

FCC §15.247 (i), §2.1091 – RF Exposure

FCC ID: 2BHRI-HTDAC101

Applied procedures / limit

According to FCC §15.247(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

Note: *f* is frequency in MHz

* = Power density limit is applicable at frequencies greater than 100 MHz

Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: *f* = frequency in MHz

* = Plane-wave equivalent power density

MPE PREDICTION

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna, R=20cm

Test Result of RF Exposure Evaluation

	Tune up Produce power	Maximum peak output power (dBm)	Output power to antenna (mW)	Antenna Gain (numeric)	Power Density (S) (mW/ cm ²)	Limit (mW/ cm ²)	Result
LTE BAND 38	21±1	22	158.4893	1.2218 (0.87dBi)	0.0385	1	Pass
LTE BAND 40a	22±1	23	199.5262	1.3122 (1.18dBi)	0.0521	1	Pass
LTE BAND 40b	21±1	22	158.4893	1.5031 (1.77dBi)	0.047	1	Pass
LTE BAND 41	21±1	22	158.4893	1.3836 (1.41dBi)	0.0436	1	Pass
BLE	0±1	1	1.2589	2.2387 (3.5dBi)	0.0006	1	Pass
2.4GWIFI	14±1	15	31.6228	2.2387 (3.5dBi)	0.014	1	Pass

$S=0.0521/1+0.0006/1+0.014/1=0.0667 < 1$, The result is pass