name	 KDB558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013 N/A has been tested by ZHT, and the test results show that the equipment under the FCC requirements. And it is applicable only to the tested sample duced except in full, without the written approval of ZHT, this document may personal only, and shall be noted in the revision of the document. MP3 music player / MP3-01B MP3-01A, MP3-02A, MP3-02B ,MP3-03A, MP3-03B, MP3-20, MP3-10, MP3-11, MP3-16, MP3-12, MP3-07, T1, T2, T3, T4, T5, T4
Test procedure Non-standard test method This device described above h test (EUT) is in compliance wi identified in the report. This report shall not be reproc be altered or revised by ZHT, Product name Trademark Model/Type reference	 KDB558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013 N/A has been tested by ZHT, and the test results show that the equipment under the FCC requirements. And it is applicable only to the tested sample duced except in full, without the written approval of ZHT, this document may personal only, and shall be noted in the revision of the document. MP3 music player MP3-01B MP3-01A, MP3-02A, MP3-02B ,MP3-03A, MP3-03B, MP3-20, MP3-10, MP3-11, MP3-16, MP3-12, MP3-07, T1, T2, T3, T4, T5, T0 T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, mp3-01C

Table of Contents

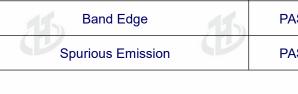
Page

1.VERSION	
2. SUMMARY OF TEST RESULTS	
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
3. GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	
3.2 DESCRIPTION OF TEST MODES	9
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TES	5TED 9
3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	
3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	
4.1 CONDUCTED EMISSION MEASUREMENT	
4.1.1 POWER LINE CONDUCTED EMISSION Limits	
4.1.2 TEST PROCEDURE	
4.1.3 DEVIATION FROM TEST STANDARD 4.1.4 TEST SETUP	
4.1.5 EUT OPERATING CONDITIONS	
4.1.6 TEST RESULTS	15
4.2 RADIATED EMISSION MEASUREMENT	
4.2.1 RADIATED EMISSION LIMITS 4.2.2 TEST PROCEDURE	
4.2.2 TEST PROCEDURE	
4.2.4 TEST SETUP	
4.2.5 EUT OPERATING CONDITIONS	
1GHZ~25GHZ	22
5.RADIATED BAND EMISSION MEASUREMENT	
5.1 TEST REQUIREMENT:	
5.2 TEST PROCEDURE	
5.3 DEVIATION FROM TEST STANDARD 5.4 TEST SETUP	
5.5 EUT OPERATING CONDITIONS	
5.6 TEST RESULT	
6.POWER SPECTRAL DENSITY TEST	27
6.1 APPLIED PROCEDURES / LIMIT	
6.2 TEST PROCEDURE	
6.3 DEVIATION FROM STANDARD 6.4 TEST SETUP	

Table of Contents	Page
6.5 EUT OPERATION CONDITIONS 6.6 TEST RESULTS	
7. CHANNEL BANDWIDTH	31
7.1 APPLIED PROCEDURES / LIMIT	
7.2 TEST PROCEDURE	
7.3 DEVIATION FROM STANDARD	
7.4 TEST SETUP	
7.5 EUT OPERATION CONDITIONS	
7.6 TEST RESULTS	
8.PEAK OUTPUT POWER TEST	31
8.1 APPLIED PROCEDURES / LIMIT	
8.2 TEST PROCEDURE	
8.3 DEVIATION FROM STANDARD	
8.4 TEST SETUP	
8.5 EUT OPERATION CONDITIONS	
8.6 TEST RESULTS	
9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION	27
9.1 APPLICABLE STANDARD	
9.2 TEST PROCEDURE	
9.3 DEVIATION FROM STANDARD	
9.4 TEST SETUP	
9.5 EUT OPERATION CONDITIONS	
10.ANTENNA REQUIREMENT	 43
11. TEST SETUP PHOTOS	
12. EUT CONSTRUCTIONAL DETAILS	

5	Report I	No.	Version	15	Descriptior	1 15	Approved
	ZHT-24071	1017E-1	Rev.01	P	Initial issue of r	report	July 29, 2024
	B		B		Ð		Ð

Г


Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C					
Standard Section	Test Item	Judgment	Remark		
FCC part 15.203/15.247 (b)(4)	Antenna requirement	PASS	C		
FCC part 15.207	AC Power Line Conducted Emission	PASS			
FCC part 15.247 (b)(3)	Conducted Peak Output Power	PASS			
FCC part 15.247 (a)(2)	Channel Bandwidth& 99% OCB	PASS			
FCC part 15.247 (e)	Power Spectral Density	PASS			
FCC part 15.247(d)	Band Edge	PASS	15		
FCC part 15.205/15.209	Spurious Emission	PASS	P		

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report Remark: The duty cycle is greater than 98%

2.1 TEST FACILITY

Guangdong Zhonghan Testing Technology Co., Ltd. Add. : Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

FCC Registration Number:255941 Designation Number: CN0325 IC Registered No.: 29832 CAB identifier: CN0143

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U \cdot where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 \cdot providing a level of confidence of approximately 95 % \circ

No.	Item	Uncertainty	
1	Conducted Emission Test	±1.38dB	
2	RF conducted power	±0.16dB	
3	Conducted spurious emissions	±0.21dB	
4	All radiated emissions (9k-30MHz)	±4.68dB	
5	All radiated emissions (<1G)	±4.68dB	
6	All radiated emissions (>1G)	±4.89dB	
7	Temperature	±0.5°C	
8	Humidity	±2%	
9	Occupied Bandwidth	±4.96dB	

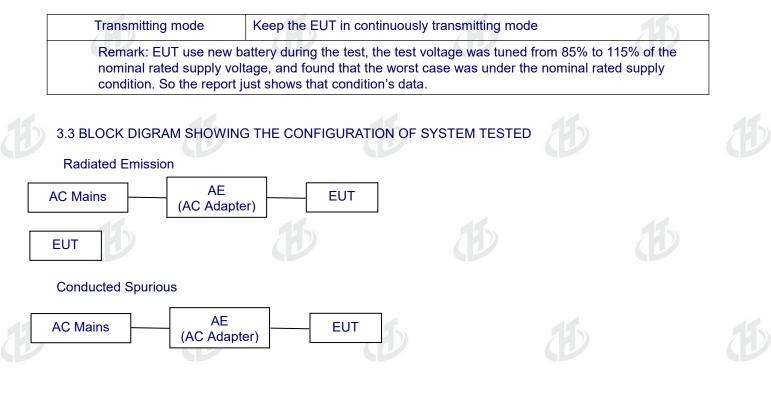
🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn 🌑 🌐 http://www.zht-lab.cn

Product Name:	MP3 music player		
Model No.:	MP3-01B	1	
Hardware Version:	V1.0	Ð	Ð
Software Version:	V1.0		
Sample(s) Status:	Engineer sample		
Operation Frequency:	2402MHz~2480MHz	(1)	
Channel Numbers:	40		
Channel Separation:	2MHz		
Modulation Type:	GFSK	5	15
Antenna Type:	PCB antenna		C
Antenna gain:	0dBi		
Power supply:	Input: DC 5 V or DC 3.7 V powe	ered by battery	

🖂 admin@zht-lab.cn 🚺 🌐 http://www.zht-lab.cn 2 0755-27782934

Project No.: ZHT-240711017E-1 Page 9 of 44

Ø


Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
54	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz
With Declary	

3.2 DESCRIPTION OF TEST MODES

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	AC Adapter	HUAWEI	HW-200500C00	/	AE

Item	Shielded Type	Ferrite Core	Length	Note
		6	U	P

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.

Project No.: ZHT-240711017E-1 Page 11 of 44

Radiation ⁻	Test equipment	t
------------------------	----------------	---

ltem	Equipment	Manufacturer	Model	Last Cal.	Next Cal.		
1 Receiver R&S		R&S	ESCI	May 10, 2024	May 09, 2025		
2	Loop antenna	EMCI	LAP600	May 10, 2024	May 09, 2025		
3	3 Amplifier Schwarzbeck		BBV 9743 B	May 10, 2024	May 09, 2025		
4	Amplifier	Schwarzbeck	BBV 9718 B	May 10, 2024	May 09, 2025		
5 Bilog Antenna Sch		Schwarzbeck	VULB9168	Aug. 04, 2024	Aug. 03, 202		
6	6 Horn Antenna Schwarzb		BBHA9120D	May 16, 2024	May 15, 2025		
7 Horn Antenna A		A.H.SYSTEMS	SAS574	May 10, 2024	May 09, 2025		
8	Amplifier	AEROFLEX	100KHz-40GHz	May 10, 2024	May 09, 2025		
9	Spectrum Analyzer	R&S	FSV40	May 10, 2024	May 09, 2025		
10	966 Anechoic Chamber	EMToni	9m6m6m	Nov. 25, 2021	Nov. 24, 2024		
11	Spectrum Analyzer	KEYSIGHT	N9020A	May 10, 2024	May 09, 2025		
12	Analyzer WIDBAND		CMW500	May 10, 2024	May 09, 2025		
13	Single Generator	Agilent	N5182A May 10, 2024		May 09, 2025		
14	Power Sensor	MWRFtest	MW100-RFCB	May 10, 2024	May 09, 2025		
15	Audio analyzer	R&S	UPL	May 10, 2024	May 09, 2025		
16	Single Generator	R&S	SMB100A	May 10, 2024	May 09, 2025		
17	Power Amplifier Shielding Room	EMToni	2m3m3m	Nov. 25, 2021	Nov. 24, 2024		

.

Ð

5

Ð

E

🖂 admin@zht-lab.cn 🚺 🌐 http://www.zht-lab.cn 2 0755-27782934

Project No.: ZHT-240711017E-1 Page 12 of 44

Equipment	Manufacturer	Model	Last Cal.	Next Cal.
Receiver	R&S	ESCI	May 10, 2024	May 09, 2025
LISN	R&S	ENV216	May 10, 2024	May 09, 2025
ISN CAT 6	Schwarzbeck	NTFM 8158	May 10, 2024	May 09, 2025
ISN CAT 5	Schwarzbeck	CAT5 8158	May 10, 2024	May 09, 2025
Capacitive Voltage Probe	Schwarzbeck	CVP 9222 C	May 10, 2024	May 09, 2025
Current Transformer Clamp	Schwarzbeck	SW 9605	May 10, 2024	May 09, 2025
CE Shielding Room	EMToni	9m4m3m	Nov. 25, 2021	Nov. 24, 2024

4.1 CONDUCTED EMISSION MEASUREMENT

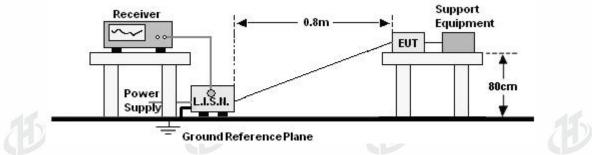
	(1)	120	
Test Requirement:	FCC Part15 C Section 15.207		
Test Method:	ANSI C63.10:2013		
Test Frequency Range:	150KHz to 30MHz		
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto		

4.1.1 POWER LINE CONDUCTED EMISSION Limits

	Limit (dBuV)	Standard	1
FREQUENCY (MHz)	QP	AVG	Standard	6
0.15 -0.5	66 - 56 *	56 - 46 *	FCC	
0.50 -5.0	56.00	46.00	FCC	
5.0 -30.0	60.00	50.00	FCC	

Note:

(1) *Decreases with the logarithm of the frequency.

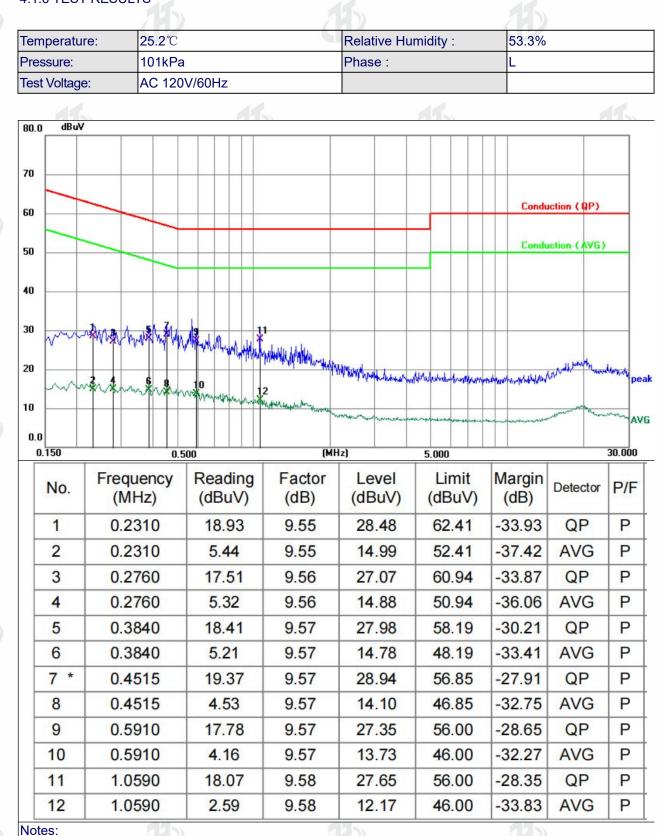

4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD No deviation

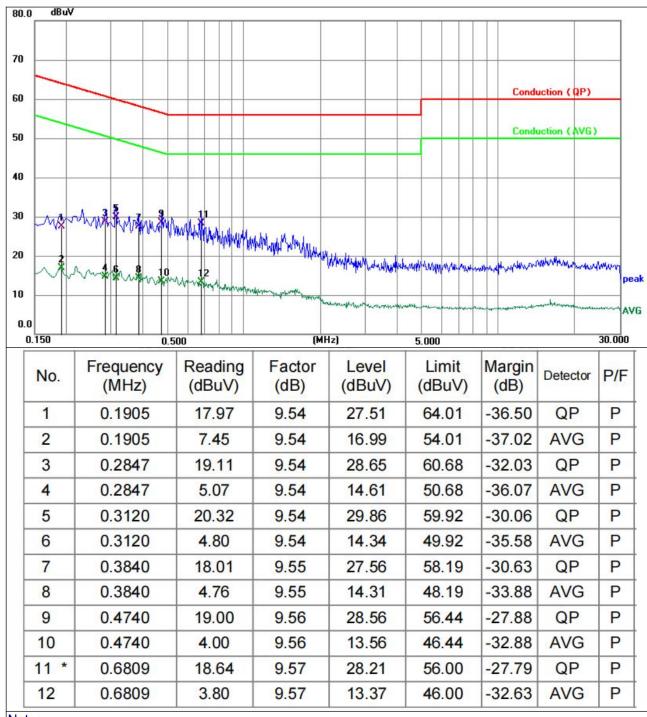
Project No.: ZHT-240711017E-1 Page 14 of 44

4.1.5 EUT OPERATING CONDITIONS


The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.1.6 TEST RESULTS

1.An initial pre-scan was performed on the line and neutral lines with peak detector.


2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission 3.Mesurement Level = Reading level + Correct Factor

	Temperature:	25.2℃	Relative Humidity :	53.3%
	Pressure:	101kPa	Phase :	N
-	Test Voltage:	AC 120/60Hz		

Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission. 3.Mesurement Level = Reading level + Correct Factor

Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency Detector		RBW	VBW	Value			
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak			
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak			
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak			
		Peak	1MHz	3MHz	Peak			
		Peak	1MHz	10Hz	Average			
-	Test Method: Test Frequency Range: Test site:	Test Method:ANSI C63.10:2013Test Frequency Range:9kHz to 25GHzTest site:Measurement DistaReceiver setup:Frequency9KHz-150KHz150KHz-30MHz	Test Method:ANSI C63.10:2013Test Frequency Range:9kHz to 25GHzTest site:Measurement Distance: 3mReceiver setup:FrequencyDetector9KHz-150KHzQuasi-peak150KHz-30MHzQuasi-peak30MHz-1GHzQuasi-peakAbove 1GHzPeak	Test Method:ANSI C63.10:2013Test Frequency Range:9kHz to 25GHzTest site:Measurement Distance: 3mReceiver setup:FrequencyDetectorRBW9KHz-150KHzQuasi-peak200Hz150KHz-30MHzQuasi-peak9KHz30MHz-1GHzQuasi-peak100KHzAbove 1GHzPeak1MHz	Test Method:ANSI C63.10:2013Test Frequency Range:9kHz to 25GHzTest site:Measurement Distance: 3mReceiver setup:FrequencyDetectorRBWVBW9KHz-150KHzQuasi-peak200Hz600Hz150KHz-30MHzQuasi-peak9KHz30KHz30MHz-1GHzQuasi-peak100KHz300KHzAbove 1GHzPeak1MHz3MHz			

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)			
	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

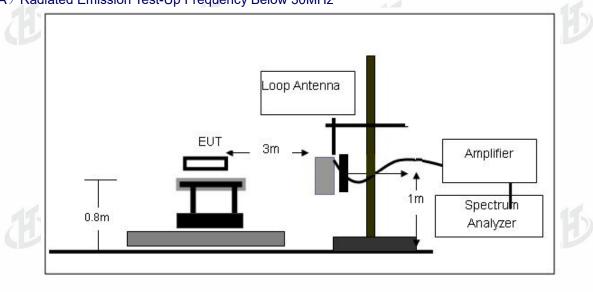
(1) The limit for radiated test was performed according to FCC PART 15C.

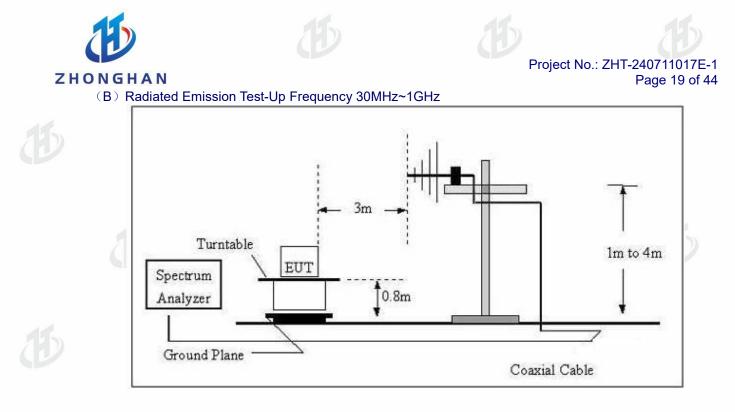
(2) The tighter limit applies at the band edges.

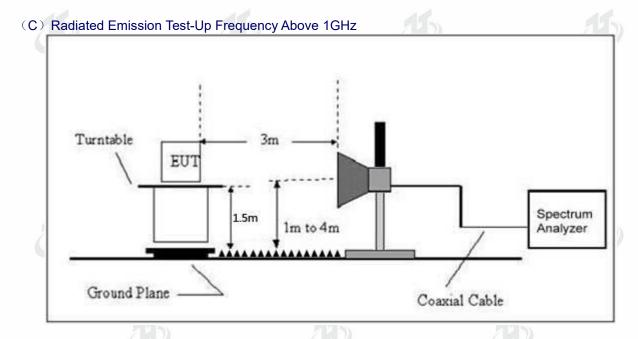
(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Project No.: ZHT-240711017E-1 Page 18 of 44

- 4.2.2 TEST PROCEDURE
 - a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
 - b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest radiation.
 - c. The height of the equipment or of the substitution antenna shall be 0.8m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
 - d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
 - e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
 - f. For the actual test configuration, please refer to the related Item -EUT Test Photos.
 - g. For the radiated emission test above 1GHz:
 - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.


The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported


4.2.3 DEVIATION FROM TEST STANDARD No deviation

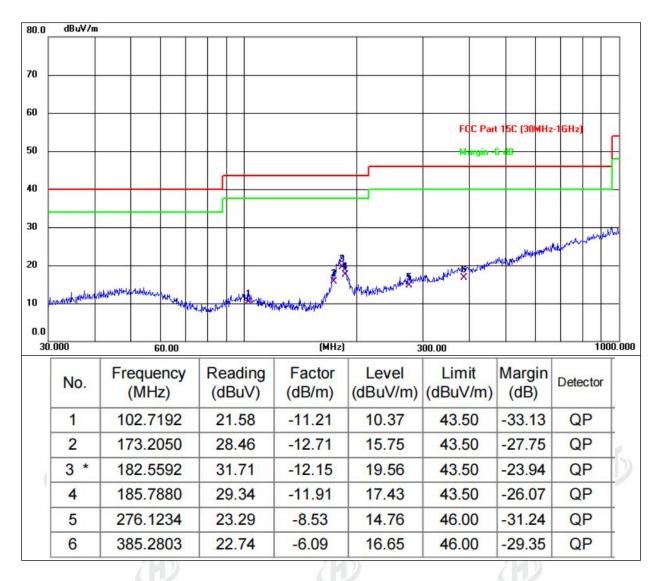
4.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

4.2.5 EUT OPERATING CONDITIONS

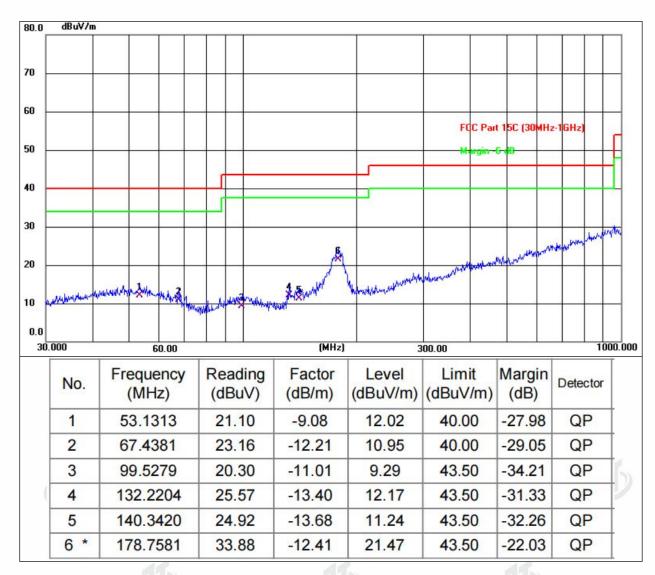
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.2.6 TEST RESULTS (Between 9KHz - 30 MHz)


The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

Temperature:25.1°CRelative Humidity:53.6%Pressure:101 kPaPolarization:HorizontalTest Voltage:AC 120V/60HzFormation:Horizontal

16



Page 21 of 44

Temperature:	25.1℃	Relative Humidity:	53.6%	
Pressure:	101kPa	Polarization:	Vertical	
Test Voltage:	AC 120V/60Hz			

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

11 0755-27782934

Project No.: ZHT-240711017E-1 Page 22 of 44

1GHz~25GHz

1					Contraction (Contraction)		124 124		
Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
	•			Low Cha	nnel:2402M	1Hz			
V	4804.00	58.07	30.55	5.77	24.66	57.95	74	-16.05	Pk
V	4804.00	42.73	30.55	5.77	24.66	42.61	54	-11.39	AV
V	7206.00	55.09	30.33	6.32	24.55	55.63	74	-18.37	Pk
V	7206.00	43.31	30.33	6.32	24.55	43.85	54	-10.15	AV
V	9608.00	56.27	30.55	5.77	24.66	56.15	74	-17.85	Pk
V	9608.00	42.95	30.55	5.77	24.66	42.83	54	-11.17	AV
V	12010.00	56.45	30.33	6.32	24.55	56.99	74	-17.01	Pk
V	12010.00	44.59	30.33	6.32	24.55	45.13	54	-8.87	AV
Н	4804.00	56.41	30.55	5.77	24.66	56.29	74	-17.71	Pk
Н	4804.00	41.31	30.55	5.77	24.66	41.19	54	-12.81	AV
Н	7206.00	57.57	30.33	6.32	24.55	58.11	74	-15.89	Pk
Н	7206.00	44.57	30.33	6.32	24.55	45.11	54	-8.89	AV
Н	9608.00	58.21	30.55	5.77	24.66	58.09	74	-15.91	Pk
Н	9608.00	43.93	30.55	5.77	24.66	43.81	54	-10.19	AV
Н	12010.00	59.9	30.33	6.32	24.55	60.44	74	-13.56	Pk
Н	12010.00	44.74	30.33	6.32	24.55	45.28	54	-8.72	AV
		Meter	Pre-ampli	Cable	Antenna	Emission			

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
			N	/liddle Ch	nannel:2440	MHz			
V	4880.00	58.55	30.55	5.77	24.66	58.43	74	-15.57	Pk
V	4880.00	41.13	30.55	5.77	24.66	41.01	54	-12.99	AV
V	7320.00	56.54	30.33	6.32	24.55	57.08	74	-16.92	Pk
V	7320.00	44.19	30.33	6.32	24.55	44.73	54	-9.27	AV
V	9760.00	56.2	30.55	5.77	24.66	56.08	74	-17.92	Pk
V	9760.00	41.46	30.55	5.77	24.66	41.34	54	-12.66	AV
V	12200.00	55.33	30.33	6.32	24.55	55.87	74	-18.13	Pk
V	12200.00	41.68	30.33	6.32	24.55	42.22	54	-11.78	AV
Н	4880.00	57.32	30.55	5.77	24.66	57.2	74	-16.8	Pk
н	4880.00	41.89	30.55	5.77	24.66	41.77	54	-12.23	AV
Н	7320.00	55.2	30.33	6.32	24.55	55.74	74 🖉 🚺	-18.26	Pk
Н	7320.00	44.66	30.33	6.32	24.55	45.2	54	-8.8	AV
Н	9760.00	57.63	30.55	5.77	24.66	57.51	74	-16.49	Pk
Н	976000	41.35	30.55	5.77	24.66	41.23	54	-12.77	AV
Н	12200.00	58.71	30.33	6.32	24.55	59.25	74	-14.75	Pk
Н	12200.00	41.15	30.33	6.32	24.55	41.69	54	-12.31	AV
				1					

1

Project No.: ZHT-240711017E-1 Page 23 of 44

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
	•		ŀ	ligh Cha	nnel:2480N	IHz		•	•
V	4960.00	59.1	30.55	5.77	24.66	58.98	74	-15.02	Pk
V	4960.00	41.16	30.55	5.77	24.66	41.04	54	-12.96	AV
V	7440.00	55.55	30.33	6.32	24.55	56.09	74	-17.91	Pk
V	7440.00	43.34	30.33	6.32	24.55	43.88	54	-10.12	AV
V	9920.00	58.97	30.55	5.77	24.66	58.85	74	-15.15	Pk
V	9920.00	41.11	30.55	5.77	24.66	40.99	54	-13.01	AV
V	12400.00	59.39	30.33	6.32	24.55	59.93	74	-14.07	Pk
V	12400.00	41.01	30.33	6.32	24.55	41.55	54	-12.45	AV
Н	4960.00	56.04	30.55	5.77	24.66	55.92	74	-18.08	Pk
) н	4960.00	41.61	30.55	5.77	24.66	41.49	54	-12.51	AV
Н	7440.00	58.44	30.33	6.32	24.55	58.98	74	-15.02	Pk
Н	7440.00	41.21	30.33	6.32	24.55	41.75	54	-12.25	AV
Н	9920.00	56.77	30.55	5.77	24.66	56.65	74	-17.35	Pk
Н	9920.00	44.1	30.55	5.77	24.66	43.98	54	-10.02	AV
Н	12400.00	56.8	30.33	6.32	24.55	57.34	74	-16.66	Pk
Н	12400.00	41.86	30.33	6.32	24.55	42.4	54	-11.6	AV
								0	

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit

- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

🕿 0755-27782934 🛛 🖂 admin@zht-lab.cn 🍼 🌐 http://www.zht-lab.cn

Project No.: ZHT-240711017E-1 Page 24 of 44

_ ____

5.1 TEST REQUIREMENT: FCC Part15 C Section 15.209 and 15.205 Test Requirement: ANSI C63.10: 2013 Test Method: Test Frequency Range: All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed. Test site: Measurement Distance: 3m **VBW** Frequency Detector RBW Value Receiver setup: Above Peak 1MHz 3MHz Peak 1GHz Average 1MHz 3MHz Average

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Limit (dBuV/m) (at 3M)			
FREQUENCY (MHz)	PEAK	AVERAGE	2	
Above 1000	74	54		

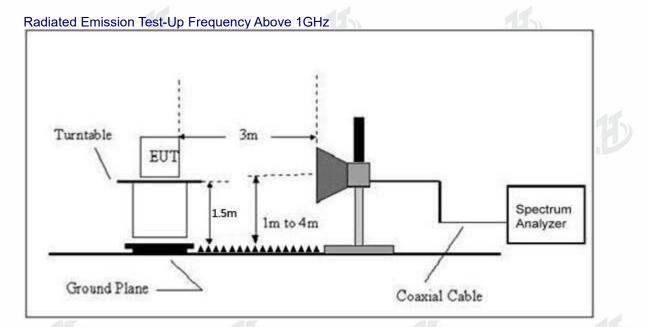
Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

5.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel,the Highest channel


Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

5.3 DEVIATION FROM TEST STANDARD No deviation

Project No.: ZHT-240711017E-1 Page 25 of 44

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Project No.: ZHT-240711017E-1 Page 26 of 44

	Polar (H/V)	Frequenc y (MHz)	Meter Reading (dBuV)	Pre- amplifier (dB)	Cable Loss (dB)	Antenna Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV /m)	Margi n (dB)	Detec tor Type	Result
			· · · /			el: 2402MH	· · · · ·	,			
	Н	2390.00	57.39	30.55	5.77	24.66	57.27	74	-16.73	PK	PASS
	(H)	2390.00	42.24	30.55	5.77	24.66	42.12	54	-11.88	AV	PASS
	H	2400.00	55.66	30.33	6.32	24.55	56.20	74	-17.80	PK	PASS
	Н	2400.00	41.32	30.33	6.32	24.55	41.86	54	-12.14	AV	PASS
	V	2390.00	58.34	30.55	5.77	24.66	58.22	74	-15.78	PK	PASS
	V	2390.00	42.56	30.55	5.77	24.66	42.44	54	-11.56	AV	PASS
	V	2400.00	59.49	30.33	6.32	24.55	60.03	74	-13.97	PK	PASS
OFOK	V	2400.00	44.32	30.33	6.32	24.55	44.86	54	-9.14	AV	PASS
GFSK						el: 2480MH					
	Н	2483.50	58.8	30.55	5.77	24.66	58.68	74	-15.32	PK	PASS
	Н	2483.50	41.43	30.55	5.77	24.66	41.31	54	-12.69	AV	PASS
	H	2500.00	57.60	30.33	6.32	24.55	58.14	74	-15.86	PK	PASS
	H	2500.00	44.22	30.33	6.32	24.55	44.76	54	-9.24	AV	PASS
	V	2483.50	59.91	30.55	5.77	24.66	59.79	74	-14.21	PK	PASS
	V	2483.50	44.73	30.55	5.77	24.66	44.61	54	-9.39	AV	PASS
	V	2500.00	57.98	30.33	6.32	24.00	58.52	74	-15.48	PK	PASS
	V	2500.00	44.63	30.33	6.32	24.55	45.17	54	-8.83	AV	PASS

🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn 🍼 🏐 http://www.zht-lab.cn

6.POWER SPECTRAL DENSITY TEST

Test Requirement:	FCC Part15 C Section 15.247 (e)	
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02	

6.1 APPLIED PROCEDURES / LIMIT

		1.	- 7.0			
FCC Part15 (15.247) , Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247	Power Spectral Density	8dBm/3kHz	2400-2483.5	PASS		

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 DEVIATION FROM STANDARD

No deviation. 6.4 TEST SETUP

EUT SPECTRUM ANALYZER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

	415 41	-	
Temperature :	25.6℃	Relative Humidity :	53.1%
Test Mode :	GFSK	Test Voltage :	DC 3.3V

2	Modulation	Frequency	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result	5
		2402 MHz	-14.39	8	PASS	
	GFSK-1M	2440 MHz	-14.12	8	PASS	
		2480 MHz	-14.19	8	PASS	

Project No.: ZHT-240711017E-1 Page 29 of 44

PSD NVNT BLE 1M 2480MHz Ant1

7. CHANNEL BANDWIDTH

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02	

7.1 APPLIED PROCEDURES / LIMIT

	1			1 2 1			
FCC Part15 (15.247) , Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(a)(2)	15.247(a)(2) Bandwidth >= 500KHz (6dB bandwidth)		2400-2483.5	PASS			

7.2 TEST PROCEDURE

1. Set RBW = 100 kHz.

- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

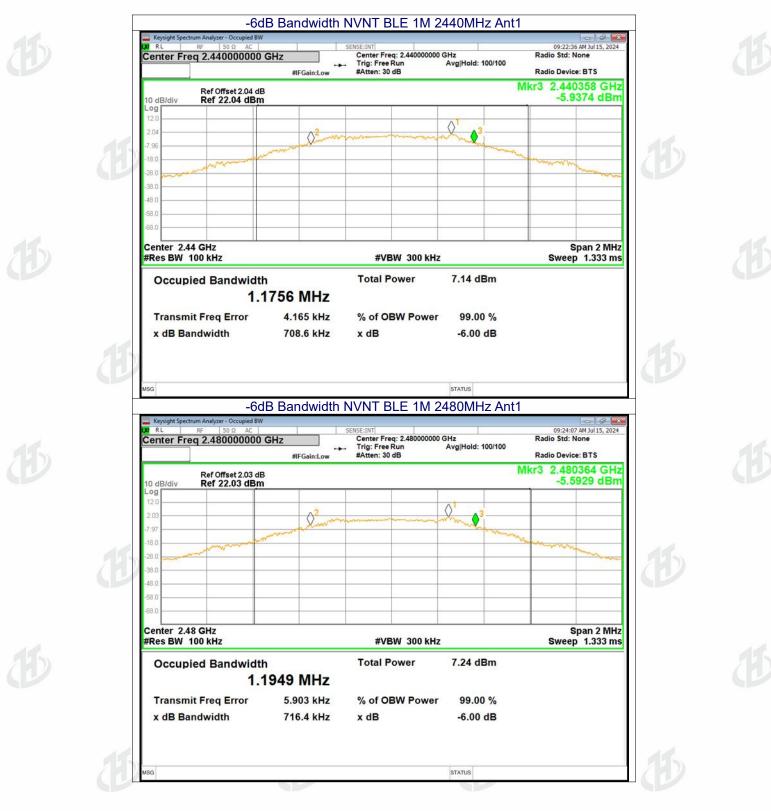
EUT	SPECTRUM
	ANALYZER

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



7.6 TEST RESULTS


Temperature :	25.6°C	Relative Humidity :	53.1%
Test Mode :	GFSK	Test Voltage :	DC 3.3V

Modulation	Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
C	Lowest	0.748		
GFSK-1M	Middle	0.709	>=500	Pass
	Highest	0.716		

8.PEAK OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

8.1 APPLIED PROCEDURES / LIMIT

1 5 1	1 2.	7.0		
	FC	C Part15 (15.247) , Subp	oart C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power meter

8.3 DEVIATION FROM STANDARD

No deviation.

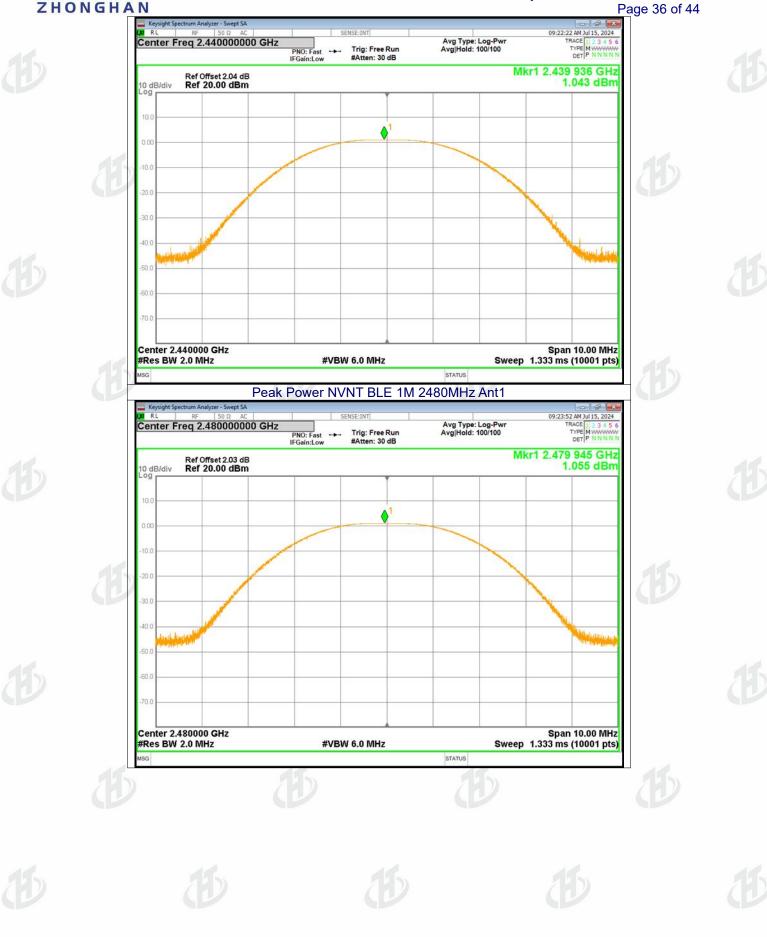
8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Project No.: ZHT-240711017E-1 Page 35 of 44

8.6 TEST RESULTS	15 1		
Temperature :	25.6℃	Relative Humidity :	53.1%
Test Mode :	GFSK	Test Voltage :	DC 3.3V


Modulation	Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
	Lowest	0.83		
GFSK-1M	Middle	1.04	30.00	Pass
	Highest	1.06		

Ċ

9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

P	Test Requirement:	FCC Part15 C Section 15.247 (d)	
	Test Method:	KDB558074 D0115.247 Meas Guidance v05r02	

9.1 APPLICABLE STANDARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

9.2 TEST PROCEDURE			
 Using the following spectrum analyzer A) Set the RBW = 100KHz. B) Set the VBW = 300KHz. C) Sweep time = auto couple. D) Detector function = peak. E) Trace mode = max hold. F) Allow trace to fully stabilize. 	setting:		
9.3 DEVIATION FROM STANDARD No deviation.			
9.4 TEST SETUP			
EUT		SPECTRUM ANALYZER	
9.5 EUT OPERATION CONDITIONS The EUT tested system was configu condition is specified in the follows du	ured as the statements of 2.4 L rring the testing.	Inless otherwise a special operation	ating
The EUT tested system was configu	ured as the statements of 2.4 L rring the testing.	Inless otherwise a special opera	ating

Project No.: ZHT-240711017E-1 Page 38 of 44

9.6 TEST RESULTS

Project No.: ZHT-240711017E-1 Page 39 of 44

	RL RF 50 Ω AC enter Freq 2.480000000 GHz	SENSE:INT PNO: Wide ++ Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 100/100	19:24:30 AM Jul 15, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N
10	dB/div Ref 20.00 dBm		Mkr1 2	479 880 GHz -0.078 dBm
	0.0			
	00			
		1 May		
-2	10		X	
-3	0		My -	
-4	.0			
-6	0.0	and the second s	my no	
-6	no manaman and and and		Mummum	Am mon Ass
-7				
	enter 2.480000 GHz			Span 8.000 MHz
#I	Res BW 100 kHz	#VBW 300 kHz	Sweep 1.00 STATUS	0 ms (1001 pts)
	Band Edge Keysight Spectrum Analyzer - Swept SA	NVNT BLE 1M 2480N	/Hz Ant1 Emission	
	RL RF 50 Ω AC enter Freq 2.526000000 GHz	SENSE:INT PNO: Fast +++ Trig: Free Run	Avg Type: Log-Pwr Avg Hold: 100/100	09:24:33 AM Jul 15, 2024 TRACE 1 2 3 4 5 6
i i i	Ref Offset 2.03 dB	IFGain:Low #Atten: 30 dB	52.8	2.480 0 GHz
L	dB/div Ref 20.00 dBm	Ĭ		0.168 dBm
c				
	0.0			DL1 -20.00 dBm
	0.0			
	2.0 at the manual and the second second	Magneric francis Property Superior		
(C) 4 4 7	200 at 22 and 24 and 3	Martin and Superior Superior	مەرىپىرىمەر مەرىپىرىمەر مەرىپىرىمەر مەرىپىرىمەر مەرىپىرىمەر مەرىپىرىمەر مەرىپىرىمەر مەرىپىرىمەر مەرىپىرىمەر مەر St	00 2.57600 GHz
() 4 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2.0 at the manual and the second second	#VBW 300 kHz	Sweep 9.60	op 2.57600 GHz 0 ms (1001 pts)
() 	art 2.47600 GHz Res BW 100 kHz	#VBW 300 kHz 2 0.168 dBm 2 -56.305 dBm 2 -56.790 dBm	Sweep 9.60	0 ms (1001 pts)
4 4 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Image: Constraint of the second sec	#VBW 300 kHz 2 0.168 dBm 2 -56.305 dBm 2 -56.790 dBm	Sweep 9.60	0 ms (1001 pts)
	000 0	#VBW 300 kHz 2 0.168 dBm 2 -56.305 dBm 2 -56.790 dBm	Sweep 9.60	0 ms (1001 pts)

Project No.: ZHT-240711017E-1 Page 40 of 44

Keysight Spectrum Analyzer - Su RL RF S0 1 Center Freq 2.4020	R AC SENSE:INT	Avg Type: Log-Pwr Avg Hold: 100/100	09:21:15 AN Jul 15, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N	
	PNO: Wide +++ Trig: Free Run IFGain:Low #Atten: 20 dB		DET P NNNNN 2.402 243 0 GHz	
10 dB/div Ref 12.03	03 dB dBm	WING	0.433 dBm	
2.03				
.7.97	man	month		
180	- more thank	- m	mon	
mon			and the second second	
-28.0				
-38.0				
-48.0				
-58.0				
-68.0				
-78.0				
Center 2.4020000 GH			Span 1.500 MHz	
#Res BW 100 kHz	#VBW 300 kHz	Sweep	1.000 ms (1001 pts)	
Keysight Spectrum Analyzer - Sv	x. Spurious NVNT BLE 1M 24	02MHz Ant1 Emissic		
Center Freq 13.265		Avg Type: Log-Pwr	09:21:44 AM Jul 15, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N	
24 (AL	PNO: Fast +++ Trig: Free Run IFGain: low #Atten: 20 dB	Avg Hold: 10/10		
	IFGain:Low #Atten: 20 dB	058		
10 dB/div Ref Offset 2 20 dB/div Ref 12.03	.03 dB	058	Mkr1 2.401 7 GHz -0.779 dBm	
10 dB/div Ref 12.03	.03 dB	058	Mkr1 2.401 7 GHz	
10 dB/div Ref 12.03 2.03 -7.97 -18.0	.03 dB	058	Mkr1 2.401 7 GHz	
10 dB/div Ref 12.03 2.03 -7.97	03 dB dBm	058	Mkr1 2.401 7 GHz -0.779 dBm	
10 dB/div Ref 12.03 2.03 -7.97 -18.0 -28.0	.03 dB	058	Mkr1 2.401 7 GHz -0.779 dBm	
10 dB/div Ref 12.03 2.03 7.97 -18.0 -28.0 -28.0 -38.0 -48.0 -58.0 -58.0 -58.0	03 dB dBm	058	Mkr1 2.401 7 GHz -0.779 dBm	
10 dB/div Ref 12.03 2 03 -7.97 -18.0 -28.0 -38.0 -48.0 -58.0 -58.0 -78.0	03 dB dBm	058	Mkr1 2.401 7 GHz -0.779 dBm	
10 dB/div Ref 12.03 2 03 -7 97 -18 0 -28 0 -38 0 -48 0 -58	03 dB dBm	Swee	Mkr1 2.401 7 GHz -0.779 dBm 	
10 dB/div Ref 12.03 2 03 7.97 -180 -280 -380 -480 -580 -580 -580 -580 -580 -580 -580 -580 -580 -580 -580 -580 -78	.03 dB dBm	Swee	Mkr1 2.401 7 GHz -0.779 dBm	
10 dB/div Ref 12.03 2.03 7.97 -18.0 -28.0 -28.0 -38.0 -48.0 -59.0 -58.	.03 dB dBm	Swee	Mkr1 2.401 7 GHz -0.779 dBm 	
10 dB/div Ref 12.03 Log 2.03 7.97 -18.0 -28.0 -38.0 -48.0 -58.0 -58.0 -78.0 Start 30 MHz #Res BW 100 kHz MXX MODE RCE SOL 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	03 dB dBm	Swee	Mkr1 2.401 7 GHz -0.779 dBm 	
10 dB/div Ref 12.03 0 dB/	03 dB dBm	Swee	Mkr1 2.401 7 GHz -0.779 dBm 	

Project No.: ZHT-240711017E-1 Page 41 of 44

Tx. Spurious NVNT BLE 1M 2440MHz Ant1 Ref Keysight S RL 09:23:00 AM Jul 15, 2024 TRACE 1 2 3 4 5 0 TYPE M WWWW DET P N N N N Center Freq 2.440000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 20 dB PNO: Wide IFGain:Low Mkr1 2.440 238 5 GHz Ref Offset 2.04 dB Ref 12.04 dBm 0.637 dBm 10 dB/div ٥ 10 Span 1.500 MHz 1.000 ms (1001 pts) Center 2.4400000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep STATUS Tx. Spurious NVNT BLE 1M 2440MHz Ant1 Emission 09:23:30 AM Jul 15, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNN RL Center Freq 13.265000000 GHz Avg Type: Log-Pwr Avg|Hold: 10/10 Trig: Free Run #Atten: 20 dB PNO: Fast IFGain:Low Mkr1 2.439 7 GHz -1.434 dBm Ref Offset 2.04 dB Ref 12.04 dBm 0 dB/div DL1 -19: \Diamond \Diamond^5 O^4 48 Start 30 MHz Stop 26.50 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.530 s (30001 pts) MKR MODE TRC SCL 2.439 7 GHz 4.880 2 GHz 4.880 2 GHz 7.319 8 GHz 9.760 4 GHz -1.434 dBm NNNN -45.892 dBm -45.892 dBm -54.732 dBm -53.254 dBm 234567891011 STATUS

Project No.: ZHT-240711017E-1 Page 42 of 44

Keysight Spectrum Analyzer	0 Ω AC SENSE:INT 0000000 GHz PNO: Wide → Trig: Free Run	Avg Type: Log-Pwr Avg Hold: 100/100	09:24:39 AM Jul 15, 2024 TRACE 12 34 5 6 TYPE M WWWWW DET P N N N N N
Ref Offse	IFGain:Low #Atten: 20 dB		480 259 5 GHz 0.630 dBm
10 dB/div Ref 12.0	3 dBm		0.650 dBm
2.03	wwwwwwww	mmmmm	11
-7.97	mana	and and all all all all all all all all all al	
-18.0			M. Marine
-28.0			
-38.0			
-58.0			
-68.0			
-78.0			
Center 2.4800000 (247		Span 1.500 MHz
#Res BW 100 kHz	#VBW 300 kHz	Sweep 1.	000 ms (1001 pts)
	Tx. Spurious NVNT BLE 1M 2480	MHz Ant1 Emission	
Keysight Spectrum Analyzer	0 Ω AC SENSE:INT	Avg Type: Log-Pwr	09:25:08 AM Jul 15, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N
Ref Offse	PNO: Fast ++- Trig: Free Run IFGain:Low #Atten: 20 dB	Avg Hold: 10/10	1 2.480 2 GHz
10 dB/div Ref 12.0			-0.394 dBm
-7.97			Du1 -19-37 (Br)
-28.0			
28.0			
-38.0			
-48.0 -58.0 -68.0			B
-48.0 -58.0 -68.0 -78.0 -78.0 -78.0 -78.0			Stop 26.50 GHz
-48.0 -58.0 -78.0 -78.0 -78.0 Start 30 MHz #Res BW 100 kHz MX02 M002 TRO SCL	#VBW 300 kHz		Stop 26.50 GHz 530 s (30001 pts)
-48.0 -58.0 -68.0 -78.0 Start 30 MHz #Res BW 100 kHz IMRE MODE FIRE SCL	#VBW 300 kHz 2,480 2 GHz 4959 6 GHz 465 76 dBm		530 s (30001 pts)
-48.0 -58.0 -58.0 -78.0 -78.0 Start 30 MHz #Res BW 100 kHz MXR MODE FIGE SCI 1 N f 3 N f 3 N f 4 N f 5 N f 6 N f 6 N f 6 N f 6 N f	#VBW 300 kHz		530 s (30001 pts)
-48.0 -58.0 -58.0 -78.0 Start 30 MHz #Res BW 100 kHz MCR MODE FC Sci 1 N f 3 N f 4 N f 6 N f 6	#VBW 300 kHz 2,480 2 GHz 4959 6 GHz 465 76 dBm		530 s (30001 pts)

Project No.: ZHT-240711017E-1 Page 43 of 44

10.ANTENNA REQUIREMENT

St	andard require	ment:	FCC Part15	C Section 15.2	03 /247(b)(4)		
An be int us 15 (4) dir dir be dir be	e used with the detentional radiator, e of a standard a 5.247(b) (4) requir) The conducted rectional gains the rectional gain gre clow the stated varectional gain of the JT Antenna:	ator shall be desig evice. The use of , the manufacture antenna jack or el rement: output power limi at do not exceed eater than 6 dBi a alues in paragrap the antenna excee		attached antenna unit so that a bro r is prohibited. agraph (b) of this shown in paragra ucted output pow and (b)(3) of this s	or of an antenna ken antenna can section is based aph (c) of this sec rer from the intent section, as approp	that uses a unique be replaced by the teplaced by the on the use of ant tion, if transmitting transmitting and a to the amore the term of	ue coupling to the he user, but the ennas with g antennas of all be reduced bunt in dB that the
Th	e antenna is PC	B antenna, the be	est case gain of th	ne antennas is Od	Bi, reference to the	he appendix II for	details

