Add: No.52 Hua Yuan Bei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn Client **CTB** **Certificate No:** Z22-60393 # **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 801 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: September 19, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |--------------------------------|------------|---|-----------------------| | Power Meter NRP2 | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | 1 01101 1110101 | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | 1 01101 0011001 | SN 7464 | 26-Jan-22(SPEAG,No.EX3-7464_Jan22) | Jan-23 | | Reference Probe EX3DV4
DAE4 | SN 1556 | 12-Jan-22(CTTL-SPEAG,No.Z22-60007) | Jan-23 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-22 (CTTL, No. J22X00409) | Jan-23 | | Network Analyzer E5071C | | 14-Jan-22 (CTTL, No.J22X00406) | Jan-23 | | | | | | Name **Function** Signatur Calibrated by: **Zhao Jing** **SAR Test Engineer** the the Reviewed by: Lin Hao SAR Test Engineer ite Approved by: Qi Dianyuan SAR Project Leader Issued: September 27, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z22-60393 Page 1 of 6 Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORMx,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn # **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | 52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ±1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 ℃ | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ±0.2) ℃ | 39.6 ±6 % | 1.81 mho/m ±6 % | | Head TSL temperature change during test | <1.0 ℃ | | | #### SAR result with Head TSI | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.0 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.0 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.10 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 W/kg ±18.7 % (k=2) | Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn # Appendix (Additional assessments outside the scope of CNAS L0570) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 53.2Ω+ 2.21jΩ | |--------------------------------------|---------------| | Return Loss | - 28.5dB | #### **General Antenna Parameters and Design** | | 4.000 | |----------------------------------|----------| | Electrical Delay (one direction) | 1.062 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Date: 2022-09-19 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn # DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 801 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.808$ S/m; $\varepsilon_r = 39.63$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration: - Probe: EX3DV4 SN7464; ConvF(7.77, 7.77, 7.77) @ 2450 MHz; Calibrated: 2022-01-26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2022-01-12 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.4 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 26.3 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 6.1 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.1% Maximum value of SAR (measured) = 21.4 W/kg 0 dB = 21.4 W/kg = 13.30 dBW/kg Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn #### Impedance Measurement Plot for Head TSL Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Client : CTB Certificate No: Z24-60286 # CALIBRATION CERTIFICATE Object DAE4 - SN: 881 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: July 04, 2024 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3) $^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------|---------|--|-----------------------| | Process Calibrator 753 | 1971018 | 04-Jun-24 (CTTL, No.J22X04180) | Jun-25 | | | | | | Name Function Signature Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: August 01, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z24-60280 Page 1 of 3 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. # Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z24-60280 Page 2 of 3 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn #### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = $6.1 \mu V$, full range = full range = -100...+300 n full range = -1......+3mV -100...+300 mV Low Range: 1LSB = 61nV, DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | х | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.698 ± 0.15% (k=2) | 404.712 ± 0.15% (k=2) | 404.966 ± 0.15% (k=2) | | Low Range | 4.00114 ± 0.7% (k=2) | 4.00319 ± 0.7% (k=2) | 3.97062 ± 0.7% (k=2) | #### **Connector Angle** | Connector Angle to be used in DASY system 5° ± 1 ° | |--| |--| Certificate No: Z24-60280 Page 3 of 3 Add: No.52 Hua Yuan Bei Road, Haidian District, Beijing, 100191 Tel: +86-10-62302117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Client CTB **Certificate No:** Z22-60392 # **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN: 1190 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: September 16, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|---|-----------------------| | Power Meter NRP2 | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Reference Probe EX3DV4 | SN 7464 | 26-Jan-22(SPEAG,No.EX3-7464_Jan22) | Jan-23 | | DAE4 | SN 1556 | 12-Jan-22(CTTL-SPEAG,No.Z22-60007) | Jan-23 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-22 (CTTL, No. J22X00409) | Jan-23 | | Network Analyzer E5071C | MY46110673 | 14-Jan-22 (CTTL, No.J22X00406) | Jan-23 | | • | | | | Name **Function** Signature Calibrated by: Zhao Jing **SAR Test Engineer** Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: September 23, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z22-60392 Page 1 of 10 Tel: +86-10-62302117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z not applicable or not measured N/A not applicable or ### Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z22-60392 Page 2 of 10 Tel: +86-10-62302117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | ASY system configuration, as far as | flot given on page 1. | | |-------------------------------------|---|----------------------------------| | DASY Version | DASY52 | 52.10.4 | | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ±1 MHz
5300 MHz ±1 MHz
5500 MHz ±1 MHz
5600 MHz ±1 MHz
5800 MHz ±1 MHz | | Head TSL parameters at 5200MHz The following parameters and calculations were applied. | the following parameters and calculations were | Temperature | Permittivity | Conductivity | |--|---------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 ℃ | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ±0.2) ℃ | 35.9 ±6 % | 4.58 mho/m ±6 % | | Head TSL temperature change during test | <1.0 ℃ | | | SAR result with Head TSL at 5200MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---|--------------------|----------------------------------| | SAR measured | 250 mW input power | 7.66 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 76.5 W/kg ±24.4 % (<i>k</i> =2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 2.20 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.0 W/kg ±24.2 % (k=2) | Certificate No: Z22-60392 Page 3 of 10 Tel: +86-10-62302117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Head TSL parameters at 5300MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 ℃ | 35.9 | 4.76 mho/m | | Measured Head TSL parameters | (22.0 ±0.2) ℃ | 35.7 ±6 % | 4.69 mho/m ±6 % | | Head TSL temperature change during test | <1.0 ℃ | _ | | SAR result with Head TSL at 5300MHz | result with flead 10L at 3500iiii12 | Condition | | |---|--------------------|----------------------------------| | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 7.94 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.3 W/kg ±24.4 % (<i>k</i> =2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ±24.2 % (k=2) | Head TSL parameters at 5500MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 ℃ | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ±0.2) ℃ | 35.3 ±6 % | 4.89 mho/m ±6 % | | Head TSL temperature change during test | <1.0 ℃ | | | SAR result with Head TSL at 5500MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|----------------------------------| | SAR measured | 100 mW input power | 8.46 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 84.4 W/kg ±24.4 % (<i>k</i> =2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.9 W/kg ±24.2 % (k=2) | Tel: +86-10-62302117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # Head TSL parameters at 5600MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 ℃ | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ±0.2) ℃ | 35.1 ±6 % | 5.00 mho/m ±6 % | | Head TSL temperature change during test | <1.0 ℃ | _ | | #### SAR result with Head TSL at 5600MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|-------------------------| | SAR measured | 100 mW input power | 8.16 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.4 W/kg ±24.4 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.34 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.4 W/kg ±24.2 % (k=2) | # **Head TSL parameters at 5800MHz** The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 ℃ | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ±0.2) ℃ | 34.7 ±6 % | 5.20 mho/m ±6 % | | Head TSL temperature change during test | <1.0 ℃ | | _ | # SAR result with Head TSL at 5800MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---|--------------------|-------------------------| | SAR measured | 100 mW input power | 7.97 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.4 W/kg ±24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.7 W/kg ±24.2 % (k=2) | Certificate No: Z22-60392 Page 5 of 10 Tel: +86-10-62302117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # Appendix (Additional assessments outside the scope of CNAS L0570) # Antenna Parameters with Head TSL at 5200MHz | Impedance, transformed to feed point | 57.4Ω- 4.44jΩ | |--------------------------------------|---------------| | Return Loss | - 21.9dB | ### Antenna Parameters with Head TSL at 5300MHz | Impedance, transformed to feed point | 51.1Ω+ 2.19jΩ | |--------------------------------------|---------------| | Return Loss | - 32.4dB | # Antenna Parameters with Head TSL at 5500MHz | Impedance, transformed to feed point | 52.0Ω- 0.67jΩ | |--------------------------------------|---------------| | Return Loss | - 33.5dB | #### Antenna Parameters with Head TSL at 5600MHz | Impedance, transformed to feed point | 56.1Ω+ 4.33jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 23.1dB | | # Antenna Parameters with Head TSL at 5800MHz | 50.4Ω+ 5.52jΩ | | |---------------|--| | - 25.2dB | | | | | Certificate No: Z22-60392 Page 6 of 10 Tel: +86-10-62302117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.167 ns | |----------------------------------|-------------| | | 501 90192.5 | After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | Manada of by | | Certificate No: Z22-60392 Page 7 of 10 Date: 2022-09-16 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62302117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1190 Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 4.58 S/m; ϵ_r = 35.87; ρ = 1000 kg/m³ Medium parameters used: f = 5300 MHz; σ = 4.687 S/m; ϵ_r = 35.67; ρ = 1000 kg/m³ Medium parameters used: f = 5500 MHz; σ = 4.894 S/m; ϵ_r = 35.31; ρ = 1000 kg/m³ Medium parameters used: f = 5600 MHz; σ = 5 S/m; ϵ_r = 35.09; ρ = 1000 kg/m³ Medium parameters used: f = 5800 MHz; σ = 5.199 S/m; ϵ_r = 34.72; ρ = 1000 kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration: Certificate No: Z22-60392 Probe: EX3DV4 - SN7464; ConvF(5.6, 5.6, 5.6) @ 5200 MHz; ConvF(5.32, 5.32, 5.32) @ 5300 MHz; ConvF(5.11, 5.11, 5.11) @ 5500 MHz; ConvF(4.91, 4.91, 4.91) @ 5600 MHz; ConvF(5, 5, 5) @ 5800 MHz; Calibrated: 2022-01-26 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1556; Calibrated: 2022-01-12 Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration /Pin=100mW, d=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.15 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 29.4 W/kg SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.2 W/kg Smallest distance from peaks to all points 3 dB below = 6.8 mm Ratio of SAR at M2 to SAR at M1 = 66.5% Maximum value of SAR (measured) = 18.1 W/kg Dipole Calibration /Pin=100mW, d=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.15 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.7% Maximum value of SAR (measured) = 18.9 W/kg Page 8 of 10 Tel: +86-10-62302117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # Dipole Calibration /Pin=100mW, d=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.71 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 35.8 W/kg # SAR(1 g) = 8.46 W/kg; SAR(10 g) = 2.4 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.7% Maximum value of SAR (measured) = 20.7 W/kg # Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.27 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 34.8 W/kg # SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.35 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.3% Maximum value of SAR (measured) = 19.4 W/kg # Dipole Calibration /Pin=100mW, d=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.89 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 35.3 W/kg # SAR(1 g) = 7.97 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 61.4% Maximum value of SAR (measured) = 19.6 W/kg 0 dB = 19.6 W/kg = 12.92 dBW/kg Certificate No: Z22-60392 Page 9 of 10 Tel: +86-10-62302117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ### Impedance Measurement Plot for Head TSL