

FCC Radio Test Report

FCC ID: 2BHQS-PSM803

This report concerns: Original Grant

Project No.	:	2405H020
Equipment	:	Smart Module
Brand Name	:	N/A
Test Model	:	PSM803
Series Model	:	N/A
Applicant	:	Phoenix Season LLC
Address	:	113 Cruiser Irvine, California 92618 United States
Manufacturer	:	Phoenix Season LLC
Address	:	113 Cruiser Irvine, California 92618 United States
Date of Receipt	:	May 16, 2024
Date of Test	:	May 20, 2024~Jul. 31, 2024
Issued Date	:	Sep. 25, 2024
Report Version	:	R01
Test Sample	:	Engineering Sample No.: SH202406256 for radiated,
		SH2024051641 for conducted, SH20240517566 for adapter.
Standard(s)	:	FCC CFR Title 47, Part 15, Subpart C FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2013

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc. (Shanghai)

Louis

Prepared by : Louis Li

piley nei

Approved by : Riley Wei

Add: No. 29, Jintang Road, Tangzhen Industry Park, Pudong New Area, Shanghai 201210, China.Tel: +86-021-61765666Web: www.newbtl.comService mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. BTL assumes no responsibility for the data provided by the customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by BTL.

The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025: 2017 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	5
1 . SUMMARY OF TEST RESULTS	6
1.1 TEST FACILITY	7
1.2 MEASUREMENT UNCERTAINTY	7
1.3 TEST ENVIRONMENT CONDITIONS	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF EUT	8
2.2 DESCRIPTION OF TEST MODES	10
2.3 PARAMETERS OF TEST SOFTWARE	11
2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	12
2.5 SUPPORT UNITS	12
3 . RADIATED EMISSIONS	13
3.1 LIMIT	13
3.2 TEST PROCEDURE	14
3.3 DEVIATION FROM TEST STANDARD	15
3.4 TEST SETUP	15
3.5 EUT OPERATING CONDITIONS	17
3.6 TEST RESULT - 9 KHZ TO 30 MHZ	17
3.7 TEST RESULT - 30 MHZ TO 1000 MHZ	17
3.8 TEST RESULT - ABOVE 1000 MHZ	17
4.BANDWIDTH	18
4.1 LIMIT	18
4.2 TEST PROCEDURE	18
4.3 DEVIATION FROM STANDARD	18
4.4 TEST SETUP	18
4.5 EUT OPERATION CONDITIONS	18
4.6 TEST RESULTS	18
5 . MAXIMUM OUTPUT POWER	19
5.1 LIMIT	19
5.2 TEST PROCEDURE	19
5.3 DEVIATION FROM STANDARD	19
5.4 TEST SETUP	19

Table of Contents	Page
5.5 EUT OPERATION CONDITIONS	19
5.6 TEST RESULTS	19
6 . CONDUCTED SPURIOUS EMISSION	20
6.1 LIMIT	20
6.2 TEST PROCEDURE	20
6.3 DEVIATION FROM STANDARD	20
6.4 TEST SETUP	20
6.5 EUT OPERATION CONDITIONS	20
6.6 TEST RESULTS	20
7 . POWER SPECTRAL DENSITY	21
7.1 LIMIT	21
7.2 TEST PROCEDURE	21
7.3 DEVIATION FROM STANDARD	21
7.4 TEST SETUP	21
7.5 EUT OPERATION CONDITIONS	21
7.6 TEST RESULTS	21
8 . MEASUREMENT INSTRUMENTS LIST	22
9.EUT TEST PHOTO	25
APPENDIX A - RADIATED EMISSION - 9 KHZ TO 30 MHZ	30
APPENDIX B - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	35
APPENDIX C - RADIATED EMISSION - ABOVE 1000 MHZ	38
APPENDIX D - BANDWIDTH	55
APPENDIX E - MAXIMUM OUTPUT POWER	58
APPENDIX F - CONDUCTED SPURIOUS EMISSION	61
APPENDIX G - POWER SPECTRAL DENSITY	64

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-6-2405H020	R00	Original Report.	Sep. 13, 2024	Invalid
BTL-FCCP-6-2405H020	R01	Revised report to address TCB's comments.	Sep. 25, 2024	Valid

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart C					
Standard(s) Section	Test Item	Test Result	Judgment	Remark	
15.207	AC Power Line Conducted Emissions	APPENDIX A	N/A		
15.247(d) 15.205(a) 15.209(a)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	PASS		
15.247(a)(2)	Bandwidth	APPENDIX E	PASS		
15.247(b)(3)	Maximum Output Power	APPENDIX F	PASS		
15.247(d)	Conducted Spurious Emission	APPENDIX G	PASS		
15.247(e)	Power Spectral Density	APPENDIX H	PASS		
15.203	Antenna Requirement		PASS	Note(2)	

Note:

(1) "N/A" denotes test is not applicable to this device.

(2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No. 29, Jintang Road, Tangzhen Industry Park, Pudong New Area, Shanghai 201210,China BTL's Registration Number for FCC: 964234 BTL's Designation Number for FCC: CN1374

1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table:

A. Radiated emissions test:

Test Site	Measurement Frequency Range	Ant. H / V	U, (dB)
	9 KHz~30 MHz	-	2.72
	30 MHz~200 MHz	V	4.4
	30 MHz~200 MHz	H	3.16
SH-CB02	200 MHz~1,000 MHz	V	4.6
	200 MHz~1,000 MHz	H	4.2
	1GHz ~ 6GHz	-	4.56
	6GHz ~ 18GHz	-	5.14
	18 ~ 26.5 GHz	-	1.68
	26.5~40 GHz		1.71

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
Radiated Emissions-9 kHz to 30 MHz	26.1°C	49%	AC 120V/60Hz	Yahya Fang
Radiated Emissions-30 MHz to 1000 MHz	27°C	54%	AC 120V/60Hz	Yahya Fang
Radiated Emissions-Above 1000 MHz	23.8°C~26.1°C	41%~49%	AC 120V/60Hz	Yahya Fang
Bandwidth	24.3°C	55%	AC 120V/60Hz	Thacker Tang
Maximum Output Power	24.3°C	55%	AC 120V/60Hz	Thacker Tang
Conducted Spurious Emission	24.3°C	55%	AC 120V/60Hz	Thacker Tang
Power Spectral Density	24.3°C	55%	AC 120V/60Hz	Thacker Tang

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Smart Module
Brand Name	N/A
Test Model	PSM803
Series Model	N/A
Model Difference(s)	N/A
Software Version	QCS8550_LE.1.0_AP
Hardware Version	PSM803
Power Source	DC Voltage supplied from AC/DC adapter
Power Rating	I/P: 100-240V~50/60Hz 1.5A O/P: 12.0V5.0A 60.0W
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Type	GFSK
Bit Rate of Transmitter	1Mbps, 2Mbps
Max. Output Power	1Mbps: 11.34 dBm (0.0136W)

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Test according to the manufacturer's declared power.

2. Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

3. Table for Filed Antenna:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	N/A	N/A	External Antenna	R-SMA	5.82

Note:

The antenna gain is provided by the manufacturer.

2.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description		
Mode 1	TX Mode_1Mbps Channel 00/19/39		
Mode 2	TX Mode_2Mbps Channel 00/19/39		

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

Radiated emissions test - Below 1GHz			
Final Test Mode	Description		
Mode 1	TX Mode_1Mbps Channel 00		

Radiated emissions test - Above 1GHz	
Final Test Mode	Description
Mode 1	TX Mode_1Mbps Channel 00/19/39
Mode 2	TX Mode_2Mbps Channel 00/19/39

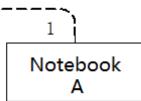
Conducted test	
Final Test Mode	Description
Mode 1	TX Mode_1Mbps Channel 00/19/39
Mode 2	TX Mode_2Mbps Channel 00/19/39

Note:

(1) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.

(2) For Radiated emissions below 1 GHz test, the 1Mbps Channel 00 is found to be the worst case and recorded.

2.3 PARAMETERS OF TEST SOFTWARE


During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Test Software Version		QRCT	
Frequency (MHz)	2402	2440	2480
1Mbps	Default	Default	Default
2Mbps	Default	Default	Default

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

EUT AC 100-240V

2.5 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.
А	Notebook	Dell	Inspiron 15-7559	N/A

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	USB Cable	NO	NO	10m

3. RADIATED EMISSIONS

3.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	(dBuV/m at 3 m)	
Frequency (winz)	Peak	Average
Above 1000	74	54

Note:

(1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

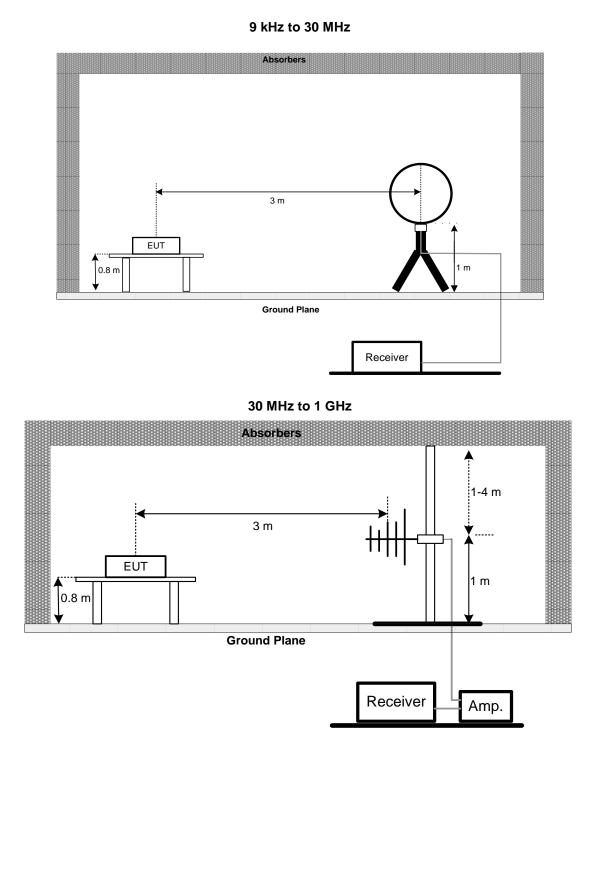
3.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:

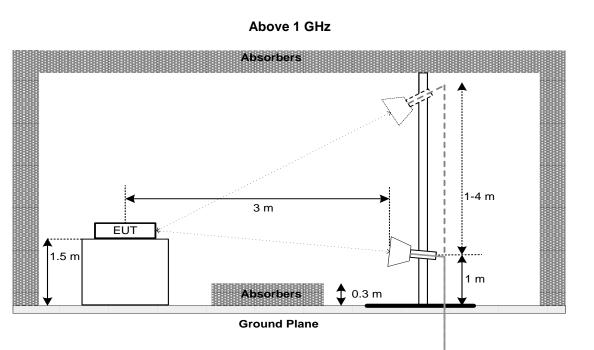
Spectrum Parameters	Setting
Start ~ Stop Frequency	9 kHz~150 kHz for RBW 200 Hz
Start ~ Stop Frequency	0.15 MHz~30 MHz for RBW 9 kHz
Start ~ Stop Frequency	30 MHz~1000 MHz for RBW 100 kHz

Spectrum Parameters	Setting
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1 MHz / 3 MHz for PK value
(Emission in restricted band)	1 MHz / 1/T Hz for AVG value


Spectrum Parameters	Setting
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector
Start ~ Stop Frequency	30 MHz~1000 MHz for QP detector
Start ~ Stop Frequency	1 GHz~26.5 GHz for PK/AVG detector

3.3 DEVIATION FROM TEST STANDARD

No deviation.


3.4 TEST SETUP

Amp.

Receiver

3.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

3.6 TEST RESULT - 9 kHz TO 30 MHz

Please refer to the Appendix A.

Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

3.7 TEST RESULT - 30 MHz TO 1000 MHz

Please refer to the Appendix B.

3.8 TEST RESULT - ABOVE 1000 MHz

Please refer to the Appendix C.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

4. BANDWIDTH

4.1 LIMIT

Section	Test Item	Limit
	6 dB Bandwidth	>= 500 kHz
FCC 15.247(a)(2)	99% Emission Bandwidth	-

4.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

For 6 dB Bandwidth:

Spectrum Parameters	Setting
Span Frequency	> Measurement Bandwidth
RBW	100 kHz
VBW	300 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

For 99% Emission Bandwidth:

Spectrum Parameters	Setting			
Span Frequency	Between 1.5 times and 5.0 times the OBW			
RBW 30 kHz				
VBW	100 kHz			
Detector Peak				
Trace	Max Hold			
Sweep Time	Auto			

4.3 DEVIATION FROM STANDARD

No deviation.

4.4 TEST SETUP

4.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULTS

Please refer to the Appendix D.

5. MAXIMUM OUTPUT POWER

5.1 LIMIT

Section	Test Item	Limit	
FCC 15.247(b)(3)	Maximum Output Power	1.0000 watt or 30.00 dBm	

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	≥ 3×RBW
RBW	3 MHz
VBW	3 MHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS

Please refer to the Appendix E.

6. CONDUCTED SPURIOUS EMISSION

6.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Start Frequency	30 MHz
Stop Frequency	26.5 GHz
RBW	100 kHz
VBW	300 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULTS

Please refer to the Appendix F.

7. POWER SPECTRAL DENSITY

7.1 LIMIT

Section	Test Item	Limit
FCC 15.247(e)	Power Spectral Density	8 dBm (in any 3 kHz)

7.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting	
Span Frequency	2 MHz (1 Mbps) / 4 MHz (2 Mbps)	
RBW	3 kHz	
VBW	10 kHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the Appendix G.

8. MEASUREMENT INSTRUMENTS LIST

	Radiated Emissions - 9 kHz to 30 MHz					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Loop Antenna	EMCI	EMCI LPA600	275	Mar. 12, 2025	
2	MXE EMI Receiver	Keysight	N9038A	MY56400088	Feb. 2, 2025	
3	Measurement Software	Farad	EZ-EMC Ver.NB-03A1	N/A	N/A	
4	Wideband Radio Communication Test	R&S	CMW500	129246	Jul. 12, 2025	
5	Pre-Amplifier	emci	EMC9135	980401	Feb. 2, 2025	

	Radiated Emissions - 30 MHz to 1 GHz						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Antenna	emci	VULB 9168	1467	Mar. 12, 2025		
2	Pre-Amplifier	emci	EMC9135	980401	Feb. 2, 2025		
3	MXE EMI Receiver	Keysight	N9038A	MY56400088	Feb. 2, 2025		
4	Test Cable	emci	EMC104-SM-SM-7 000	181020	May 20, 2025		
5	Test Cable	emci	RWP50-4.6A-SMS M-1M	20200928 002	May 20, 2025		
6	Test Cable	emci	EMC104-SM-SM-2 500	170618	May 20, 2025		
7	Measurement Software	Farad	EZ-EMC Ver.NB-03A1	N/A	N/A		
8	Wideband Radio Communication Test	R&S	CMW500	129246	Jul. 13, 2024 Jul. 12, 2025		

	Radiated Emissions - Above 1 GHz						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Double-Ridged Waveguide Horn Antenna	ETS-Lindgren	BBHA 9120D	9120D-1817	Mar.12, 2025		
2	Pre-Amplifier	emci	EMC051845SE	980725	Jul. 13, 2024 Jul. 12, 2025		
3	EXA Spectrum Analyzer	Keysight	N9010A	MY56480579	Feb. 2, 2025		
4	Test Cable	emci	EMC104-SM-SM-7 000	181020	May 20, 2025		
5	Test Cable	emci	RWP50-4.6A-SMS M-1M	20200928 002	May 20, 2025		
6	Test Cable	emci	EMC104-SM-SM-2 500	170618	May 20, 2025		
7	Measurement Software	Farad	EZ-EMC Ver.NB-03A1	N/A	N/A		
8	Wideband Radio Communication Test	R&S	CMW500	129246	Jul. 13, 2024 Jul. 12, 2025		
9	Antenna	Schwarzbeck	BBHA9170	9170-651	Mar. 15, 2025		
10	Pre-Amplifier	EMC INSTRUMENT	EMC184045B	980265	Feb. 2, 2025		
11	Test Cable	emci	100% S-Parameter Recorded	F02-150819-039	Oct. 21, 2024		
12	Test Cable	emci	EMC104-SM-SM-2 500	170616	Oct. 21, 2024		
13	Test Cable	emci	EMC104-SM-SM-2 500	170652	Oct. 21, 2024		
14	EXA Spectrum Analyzer	Keysight	N9010A	MY56480559	Feb. 2, 2025		

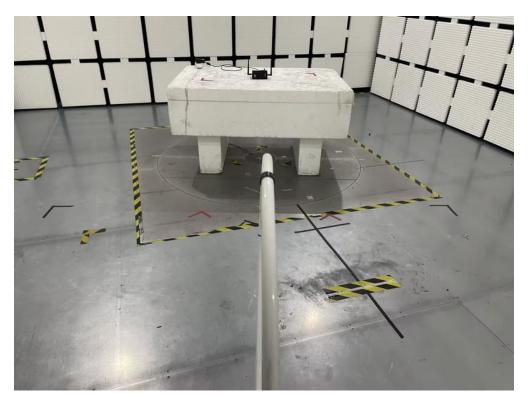
	Bandwidth					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	EXA Spectrum Analyzer	Keysight	N9010A	MY56480545	Jul. 13, 2024 Jul. 12, 2025	
2	BTL Conducted Test	BTL	20231123	N/A	N/A	

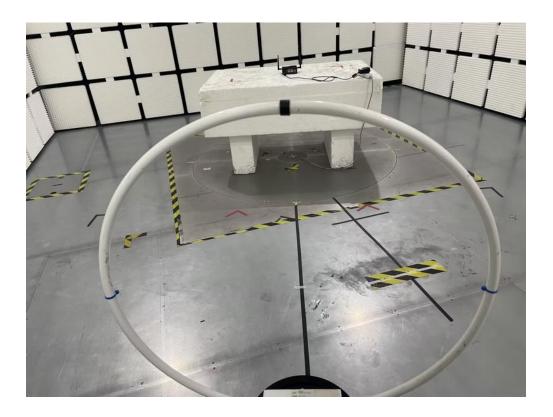
	Maximum Output Power					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	EXA Spectrum	Keysight	N9010A	MY56480545	Jul. 13, 2024	
	Analyzer				Jul. 12, 2025	
2	BTL Conducted Test	BTL	20231123	N/A	N/A	

	Antenna Conducted Spurious Emissions					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	EXA Spectrum	Keysight	Keysight N9010A	MY56480545	Jul. 13, 2024	
	Analyzer				Jul. 12, 2025	
2	BTL Conducted Test	BTL	20231123	N/A	N/A	

Power Spectral Density										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until					
1	EXA Spectrum	Keysight	N9010A	MY56480545	Jul. 13, 2024					
	Analyzer				Jul. 12, 2025					
2	BTL Conducted Test	BTL	20231123	N/A	N/A					

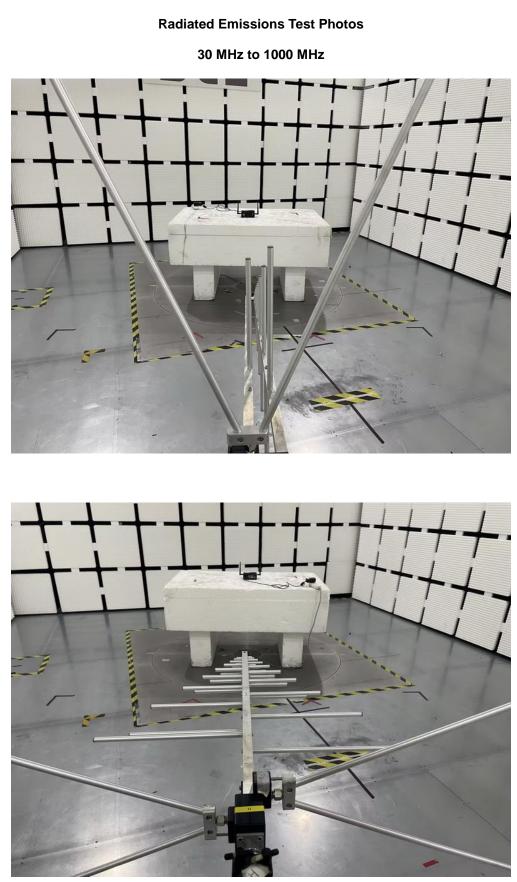
Remark: "N/A" denotes no model name, serial no. or calibration specified.

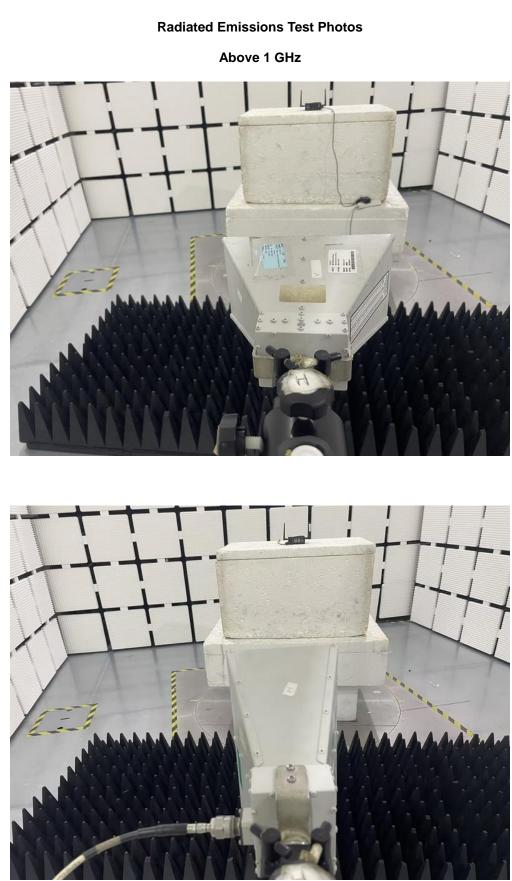

All calibration period of equipment list is one year.

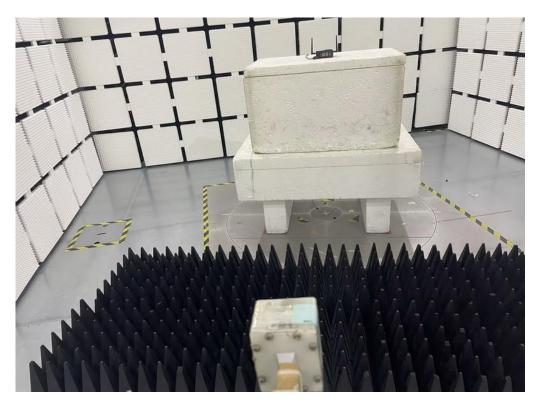


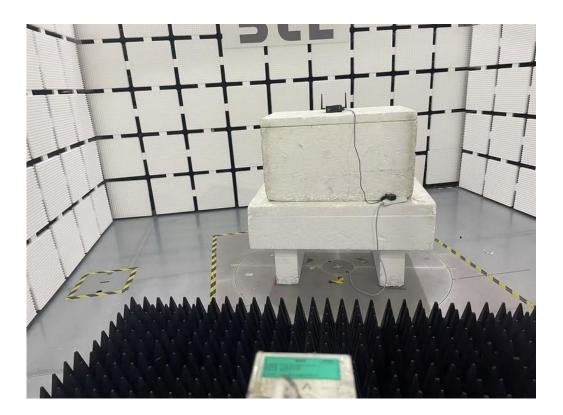
9. EUT TEST PHOTO

Radiated Emissions Test Photos


9 kHz to 30 MHz



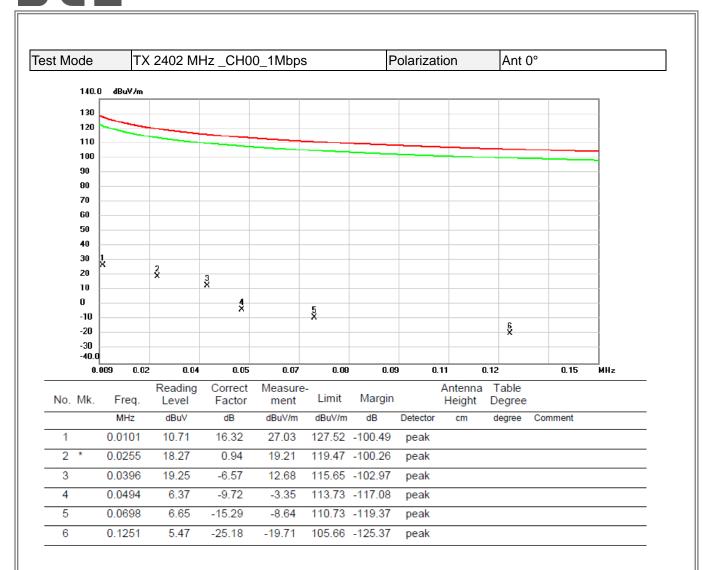


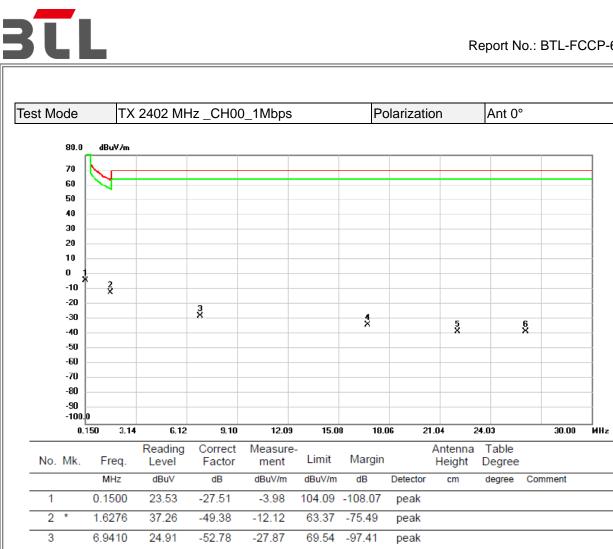


3TL

Radiated Emissions Test Photos

Above 18 GHz




<section-header>

APPENDIX A - RADIATED EMISSION - 9 KHZ TO 30 MHZ

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

4

5

6

16.7914

22.1047

26.1046

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

20.98

17.50

19.10

-54.43

-55.70

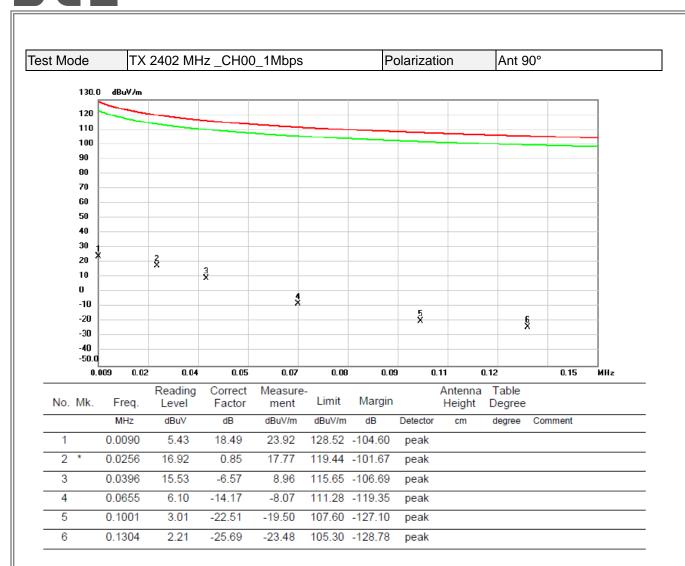
-57.39

-33.45

-38.20

-38.29

69.54 -102.99


69.54 -107.74

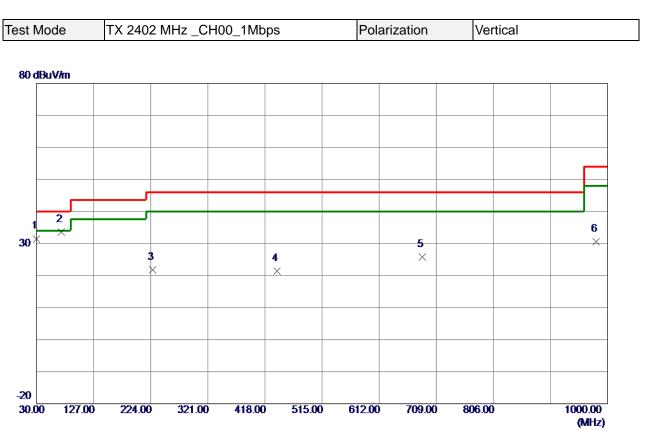
69.54 -107.83

peak

peak

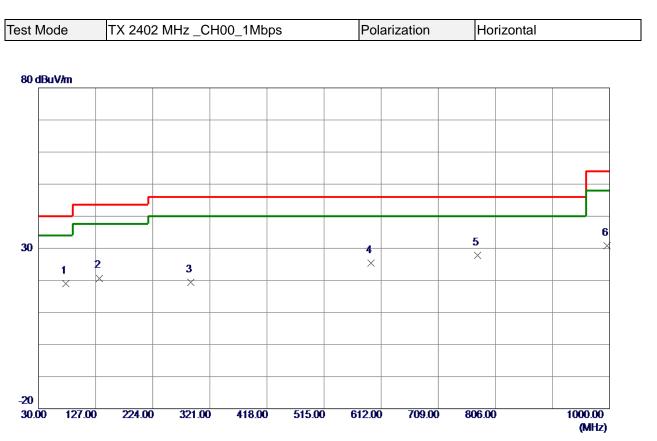
peak

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


Mode		TX 2	TX 2402 MHz _CH00_1Mbps				F	Polarizati	ation Ant 90°			
80.	.0 0	lBu¥/m										
70 60 50 40 30 20 10		4										
-10 -20 -30 -40 -50 -50 -70 -70 -80))))	2		3X		4 ×		5 X		Š		
-90 -10))0.0											-
	0.150	3.14	6.12	9.10	12.09	15.0	3 19	0.06 21	1.04	24.03	30.00	MHz
No. Mk	t.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Margii	ı	Antenna Height	a Table Degree		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1	0.	1500	24.56	-27.51	-2.95	104.09	-107.04	peak				
2 *	1.	7171	31.98	-49.60	-17.62	69.54	-87.16	peak				
3	6.	8215	25.71	-52.80	-27.09	69.54	-96.63	peak				
4	14.	7020	25.19	-53.74	-28.55	69.54	-98.09	peak				
5	20.	2241	21.88	-55.26	-33.38	69.54	-102.92	peak				
6	25.	6568	25.10	-57.35	-32.25	69.54	-101.79	peak				

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

APPENDIX B - RADIATED EMISSION - 30 MHZ TO 1000 MHZ



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	30.0000	49.02	-17. 52	31. 50	40.00	-8. 50	Peak	
2 *	72. 1950	52.23	-18.69	33. 54	40.00	-6.46	Peak	
3	227. 3950	39.26	-17.42	21.84	46.00	-24.16	Peak	
4	438.8550	32. 54	-11.23	21.31	46.00	-24.69	Peak	
5	685. 2350	32.80	-7.05	25.75	46.00	-20. 25	Peak	
6	980. 1150	33.82	-3. 19	30.63	54.00	-23. 37	Peak	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	76.0750	38.70	-19.66	19.04	40.00	-20.96	Peak	
2	133. 7899	37. 30	-16. 60	20.70	43. 50	-22.80	Peak	
3	288. 5050	34. 03	-14.64	19.39	46.00	-26.61	Peak	
4	594. 5400	32. 93	-7.57	25.36	46.00	-20.64	Peak	
5 *	775. 4450	33. 25	-5. 44	27.81	46.00	-18. 19	Peak	
6	995. 6350	33. 83	-3.06	30.77	54.00	-23. 23	Peak	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C - RADIATED EMISSION - ABOVE 1000 MHZ

est N	lode	TX 2402 M	Hz _CH00_	1Mbps	Pola	arization	Vertical	
10.9 GL	BuV/m							
-								
F								
-								
_								
F				×				
-				<u>ě</u>				
				×				
13.1								
1000	0.00 2700.00	4400.00	6100.00 70	300.00 9500	.00 1120	0.00 12900	00 14600.00	18000.00 (MHz)
lo.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	7205.000		-11. 99	51.22	74.00	-22. 78	Peak	
*	7205.000	0 57.16	-11. 99	45.17	54.00	-8.83	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

est Mode	TX 2402 M	1Hz _CH00_	1Mbps	Pola	arization	Horizon	tal
120 dBuV/m							
				2			
70							
10							
		5	3				
Mananana	Mush Mark Marker	Ammerican marked	monowade	and an address of the second	halanatanana	heren white white	man mark hard hard and a second
		6	4				
		×					
20							
2310.00 2329	9.00 2348.00	2367.00 2	386.00 240	5.00 2424	.00 2443.0	0 2462.00	2500.00 (MHz)
No. Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	7700 75.20	31.63	106.83	74.00	32.83	Peak	
2 * 2401.	7700 72.84	31.63	104.47	54.00	50.47	AVG	

3 2390.0000 25.29 31.59 56. 88 74.00 -17.12 Peak 4 2390.0000 7.90 31. 59 **39. 49 54. 00** -14. 51 AVG 5 2356. 4550 26. 85 31.46 58.31 74.00 -15.69 Peak 6 2356. 4550 8. 43 31.46 39.89 **54. 00** -14. 11 AVG

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

est Mode	TX 2402	MHz_CH00)_1Mbps	6	Pola	arization	Horizor	ntal	
6.9 dBuV/m									
			×						
			2						
			×						
			3						
			×						
13.1									
1000.00 270	0.00 4400.00	6100.00	7800.00	9500.00	1120	0.00 12900	.00 14600.00	1800	
								(N	(Hz)
o. Freq	Level	Factor		.L	imit	Margin			
MHz	dBuV/m		dBu		BuV/m	dB	Detector	Comment	
8000	. 6000 61. 96	-10.68			4.00	-22.72	Peak		
	. 7000 55. 99	-11. 98			4.00	-29.99	Peak		
* 8000	. 6000 42. 85	-10.68	32.	17 5	4.00	-21.83	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mode	•	TX 2440 M	Hz_CH19	_1Mbp)S	Pol	arization		Vertical		
6.9 dBuV/m											
				1 2	2						
				\rightarrow	<						
3.1											
1000.00 2	700.00	4400.00	6100.00	7800.00	9500.	00 1120	0.00 129	00.00	14600.00		18000.00
1000.00 2	00.00	1100.00	0100.00	1000.00			120		11000.00		(MHz)
_		Reading	Correc	t Me	asure						-
o. Fre	q.	Level	Factor		nt	Limit	Margin	1			
MHz		dBuV/m	dB		uV/m	dBuV/m			tector	Commer	nt
) 59.68	-11. 76		. 92	74.00	-26. 08				
796	5. 75 0 () 58.58	-10.73	47	. 85	74.00	-26.15	Pe	ak		

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

est N	/lode	TX 2440 MI	Hz CH19	Mbps	Pola	arization	Horizont	al
_								
86.9 di T	BuV/m							
-				1				
ľ				×				
-				2				
				×				
ŀ				3				
				×				
ŀ								
ŀ								
13.1								
	0.00 2700.00) 4400.00	6100.00 78	300.00 950	0.00 1120	0.00 12900	.00 14600.00	18000.00
								(MHz)
No.	Freq.	Reading	Correct	Measure	Limit	Margin		
i 0 .		Level	Factor	ment				-
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
*		00 62.75 00 54.78	-10. 68 -11. 76	52.07 43.02	74.00 74.00	-21. 93 -30. 98	Peak Peak	
	1320.00	00 04.70	-11. (0	43.04	14.00	-30.98	геак	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

st M	lode	TX 2480 M	Hz _CH39_	1Mbps	Pol	arization	Vertical	
6.9 dE	3uV/m							
-								
				1				
		2		×				
		×						
-								
-								
3.1								
	.00 2700.00	4400.00	6100.00 7	800.00 9500	.00 1120	0.00 12900	0.00 14600.00	18000.00 (MHz)
о.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
*	7439.6000		-11. 52	45.36	74.00	-28.64	Peak	
	4960. 1500) 55. 54	-15. 20	40.34	74.00	-33.66	Peak	

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

Fest N	lode	TX 2480 M	Hz _CH39_′	1Mbps	Pola	arization	Horizonta	I
120 0	1BuV <i>i</i> m						1	
-								
								×
70								
								5
ł	bereter between the	. handa an anara	tere districts for the second	when when who have the	-	www.mw.fr.m.	and when have been and the	1 3 1
ŀ	We WARRAN TO DO TO THE	der and an and an and a strength of the streng	ala sette ana se ana s dos					
								46
								40 ××
-								
20								
	0.00 2329.00	2348.00	2367.00 23	386.00 2405	.00 2424	.00 2443.0	00 2462.00	2500.00
								(MHz)
lo.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
. *		49 75.88 49 73.80	31. 93 31. 93	107.81 105.73	74.00 54.00	33.81 51.73	Peak AVG	
3		49 73.80 00 24.68	31. 95	56.63	74.00	-17.37	Peak	
	0400 50		01.05	40.04	54.00	10.00	AVO	

3 4

5

6

2483. 5000 8. 69

2486.8899 26.82

2486.8899 8.82

(1) Measurement Value = Reading Level + Correct Factor.

31.95

31.96

31.96

40.64

58.78

40.78

54. 00

74.00

54.00

-13.36

-15.22

-13.22

AVG

AVG

Peak

(2) Margin Level = Measurement Value - Limit Value.

est N	Node	TX 2480 N	/Hz _CH39	_1Mbps	Pola	arization	Horizont	al
b.9 d	BuV/m							
ĺ								
			1 ×					
13.1 100	0.00 2700.00	4400.00	6100.00	7800.00 9500	.00 1120	0.00 12900	0.00 14600.00	18000.00
								(MHz)
lo.	Freq.	Reading	Correct		Limit	Margin		
	MHz	Level dBuV/m	Factor dB		dBuV/m	dB	Detector	Comment
*	4960.000		-15. 20	39.17	74.00	-34.83	Peak	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est N	lode	TX 2402 M	Hz _CH00_2	2Mbps	Pola	arization	Vertical	
.9 dE	NV/m							
-								
\vdash								
			2					
				<				
-								
┢								
1								
000	.00 2700.00	4400.00	6100.00 78	00.00 9500	.00 1120	0.00 12900	0.00 14600.00	18000.00 (MHz)
-	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
*	7205.000		-11.99	49.03	74.00	-24.97	Peak	
÷	7205.000	JU 51. 18	-11. 99	39.19	54.00	-14. 81	AVG	

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

est N	Node	TX 2402 MI	Hz _CH00_2	2Mbps	Pola	arization	Horizon	tal
120	dBuV/m							
				1				
				2				
				- ¥				
70								
· `					\ \			
				5 3				
	mannan	un and the second	unhowwww	mound	for the second second	manchematication	Monormun wonderson	manutantinter
				5 4				
				× +				
20	0.00 2329.0	0 2348.00	2367.00 23	86.00 2405	00 2424	.00 2443.	00 2462.00	2500.00
2011	0.00 2329.0	0 2340.00	2301.00 23	00.00 2400	.00 2424	.00 2443.	00 2402.00	2500.00 (MHz)
D .	Freq.	Reading	Correct	Measure	Limit	Margin		
		Level	Factor	ment			Detector	Commont
	MHz 2401 48	dBuV/m 350 75.17	dB 31.63	dBuV/m 106.80	dBuV/m 74.00	dB 32.80	Detector Peak	Comment
*		350 70. 64	31.63	102.27	54.00	48.27	AVG	
*		000 24.95	31. 59	56. 54	74.00	-17.46	Peak	
		000 7.93	31. <mark>59</mark>	39. 52	54.00	-14. 48	AVG	
	0070 00	00 00 00	01 55	50.40	74.00	15 50	D 1	

5

6

2379.9200 26.93

2379.9200 8.60

(1) Measurement Value = Reading Level + Correct Factor.

31.55

31.55

58.48

40.16

74.00

54.00

-15.52

-13.84

Peak

AVG

(2) Margin Level = Measurement Value - Limit Value.

Test N	lode	TX 2402 M	Hz CH00	2Mb	ps	Pola	arization	Horizon	tal
			_	_					
86.9 dl	BuV/m								
-									
-									
					1				
				2	×				
ŀ				×					
					_				
					3 ×				
					^				
13.1									
	0.00 2700.00) 4400.00	6100.00	7800.0	0 9500.	00 1120	0.00 12900	0.00 14600.00	18000.00
									(MHz)
lo.	Freq.	Reading Level	Correct Factor		easure ent	Limit	Margin		
	MHz	dBuV/m	dB		BuV/m	dBuV/m	dB	Detector	Comment
1 2		00 61.94	-10.69		. 25	74.00	-22.75	Peak	
: ; *		00 56.07	-11.98		1. 09	74.00	-29.91	Peak	
, *	1994. 60	00 42.96	-10. 69	32	2. 27	54.00	-21.73	AVG	

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

est N	Node	TX 2440 M	Hz _CH19_	2Mbps	Pola	arization	Vertical	
6.9 d	BuV/m							
ŀ				1				
-				_X				
ŀ								
-								
3.1								
100	0.00 2700.00	4400.00	6100.00 7	800.00 950).00 1120	0.00 12900	0.00 14600.00	18000.00 (MHz)
o.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
-	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
*	7321.450	0 59.70	-11. 76	47.94	74.00	-26.06	Peak	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

		1						
Test N	/lode	TX 2440 M	Hz _CH19_2	2Mbps	Pola	arization	Horizont	al
86.9 d	BuV/m							
[
-								
				1				
				×				
ľ				2				
				×				
				3 ×				
-								
-								
ŀ								
-13.1								
1000	0.00 2700.00	4400.00	6100.00 78	300.00 9500	0.00 1120	0.00 12900	00 14600.00	18000.00 (MHz)
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	7988.700		-10.70	50.25	74.00	-23.75	Peak	
2 3 *	7320.000		-11.76	41. 29 32. 22	74.00 54.00	-32.71	Peak AVG	
ე ≁	1988. 100	JU 42. 9Z	-10. 70	32. 22	34. 00	-21.78	AVG	

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

est Mode	-	TX 2480) MHz	_CH39_	2Mbps		Pol	arizatior	n	Vertical		
6.9 dBuV/m												
			1 ×									
13.1												
1000.00 27	00.00	4400.00) 61	00.00 7	800.00	9500.0	0 1120	0.00 12	900.00	14600.00		18000.00 (MHz)
No. Fred	1.	Readi Level]	Correct Factor	men		Limit	Margi				
MHz	1500	dBuV/n		dB	dBu		dBuV/m	dB		ector	Comm	ent
* 4960	. 1500	56.01	-	-15. 20	40.8	31	74.00	-33. 1	9 Pea	ık		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

est Mo	de	TX 2480 M	Hz _CH39_2	2Mbps	Pola	arization	Horizonta	al
120 dBi	uV <i>I</i> m							
								1
								×
								2
								×
70 🗖								
								3
								- ()
more	monum	while some dotter provide	how have been a start of the second	is all and more to the second	northerneternally	unperantion Maria	man white the second and the	road humanitation
								4 ×
								^
20								
	0 2329.00	2348.00	2367.00 23	86.00 2405	.00 2424	.00 2443.0	00 2462.00	2500.00
2010.0	0 2020.00	2010.00	2001.00 20	2100			50 2102.00	(MHz)
	_	Reading	Correct	Measure				
o. 1	Freq.	Level	Factor	ment	Limit	Margin		
-	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	2479.480		31.93	107.66	74.00	33.66	Peak	
	2479.480		31.93	98.72	54.00	44.72	AVG	
2	2483. 500	0 32.61	31.95	64.56	74.00	-9.44	Peak	

4

2483. 5000 11. 50

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

31.95

43.45

-10. 55

54. 00

AVG

est N	/lode	TX 2480 MH	Hz_CH39_2	2Mbps	Pola	arization	Horizonta	al
h 0 ai	BuV/m							
0.0 u								
				1				
				×				
				2				
				×				
				^				
13.1	0.00 2700.0	0 4400.00	6100.00 78	00.00 9500	.00 1120	0.00 12900	0.00 14600.00	18000.00
100	0.00 2700.0	0 4400.00	0100.00 70	00.00 9000	.00 1120	0.00 12900	14000.00	(MHz)
		Reading	Correct	Measure				
lo.	Freq.	Level	Factor	ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
		000 60. 23	-10.72	49.51	74.00	-24.49	Peak	
? \$ *		000 53. 51	-11.52	41.99	74.00	-32.01	Peak	
*	7971.70	000 43. 07	-10.72	32.35	54.00	-21.65	AVG	

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

APPENDIX D - BANDWIDTH

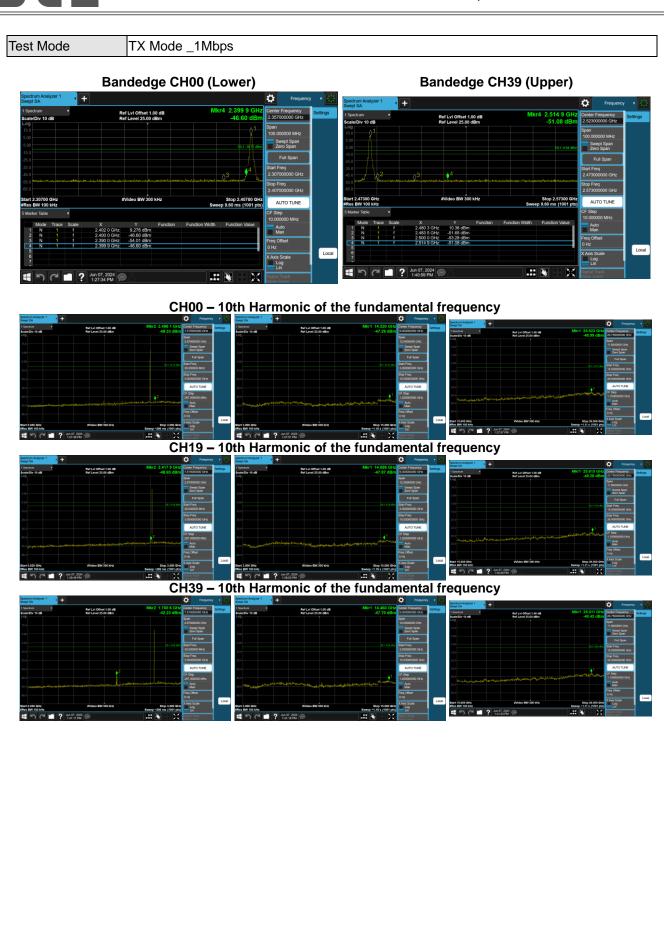
Test Mode	TX Mode _1	Mbps			
loot mode		mopo			
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Test Result
00	2402	0.687	1.039	0.5	Pass
19	2440	0.677	1.033	0.5	Pass
39	2480	0.677	1.031	0.5	Pass
Spectrum Andream 1	CH00 * res		H19 andwidth	СНЗ9	🗘 maang 1 😥
	oren is a different series of the series of		tee to a to be	And the second s	Control Contro
And the second s	Chan is and control and contr		Particular de la construcción de l	len in a second	Yang Yang Yang Yang Yang Yang Yang Yang

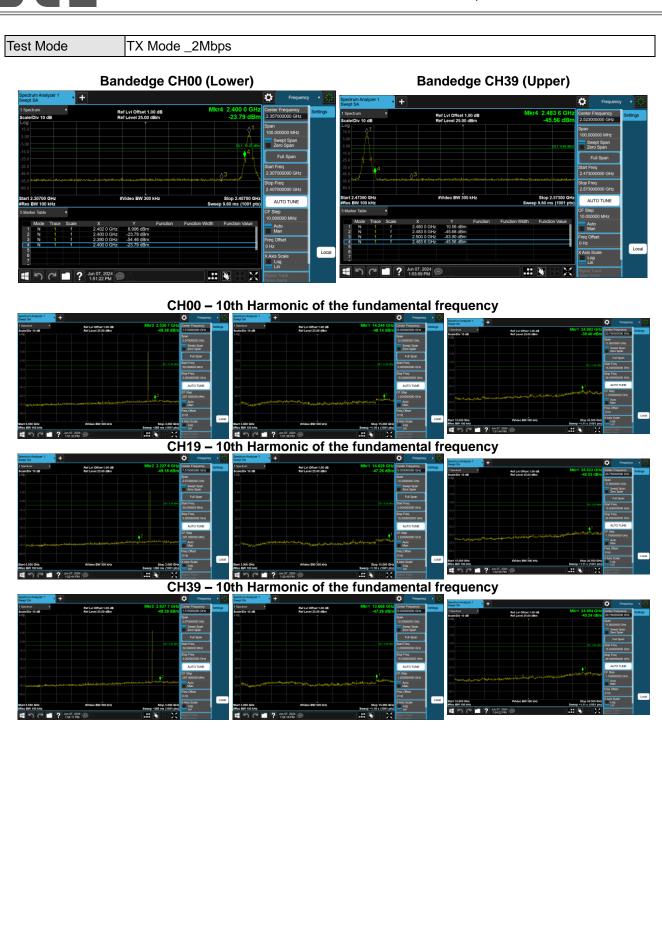
Test Mode	TX Mode _2	Mbps				
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Test Result	
00	2402	1.160	2.042	0.5	Pass	
19	2440	1.143	2.042	0.5	Pass	
39	2480	1.148	2.044	0.5	Pass	
Spectrum Analyzer 1 🔹 🛨	СН00		H19 andwidth	CH39		
Comer (Allowed Birl) Comer (Allowed Birl)	Ref 201 all total and tota			enter La constanti a	The second secon	
	And the set of the set	99 % Occup	bied Bandwidth	lengen belander Der Status Der Status D	Construction Const	
🕰 ") (" 🖬 ? Harding 🍥		📽 "Y") ("A 📫 🍸 Anton Con ()		f 🌱 (* 🖬 🥐 Androne 📾		

APPENDIX E - MAXIMUM OUTPUT POWER

Te	est Mode	TX Mode _1Mbps	6			
	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
	2402	9.51	0.0089	30.00	1.0000	Pass
	2440	10.88	0.0122	30.00	1.0000	Pass
	2480	11.34	0.0136	30.00	1.0000	Pass

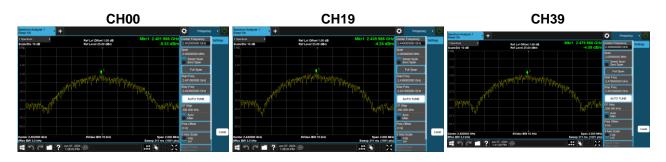
	CHO	0			CI	H19			CH3	89	
pedrum Analyzer 1 +			🛟 Frequency 🔹 💥	Spectrum Analyzer 1 Swept SA	• +		🔁 Frequency 🔹 🚟	Spectrum Analyzer 1 •			C Frequency •
Spectrum + cale/Div 10 dB	Ref Lvi Offset 1.00 dB Ref Level 25.00 dBm	Mkr1 2.401 74 GHz 9.51 dBm	Center Frequency Settings 2.402000000 GHz	1 Spectrum + Scale/Div 10 dB	Ref Lvi Offset 1.00 dB Ref Level 25.00 dBm	Mkr1 2.440 28 GHz 10.88 dBm	Center Frequency Settings 2.44000000 GHz	1 Spectrum + Scale/Div 10 dB	Ref Lvi Offset 1.00 dB Ref Level 25.00 dBm	Mkr1 2.480 22 GHz 11.34 dBm	Center Frequency Settings 2.480000000 GHz
50 			Span 20.0000000 NHz Swept Spon Zero Span	15:0			Span 20.000000 MHz Swept Span Zere Span	15 0			Span 20.0000000 MHz Swept Span Zero Span
			Full Span	5.00			Full Spen	5.00			Full Span
			Start Freq 2:392000000 GHz	5.00			Start Fireq 2:430000000 GHz	5.00			Start Freq 2.470000000 GHz
			9top Freq 2.412000000 GHz	-15-0			Stop Freq 2.45000000 GHz	-150		\mathcal{A}	Stop Freq 2.460000000 GHz
a shaganaa ahaa sh		Materia and interview	AUTO TUNE	-35:0 Alexandra Linker		Marinewashingan	AUTO TUNE	-35.0		Mary Same	AUTO TUNE
			CF Step 2.000000 MHz	-45:0			CF Btep 2.000000 MHz	-45.0			CF Step 2.000000 MHz
			Auto Man	-55.0			Auto Man	.65.0			Auto Man
			Freq Offset 0 Hz	-65.0			Freq Offset 0 Hz	45.0			Freq Offset
enter 2.40200 GHz Ros BW 3.0 MHz	Wideo EW 3.0 MHz	Span 20.00 MHz Sweep 1.00 ms (1001 pts)	X Axis Scale Local Local	Center 2,44000 GHz #Ros BW 3.0 MHz	Wideo IIW 3.0 MHz	Span 20.00 MHz Sweep 1.00 ms (1001 pts)	X Avis Scale	Center 2.48000 GHz #Res BW 3.0 MHz	Wideo OW 3.0 NHz	Span 20.00 MHz Sweep 1.00 ms (1001 pts)	Log Lin
📲 🗂 C" 🔳 📍 🖞	1 07, 2024 🗩 🛆	🕷 — 💢	Signal Track Scan Zorni	- - - - -	? Jun 07, 2024	.:: 🕷 — 🗙	Signal Track Span Zormi	📲 🗂 Cli 🔳 ? Jan 00	7, 2024 34 PM	.# 🕷 — 🔀	Signal Track Sees Zooni




Τe	est Mode	TX Mode _2Mbps	3			
	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
	2402	9.42	0.0087	30.00	1.0000	Pass
	2440	10.77	0.0119	30.00	1.0000	Pass
	2480	11.19	0.0132	30.00	1.0000	Pass

	CH0	0			CH19)			CH39	Ð	
Spectrum Analyzer 1 •		0	Frequency 🔹 🔛	Spednum Analyzer 1	+	🗘 Free	quency • 🔀 Spectru Dwypt S	n Analyzer 1 🔹 🛨		5	🕻 Frequency 🔹 🔛
l Spectrum 🔹 Scale:Div 10 dB	Ref Lvi Offset 1.00 dB Ref Level 25.00 dBm		ACCOUNTRY Settings	1 Spectrum v Scale/Div 10 dB	Ref Lvi Offset 1.00 dB Ref Level 25.00 dBm	Mkr1 2.440 52 GHz Center Frequent 10.77 dBm 2.44000000 G		um + tv 10 dB	Ref Lvt Offset 1.00 dB Ref Level 25.00 dBm	Mkr1 2.480 44 GHz 11.19 dBm	anter Frequency Settings 2.49000000 GHz
			an LOODODOD MHL2 Savept Spen Zerro Span	15.0		Span 20.000000 M Swept Spor Zero Span					pan Io 000000 MHz Swept Spon Zero Span
			Full Span	5.00		Full Span					Full Span
			et Freq 362000000 GHz	5.00		Start Freq 2.49000000 G	iHz				tart Freq 2.470000000 GHz
			p Freq 412000000 GHz	-25.0		500p Freq 2.45000000 G	Hz 25.0				tap Freq 2.480000000 GHz
35.0 worksakstang John		1 Depistent for superior	AUTO TUNE	-35.0 plyral national water & the	f	AUTO TUN		Una margan and the		Minday and	AUTO TUNE
		2.0	Step 200300 MHz	-45.0		CF Step 2.000000 MHz	-45.0				# Step 2.000000 MHz
			Auto Man	-55-0		Auto	-44.0				Auto Man
		01		45.0		Freq Offset 0 Hz					ireq Offset I Hz
Senter 2.40200 GHz Ros BW 3.0 MHz	Wideo IIW 3.0 NHz		127	Center 2,44000 GHz #Res BW 3.0 MHz	eVideo IZW 3.0 MHz	Span 20.00 MHz Sweep 1.00 ms (1001 pts)	IRes B	2.48000 GHz N 3.0 MHz	Wideo BW 3.0 MHz	Span 20.00 MHz Sweep 1.00 ms (1001 pts)	Axis Scale
📲 ") (" 🔳 ? '	Am 07, 2024		nal Track an Zoomi	- - - -	? Jan 07, 2024 🗩 🛆			ි 🗖 🖬 ? 🙀	07, 2024 4:35 PM		

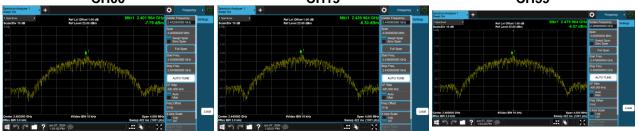
APPENDIX F - CONDUCTED SPURIOUS EMISSION


APPENDIX G - POWER SPECTRAL DENSITY

Test Mode TX Mode _1Mbps

Channel	Frequency (MHz)	Power Spectral Density (dBm/3 kHz)	Max. Limit (dBm/3 kHz)	Test Result
00	2402	-5.53	8.00	Pass
19	2440	-4.24	8.00	Pass
39	2480	-4.08	8.00	Pass

Test Mode


TX Mode _2Mbps

Channel	Frequency (MHz)	Power Spectral Density (dBm/3 kHz)	Max. Limit (dBm/3 kHz)	Test Result
00	2402	-7.79	8.00	Pass
19	2440	-6.30	8.00	Pass
39	2480	-6.07	8.00	Pass

CH00

CH19

CH39

End of Test Report