

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 1 of 59

FCC Test Report

Applicant : Tecnologias SILBIT de Mexico S.A. de C.V.

Address Volcan Pico de Orizaba 2721, El Colli Urbano 1A

Seccion, Jalisco, Mexico

Product Name : Wallboard Tablet

Report Date : Aug. 05, 2024

Shenzhen Anbotek Con Anbotek

ce Laboratory Limited

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 2 of 59

Contents

1. General Information	Vupo,_	N. Chel		o ^{ł©r}	And Lik	
1.1. Client Information 1.2. Description of Device (EUT)	0,00	VUp.	, , , , , , , , , , , , , , , , , , ,		7/00,	V. V.
1.3. Auxiliary Equipment Used Durin 1.4. Operation channel list 1.5. Description of Test Modes				, o'i		No.
1.6. Measurement Uncertainty 1.7. Test Summary	A. Ye.	, bo ^{tek}	Anboie ^l	امو	ou stek	1 1
1.8. Description of Test Facility	upo, sek	r. abotek	P.6/25		Pur Potek	
1.10. Test Equipment List 2. Conducted Emission at AC power line 2.1. EUT Operation	Anbore	Pr	woick	Aupoter	AUD	1
2.1. EUT Operation 2.2. Test Setup 2.3. Test Data	Neg Pupo,	0018t	Anbotek Anbotek	Antore Ant	ojek	1 ,
3. Emission bandwidth and occupied ban	ndwidth	Aupo, ok		ek .	Yupoter	<u></u>
2.1. EUT Operation	- Popovek	Vupo,	Pr.	eotek eotek	Aupote.	2
4. Duty Cycle	Anbor	ar An	oo yek	, abote	K Ant	2
4. Duty Cycle	rotek vu	otek otek	Anboyek	~	otek nbotek	2
5. Maximum conducted output nower	hotek	Anbotek	VUD	rek	anbotek	Anbolis 2
4.2. Test Setup						. x0' . xV')
6. Power spectral density	ek pob	otek !	Aupo, 19k		itek P	2
5.2. Test Getup 5.3. Test Data 6. Power spectral density 6.1. EUT Operation 6.2. Test Setup 6.3. Test Data	outek	,abotek Anbotek	Anbo pobor	otek K	4000dek	2 ¹ 2
7. Channel Move Time, Channel Closing	Transmissi	on Time	V. Vu	, otek	hopotek	Anbo. 2
7.1. EUT Operation 7.2. Test Setup 7.3. Test Data		, w. Yes	"upotek	1949 	iek Vi	2 ¹
8. Non-Occupancy Period Test		,botek	Anbore	Yu.	,otek	3
6.3. Test Data	vu _{polok}		. Aupore	otek otek	Angolek Angolek	3 3
9. DFS Detection Thresholds	Vun Tolek	PUp _c	iek b	'upo,	100,	Anborte
9.1. EUT Operation	K	iek .	obořek	Vupo,	ο _γ	

Report No.: 182512C400222104	FCC IL): 2BHN	/13-EW00)1 ^{lh}	Page 3	of 59
9.2. Test Setup	/- "/ 	ootek	Anbore	Vur.	r vapoti	33
9.2. Test Setup		yek	Pupo _{te,}	And		,a' 33
10. Band edge emissions (Radiated)	o _{ter}	VUP.		tek Anbo		34
40 WELLT OUDO' "		AUPE	**************************************	potek A	upore	36
10.1. EUT Operation 10.2. Test Setup 10.3. Test Data	Yupolek	, po	otek A	*vpotek	Wipo _{ter.}	37 38
11. Undesirable emission limits (below 1GH			giek	Anbotek	Vup.	44
11.1. EUT Operation 11.2. Test Setup 11.3. Test Data	¹	Westek Ose	Anbusek Anbusek	ek Anbo	rek Pupo.	46 46 47
12. Undesirable emission limits (above 1GH		Aupo.	¹⁸ /	botek Ar	Pose. b	51
12.1. EUT Operation 12.2. Test Setup 12.3. Test Data	kabotek Anbotel	e Anbo	704e/.	Angotek Pungtek	Anborer Angotek	53 54 55
APPENDIX I TEST SETUP PHOTOGRAPHAPPENDIX III EXTERNAL PHOTOGRAPHAPPENDIX III INTERNAL PHOTOGRAPHAPPENDIX III INTERNAL PHOTOGRAPHAPPENDIX III INTERNAL PHOTOGRAPHAPPENDIX III INTERNAL PHOTOGRAPHAPPENDIX I	<u> </u>	utoptek ote	Anbotek	ek hupotek	ek Hop.	59 59

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 4 of 59

TEST REPORT

Applicant : Tecnologias SILBIT de Mexico S.A. de C.V.

Manufacturer : Tecnologias SILBIT de Mexico S.A. de C.V.

Product Name : Wallboard Tablet

Model No. : P-WAL-230-SBT-01

Trade Mark : PatientPoint

Rating(s) : Input: 12V=5A

47 CFR Part 15E

Test Standard(s) : ANSI C63.10-2020

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Neceipt.	Juli. 19, 2024
be Anbotek Anbote An	poter Anboard Anborek Anbore
Date of Test:	Jun. 19, 2024 to Jul. 30, 2024
	Tu Tu Hong
Prepared By:	Aupo, Aur
ar Ande Anbotek Anbotek Anbote	(TuTu Hong)
	otek Anbotek Anbotek
	Idward pan
Approved & Authorized Signer:	And And Apolek
hotek Anbort An otek Anborek	(Edward Pan)

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 5 of 59

Revision History

	Report Version	Description	Issued Date			
	Anbore R00 potek Ant	Original Issue.	Aug. 05, 2024			
;e	Anbotek Anbotek	Anbotek Anbotek Anbotek	K Anbotek Anbotek Ant			
/0	ore Ambotek Anbotek	Anbotek Anbotek Anbot	tek Anbotek Anboter			

182512C400222104 Report No.: FCC ID: 2BHM3-EW001 Page 6 of 59

1. General Information

1.1. Client Information

	ok No k
Applicant	: Tecnologias SILBIT de Mexico S.A. de C.V.
Address	: Volcan Pico de Orizaba 2721, El Colli Urbano 1A Seccion, Jalisco, Mexic
Manufacturer	: Tecnologias SILBIT de Mexico S.A. de C.V.
Address	: Volcan Pico de Orizaba 2721, El Colli Urbano 1A Seccion, Jalisco, Mexic
Factory	: Tecnologias SILBIT de Mexico S.A. de C.V.
Address	: Volcan Pico de Orizaba 2721, El Colli Urbano 1A Seccion, Jalisco, Mexic

1.2. Description of Device (EUT)

h., /	أصمر	te, Vue Fek Jpo, V. K Pole, Vue
Product Name	:	Wallboard Tablet
Model No.	:	P-WAL-230-SBT-01
Trade Mark	:	PatientPoint
Test Power Supply	:	DC 12V from adapter input AC 120V/60Hz
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter 1	:	Model: FJ-SW20171205000 Input: 100-240V~50/60Hz 1.5A Max Output: 12.0V 5.0A, 60.0W
Adapter 2	:	Model: S065-1A120500B3 Input: 100-240V~,50/60Hz 1.5A Output: 12.0V 5.0A, 60.0W
RF Specification		
Operation Frequency	·	802.11a/n(HT20)/ac(HT20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 2A: 5260MHz to 5320MHz; U-NII Band 2C: 5500MHz to 5700MHz; U-NII Band 3: 5745MHz to 5825MHz; 802.11n(HT40)/ac(HT40): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 2A: 5270MHz to 5310MHz; U-NII Band 2C: 5510MHz to 5670MHz; U-NII Band 3: 5755MHz to 5795MHz; 802.11ac(HT80): U-NII Band 1: 5210MHz; U-NII Band 2A: 5290MHz; U-NII Band 2A: 5290MHz; U-NII Band 3: 5775MHz Note: In Canada, 5600MHz to 5650MHz is not avaliable.

Report No.: Page 7 of 59 182512C400222104 FCC ID: 2BHM3-EW001

note. And		stek upor Hi ok pose Ann stek
Number of Channel	:	802.11a/n(HT20)/ac(HT20): U-NII Band 1: 4; U-NII Band 2A: 4; U-NII Band 2C: 11; U-NII Band 3: 5; 802.11n(HT40)/ac(HT40): U-NII Band 1: 2; U-NII Band 2A: 2; U-NII Band 2C: 5; U-NII Band 3: 2; 802.11ac(HT80): U-NII Band 1: 1; U-NII Band 2A: 1; U-NII Band 2A: 1; U-NII Band 2C: 2; U-NII Band 3: 1
Modulation Type	:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM);
Device Type	:	Client Devices
DFS Type	:	Client without Radar Detection
Antenna Type	:	FPC Antenna
Antenna Gain(Peak)	:	5.2G: 0.25dBi 5.3G: 1.46dBi 5.6G: 1.46dBi 5.8G: 1.46dBi

Remark:

- (1) All of the RF specification are provided by customer.(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3)5250-5350 MHz and 5470-5725 MHz band with EIRP less than 500mW do not support TPC

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 8 of 59

1.3. Auxiliary Equipment Used During Test

	211			
	Title	Manufacturer	Model No.	Serial No.
۰	ROG Rapture Quad- band Gaming Router	ASUSTeK Computer Inc	GT-AXE16000 FCCID: MSQ-RTAX5D00 IC: 3568A-RTAX5D00	RAIG5D2020695NL

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 9 of 59

1.4. Operation channel list

Operation Band: U-NII Band 3

O P 01.56/1011 = 0111.00	· · · · · · · · · · · · · · · · · · ·	L 07	D1.	207	- V
Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	nbote 151 Anbo	5755	155	5775
botek 153 Anbotek	5765	159	5795	sk Wpolek	Ando
abote 157 Anbo	5785	anbbiek	Anbor	botek / Anboten	Andlosek
161	5805	ek Anbotek	Vupo, Vek	abotek / Anbote	And hotek
165	5825 And	otek / Anbotek	Aupl	abotely Ant	ote. I Vue

Operation Band: U-NII Band 2C

A more	OOM III	Datek and	401411	K D LOTOR	Ambo
Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500 Anbox	102	5510	106 Anb	5530
104	5520	110	5550	122	7501ek 5610 Pribati
108	5540	118	5590	k hotek	Anborek/ Anb
112	5560	126	700 FOR 5630 PUPOLE	An Potek	Anbotek A
Anbore 116	5580	134	5670	ore Am	Anyotek .
120	Jose 5600 Anbose	Andrek	anbokk b	upor sk Am	ek Anbotek
124	5620	oter / And	Arbotek	Aupor Ar	botek / Anbote
128	5640	inpoter / Ant	tek Inbotek	Anbo, A	abotek / Anbo
132 ^{nb0}	5660	Anbore / Ant	hotek / Anbotek	Auto.	P. Opoide V.
inbotek 136 Anbot	5680	Anbore	hotek/ Anbr	yer Aupon	Antorek
Anbote 140 Anb	5700 Mbotel	A Photo	Au Postk	poter / Anbo	ek Inpotek

Operation Band: U-NII Band 2A

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
nbote 52 Anbo	5260	54	5270	botek 58 Anbotes	5290
56 M	5280	ek 62,botek	5310	upotek / Aupot	Au potek
60	5300	botek / Anbotek	Androiek	upotek Ani	pot / Am

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 10 of 59

× 64 ×0 ⁴⁰	5320	and the same of th	pote. LAND	~	1 hotek	Vupo.
hotel 04 And	3320	"Upo'l B	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	roke.	TUR	, tek

Operation Band: U-NII Band 1

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36 _{botek}	5180	38	5190	42	5210
noon 100 noon	5200	46	5230	stek I subotek	Aupole
44	5220 mboli	ok hotek	Aupotek Au	otek / vupor	K Wood
48 ₀ k	5240	ak Anabotek	Auplier	Anbourer	otek / Anbore

1.5. Description of Test Modes

Pretest Modes	Descriptions
Anbotek Anbotek Anbo	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
Anborek Anborek Anborek Anborek	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Anbotek TM3	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Anborek TM4 nborek	Keep the EUT works in normal operating mode and connect to companion device

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 11 of 59

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB Anborek Anborek
Occupied Bandwidth	925Hz
Conducted Output Power	0.76dBAnburgek Anborek Anborek
Power Spectral Density	0.76dB And John Andorek Andorek Andorek
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 12 of 59

1.7. Test Summary

Test Items	Test Modes	Status
Conducted Emission at AC power line	Mode1,2,3	Ant Potek
Emission bandwidth and occupied bandwidth	Mode1,2,3	P
Duty Cycle	Mode1,2,3	P P
Maximum conducted output power	Mode1,2,3	P
Power spectral density	Mode1,2,3	Npor Pk
Channel Move Time, Channel Closing Transmission Time	Mode4	Anbort Prek
Non-Occupancy Period Test	Mode4	AP O
DFS Detection Thresholds	Mode4	, Panie
Band edge emissions (Radiated)	Mode1,2,3	PAN
Undesirable emission limits (below 1GHz)	Mode1,2,3	upotes P
Undesirable emission limits (above 1GHz)	Mode1,2,3	Anbore P. ak
Note: P: Pass N: N/A not applicable	Anbotek Anbotek	Anbore

N: N/A, not applicable

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 13 of 59

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Page 14 of 59 Report No.: 182512C400222104 FCC ID: 2BHM3-EW001

1.10. Test Equipment List

Cond	ucted Emission at A	C power line	Anbo	k spotel	Anbore	Ann
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
. 1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-01-18	2025-01-17
2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
3,04	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	Alootek	Anborek
4	EMI Test Receiver	Rohde & Schwarz	ESPI3	100926	2023-10-12	2024-10-11

Power spectral density

Channel Move Time, Channel Closing Transmission Time

Non-Occupancy Period Test

DFS Detection Thresholds

Emission bandwidth and occupied bandwidth

Duty Cycle

Maximum conducted output power

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
e*1	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A	2023-10-16	2024-10-15
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19
Anboard	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
4	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-02-22	2025-02-21
5	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03

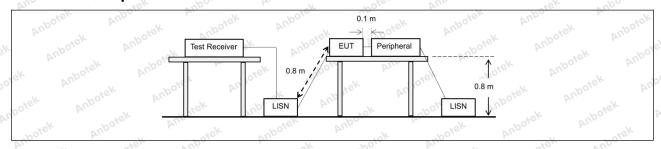
Hotline

Report No.: 182512C400222104 Page 15 of 59 FCC ID: 2BHM3-EW001

	edge emissions (Ra sirable emission limi		Aupotek	Anborek	Aupotek	Anborek
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 00	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
nbore 4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	Andotek	Anboiek
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
¹⁶ 7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2024-05-07	2025-05-06

Unde	sirable emission limit	ts (below 1GHz)	Anbore.	Andrek	Anboiek	Anbo
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-16
34	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
Anistel	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-11
5.nb	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A door	No hore	k Anbotek

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 16 of 59

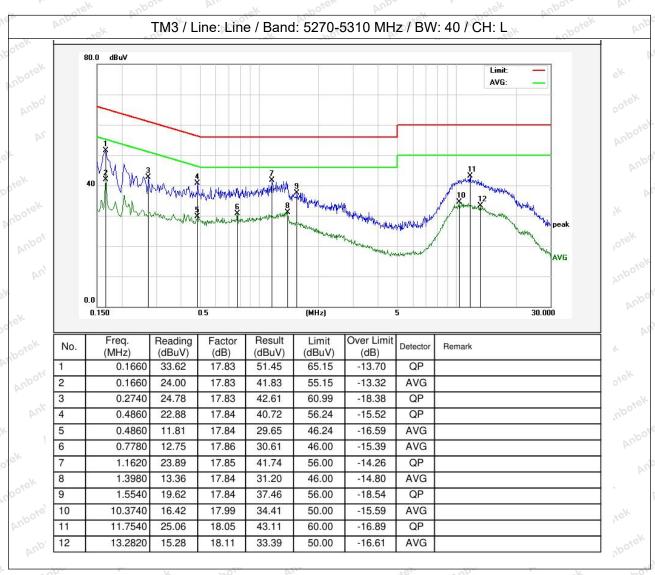

2. Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)	ek hotek Anb	ote, but
Yung sek spotek	Frequency of emission (MHz)	Conducted limit (dBµV)	hotel Anbe
Aupo, Vi	And Andrew And	Quasi-peak	Average
K- Lotek Anbo	0.15-0.5	66 to 56*	56 to 46*
Test Limit:	0.5-5 And	56 ° A	46 300 ter
	5-30 And And	60 hotek Anbor	50
otek Anbotek	*Decreases with the logarithm of the	ne frequency.	Anbo
Test Method:	ANSI C63.10-2020 section 6.2	Anbo sek abo	stek Anbore

2.1. EUT Operation

Operating Envir	onment: And tek potek Andorek Andorek Andorek Andorek
Test mode:	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

2.2. Test Setup

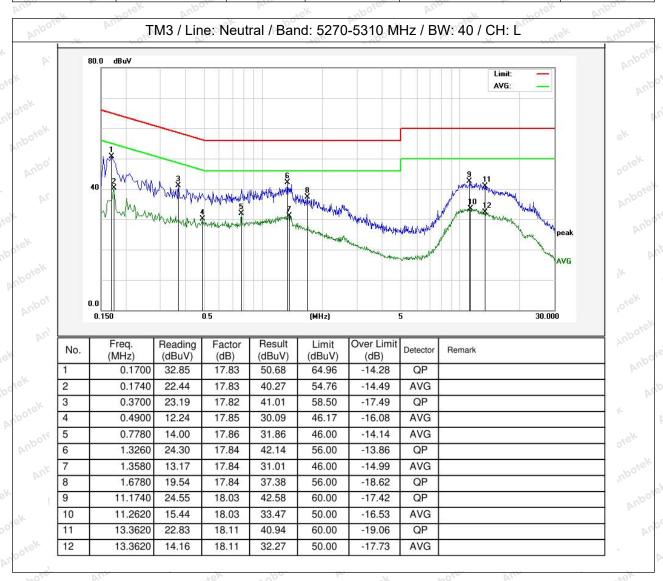


Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 17 of 59

2.3. Test Data

Adapter 1:

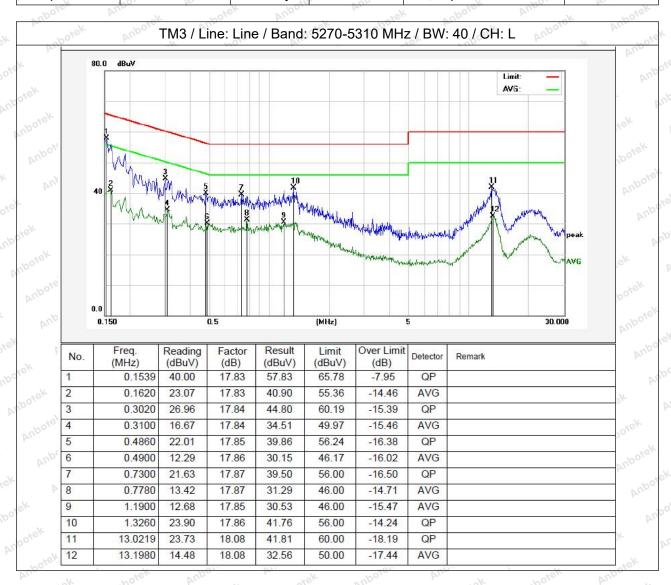
Temperature: 26.3 °C	Humidity: 45 %	Atmospheric Pressure:	101 kPa
----------------------	----------------	-----------------------	---------



FCC ID: 2BHM3-EW001 Report No.: 182512C400222104 Page 18 of 59

26.3 °C Atmospheric Pressure: Temperature: Humidity: 45 % 101 kPa

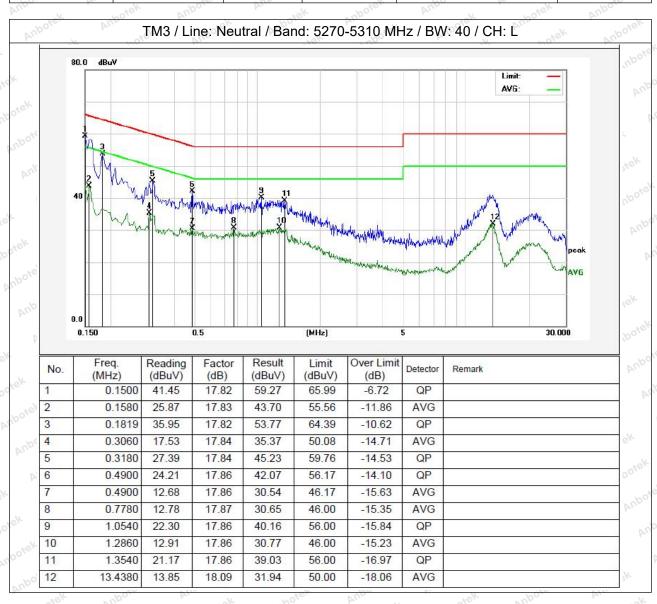
Note:Only record the worst data in the report.



Page 19 of 59 Report No.: 182512C400222104 FCC ID: 2BHM3-EW001

Adapter 2:

45 % Temperature: 26.3 °C **Humidity:** Atmospheric Pressure: 101 kPa



Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 20 of 59

Temperature: 26.3 °C Humidity: 45 % Atmospheric Pressure: 101 kPa

Note:Only record the worst data in the report.

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 21 of 59

3. Emission bandwidth and occupied bandwidth

- spotek Aupote	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Requirement:	Anbo Anbore Anbore Anbore Anbo
Anbore Arr	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Anbotek Anbo	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands,
ek potek	the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 6.9 & 12.5 KDB 789033 D02, Clause C.2
Aupo, K. Polek	700, b. / 20, b. / 100,
	Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth.
	b) Set the VBW > RBW.
	c) Detector = peak.
	d) Trace mode = max hold.e) Measure the maximum width of the emission that is 26 dB down from the
	peak of the emission.
	Compare this with the RBW setting of the instrument. Readjust RBW and
	repeat measurement
	as needed until the RBW/EBW ratio is approximately 1%.
	as needed until the RDW/EDW fallo is approximately 176.
	Occupied bandwidth:
	a) The instrument center frequency is set to the nominal EUT channel center
ak hotek p	frequency. The
	frequency span for the spectrum analyzer shall be between 1.5 times and
	5.0 times the OBW.b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to
	5% of the OBW,
	and VBW shall be approximately three times the RBW, unless otherwise
Procedure:	specified by the applicable requirement.
	c) Set the reference level of the instrument as required, keeping the signal
	from exceeding the
	maximum input mixer level for linear operation. In general, the peak of the
	spectral envelope
	shall be more than [10 log (OBW/RBW)] below the reference level. Specific
	guidance is given
	in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the
	specified range.
	e) Video averaging is not permitted. Where practical, a sample detection and
	single sweep mode
	shall be used. Otherwise, peak detection and max hold mode (until the trace
	stabilizes) shall be
	used.
And sofek	f) Use the 99% power bandwidth function of the instrument (if available) and
	report the measured
	bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the
	trace data points are

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 22 of 59

recovered and directly summed in linear power terms. The recovered amplitude data points,

beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached:

that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the

total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is

the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument

display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may

be reported in addition to the plot(s).

- 6 dB emission bandwidth:
- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

Test mode:

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

3.2. Test Setup

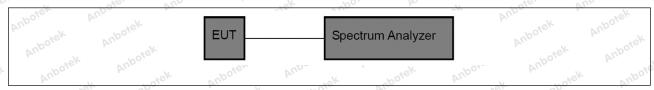
3.3. Test Data

Temperature:	26.3 °C	Humidity:	45 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 23 of 59


4. Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2020 section 12.2 (b)
Anbotek Anbotek	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value.
Procedure:	iii) Set VBW >= RBW. iv) Set detector = peak.
otek Aupotek Aup	v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

4.1. EUT Operation

Operating Envi	ronment: And Andrew Andrew Andrew Andrew Andrew
Test mode:	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of
	worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4.2. Test Setup

4.3. Test Data

Temperature:	26.3 °C	Humidity:	45 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

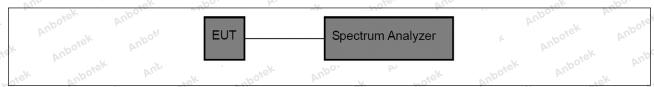
Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 24 of 59

5. Maximum conducted output power

,	ATOMO DO LATE ADDRESS (AND ADDRESS AND ADD
Test Requirement:	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2)
rest requirement.	47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
Aupotek Aupot	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW
tek Anbotek Ant	provided the maximum antenna gain does not exceed 6 dBi.
ibotek Anboten	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that
Anbotek Anboter	the directional gain of the antenna exceeds 6 dBi.
Anbotek Anbote	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted
Anbotek Anbore	output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission
ek Anborek Anb	bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the
potek Anbotek	maximum conducted output power shall be reduced by the amount in dB that
Test Limit:	the directional gain of the antenna exceeds 6 dBi.
Anbotek Anboten	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.
Aupotek Aupote	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that
ak Anborek Anbo	the directional gain of the antenna exceeds 6 dBi.
Jotek Anbotek A	However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without
Anbotek Anboten	any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems,
Anbotek Anbote	omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is
Anbotek Anbote	professionally installed, the installer, is responsible for ensuring that systems
k Anbotek Anbo	employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Test Method:	ANSI C63.10-2013, section 12.4
Procedure:	Refer to ANSI C63.10-2020 section 12.4

5.1. EUT Operation

Operating Env	vironment: Anbore Anbore Anbore Anborek Anborek
ek Anbotek	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
Test mode:	2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
k Anbotek	3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only



Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 25 of 59

the data of worst case is recorded in the report.

5.2. Test Setup

5.3. Test Data

Temperature:	26.3 °C	Humidity:	45 %	Atmospheric Pressure:	101 kPa
remperature.	20.5 C	i lulliluity.	40 /0	Authospheric Fressule.	IUIKFa

Please Refer to Appendix for Details.

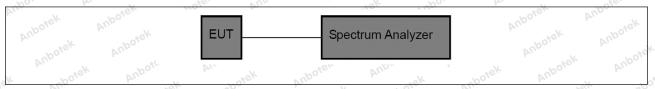
Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 26 of 59

6. Power spectral density

po, k K	Poles Aug Stek John W. CK Poles
Test Requirement:	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
tek Anbotek Anbotek Anbotek Anbotek Anbotek	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power
	spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Limit: Anborek Anborek Anborek Anborek Anborek Anborek	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction
	in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Test Method:	ANSI C63.10-2020, section 12.6
Procedure:	Refer to ANSI C63.10-2020, section 12.6

6.1. EUT Operation

Operating Envi	ronment: hotek Anborek Anborek Anborek
Test mode:	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.



Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 27 of 59

6.2. Test Setup

6.3. Test Data

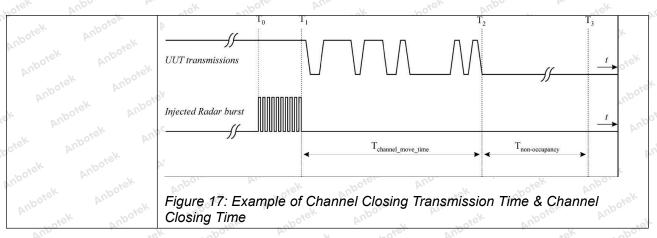
Temperature:	26.3 °C	Humidity:	45 %	Atmospheric Pressure:	101 kPa
. 2/1. 2 . 2 . 2 . 2 . 2 . 2	=0.0		10 1/10	, m	10.111

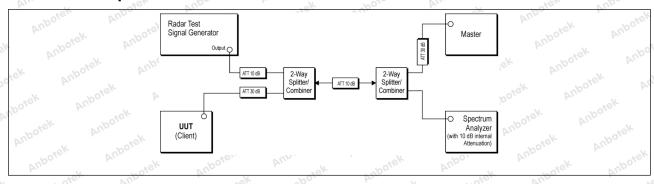
Please Refer to Appendix for Details.

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 28 of 59

7. Channel Move Time, Channel Closing Transmission Time

Test Requirement:	47 CFR Part 15.407(h)(2)(iii)
Test Limit: Anborek Anborek Anborek Anborek Anborek Anborek	Channel Move Time: within 10 seconds Channel Closing Transmission Time: 200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. (The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.)
Test Method:	KDB 905462 D02, Clause 7.8.3
Procedure:	The steps below define the procedure to determine the above-mentioned parameters when a radar <i>Burst</i> with a level equal to the <i>DFS Detection Threshold</i> + 1dB is generated on the <i>Operating Channel</i> of the U-NII device (<i>In- Service Monitoring</i>). 1. One frequency will be chosen from the <i>Operating Channels</i> of the UUT within the 5250-5350 MHz or 5470-5725 MHz bands. For 802.11 devices, the test frequency must contain control signals. This can be verified by disabling channel loading and monitoring the spectrum analyzer. If no control signals are detected, another frequency must be selected within the emission bandwidth where control signals are detected. 2. In case the UUT is a U-NII device operating as a <i>Client Device</i> (with or without DFS), a U-NII device operating as a <i>Master Device</i> will be used to allow the UUT (Client device) to <i>Associate</i> with the <i>Master Device</i> . In case the UUT is a <i>Master Device</i> , a U-NII device operating as a <i>Client Device</i> will be used and it is assumed that the Client will <i>Associate</i> with the UUT (Master). In both cases for conducted tests, the <i>Radar Waveform</i> generator will be connected to the <i>Master Device</i> . For radiated tests, the emissions of the <i>Radar Waveform</i> generator will be directed towards the <i>Master Device</i> . If the <i>Master Device</i> has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing. 3. Stream the channel loading test file from the <i>Master Device</i> to the <i>Client Device</i> on the test <i>Channel</i> for the entire period of the test.
	4. At time T0 the <i>Radar Waveform</i> generator sends a <i>Burst</i> of pulses for one of the Radar Type 0 in Table 5 at levels defined in Table 3 , on the <i>Operating Channel</i> . An additional 1 dB is added to the radar test signal to ensure it is at or above the <i>DFS Detection Threshold</i> , accounting for equipment variations/errors.
	5. Observe the transmissions of the UUT at the end of the radar <i>Burst</i> on the <i>Operating Channel</i> for duration greater than 10 seconds. Measure and
	record the transmissions from the UUT during the observation time (<i>Channel Move Time</i>). Measure and record the <i>Channel Move Time</i> and <i>Channel Closing Transmission Time</i> if radar detection occurs. Figure 17 illustrates <i>Channel Closing Transmission Time</i> . 6. When operating as a <i>Master Device</i> , monitor the UUT for more than 30 minutes following instant T2 to verify that the UUT does not resume any transmissions on this <i>Channel</i> . Perform this test once and record the measurement result.




Page 29 of 59 Report No.: 182512C400222104 FCC ID: 2BHM3-EW001

7.1. EUT Operation

Operating Envir	ronment:	hotek	Anboien	Aupr	iek .	anboick	Auport	by.
Test mode:	4: Normal Operati	9	the EUT wo	ks in norr	mal oper	ating mo	de and cor	nnect to
holde mode.	companion device	· vopo.						

7.2. Test Setup

7.3. Test Data

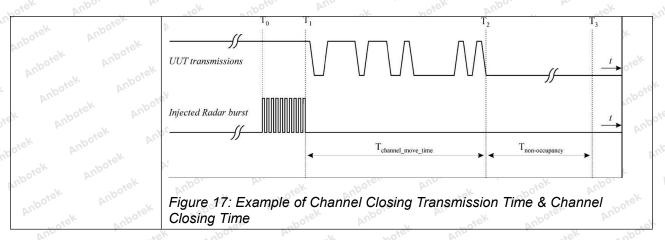
Temperature: 26.3 °C Humidity: 45 % Atmospheric Pressure: 101 kPa	Temperature: 26.3 °C Humidity:	5 % Atmospheric Press	sure: 101 kPa
---	--------------------------------	-----------------------	---------------

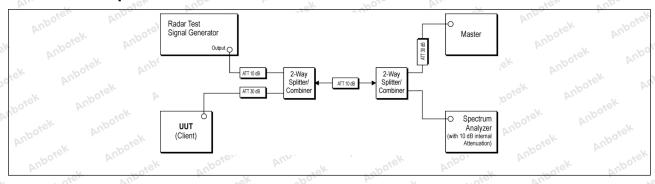
Please Refer to Appendix for Details.

Hotline

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 30 of 59

8. Non-Occupancy Period Test


Test Requirement:	47 CFR Part 15.407(h)(2)(iv)
Test Limit:	A channel that has been flagged as containing a radar system, either by a channel availability check or in-service monitoring, is subject to a non-occupancy period of at least 30 minutes. The non-occupancy period starts at the time when the radar system is detected.
Test Method:	KDB 905462 D02, Clause 7.8.3
Anbotek Anbotek Anbotek Anbotek	The steps below define the procedure to determine the above-mentioned parameters when a radar <i>Burst</i> with a level equal to the <i>DFS Detection Threshold</i> + 1dB is generated on the <i>Operating Channel</i> of the U-NII device (<i>In- Service Monitoring</i>). 1. One frequency will be chosen from the <i>Operating Channels</i> of the UUT
tek Anbotek Anb	within the 5250-5350 MHz or 5470-5725 MHz bands. For 802.11 devices, the test frequency must contain control signals. This can be verified by disabling channel loading and monitoring the spectrum analyzer. If no control
	signals are detected, another frequency must be selected within the emission bandwidth where control signals are detected. 2. In case the UUT is a U-NII device operating as a <i>Client Device</i> (with or without DFS), a U-NII device operating as a <i>Master Device</i> will be used to
	allow the UUT (Client device) to Associate with the Master Device. In case the UUT is a Master Device, a U-NII device operating as a Client Device will be used and it is assumed that the Client will Associate with the UUT
	(Master). In both cases for conducted tests, the <i>Radar Waveform</i> generator will be connected to the <i>Master Device</i> . For radiated tests, the emissions of the <i>Radar Waveform</i> generator will be directed towards the <i>Master Device</i> .
Procedure:	If the <i>Master Device</i> has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing. 3. Stream the channel loading test file from the <i>Master Device</i> to the <i>Client</i>
	Device on the test Channel for the entire period of the test. 4. At time T0 the Radar Waveform generator sends a Burst of pulses for one of the Radar Type 0 in Table 5 at levels defined in Table 3 , on the
	Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.
	5. Observe the transmissions of the UUT at the end of the radar <i>Burst</i> on the <i>Operating Channel</i> for duration greater than 10 seconds. Measure and record the transmissions from the UUT during the observation time (<i>Channel</i>
	Move Time). Measure and record the Channel Move Time and Channel Closing Transmission Time if radar detection occurs. Figure 17 illustrates Channel Closing Transmission Time.
	6. When operating as a <i>Master Device</i> , monitor the UUT for more than 30 minutes following instant T2 to verify that the UUT does not resume any transmissions on this <i>Channel</i> . Perform this test once and record the
	measurement result. 7. In case the UUT is a U-NII device operating as a <i>Client Device</i> with <i>In-Service Monitoring</i> , perform steps 1 to 6.


Page 31 of 59 Report No.: 182512C400222104 FCC ID: 2BHM3-EW001

8.1. EUT Operation

Operating Envir	onment:	hotek	Anboren	Aupo	*ek	anbotek	Anbore	by.
Test mode:	4: Normal Operation	2 20	the EUT wor	ks in nor	mal ope	erating mo	de and cor	nnect to
POTE AUT	companion device							

8.2. Test Setup

8.3. Test Data

Temperature: 26.3 °C Humidity: 45 % Atmospheric Pressure: 101 kPa	Temperature: 26.3 °C Humidity:	5 % Atmospheric Press	sure: 101 kPa
---	--------------------------------	-----------------------	---------------

Please Refer to Appendix for Details.

Hotline

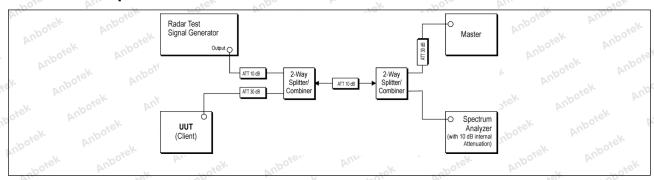
Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 32 of 59

9. DFS Detection Thresholds

Test Requirement:	KDB 905462 D02, Clause 5.2 Table 3	
Anbotek Anbotek	Table 3: DFS Detection Thresholds for Master E with Radar Detection Table 3: DFS Detection Thresholds for Ma and Client Devices with Radar De	ster Devices
ek Anbotek An	Maximum Transmit Power EIRP ≥ 200 milliwatt	Value (See Notes 1, 2, and 3) -64 dBm
est Limit:	EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz EIRP < 200 milliwatt that do not meet the power spectral density	-62 dBm
	requirement Note 1: This is the level at the input of the receiver assuming a 0 dl Note 2: Throughout these test procedures an additional 1 dB has be test transmission waveforms to account for variations in measurement the test signal is at or above the detection threshold level to trigger Note3: EIRP is based on the highest antenna gain. For MIMO device 662911 D01.	een added to the amplitude of the ent equipment. This will ensure that a DFS response.
est Method:	KDB 905462 D02, Clause 7.4.1.1	Aupo, rek upotek
	1) A 50 ohm load is connected in place of the spectrum analyzer is connected to place of the 2) The interference Radar Detection Threshold had been taken into account the output power r	master Level is TH+ 0dBi +1dB that ange and antenna gain.
*ek Anbotek Anb	3) The following equipment setup was used to a waveform. A vector signal generator was utilized level for radar type 0. During this process, there either the master or client device. The spectrum	d to establish the test signal were no transmissions by
Procedure:	the zero spans (time domain) at the frequency of generator. Peak detection was used. The spect bandwidth (RBW) and video bandwidth (VBW)	of the radar waveform rum analyzer resolution
Anbotek Anbotel	spectrum analyzer had offset -1.0dB to compen 4) The vector signal generator amplitude was so measured at the spectrum analyzer was TH + 0	et so that the power level
	the spectrum analyzer plots on short pulse rada Note: TH=-64 dBm or -62 dBm	ar waveform.

9.1. EUT Operation

Operating Env	ironment:	Vupotek			Anbore.	Ann
Test mode:	4: Normal Operating:	Keep the EUT	works in nor	mal operating	mode and	connect to
rest mode.	companion device	And	botek	Aupo,	br.	sk about



Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 33 of 59

9.2. Test Setup

9.3. Test Data

e)	Temperature:	26.3 °C	Humidity:	45 %	Atmospheric Pressure:	101 kPa
			VD	1 4 1 1 1	100,	1 2/6/11 -1 7/0/1

Please Refer to Appendix for Details.

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 34 of 59

10. Band edge emissions (Radiated)

	- AV	~0. P.	_%&.	~ OV	No.	~0.
	Anbore.	47 CFR Part 15.407(b)(1)	Aupo	r. Ciek	Anbois	AUR
		47 CFR Part 15.407(b)(2)	apoier			Aupo,
	Test Requirement:	47 CFR Part 15.407(b)(3)				hote
	h. Stek Anboti	47 CFR Part 15.407(b)(4)				Vur
46	W Aupo. K	47 CFR Part 15.407(b)(10)	ek abote	Vupo,	-k hote	K Anb

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Toet	ı	imit	

MHz And	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41	Aupor Au	iek ab	Ve. Vuga
PUL VILLE	19.	2po	V "0"

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

² Above 38.6

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 35 of 59

otek Anbore A		or hotek A	upo, Ve.
ak abotek	The field strength of emiss	sions appearing within thes	se frequency bands shall
Anbore Arr	not exceed the limits show	n in § 15.209. At frequenc	cies equal to or less than
	1000 MHz, compliance with	th the limits in § 15.209sha	all be demonstrated
	using measurement instru	mentation employing a CIS	SPR quasi-peak
	detector. Above 1000 MHz	z, compliance with the emi	ssion limits in §
A. Otek Anboi	15.209shall be demonstra	ted based on the average	value of the measured
	emissions. The provisions	in § 15.35apply to these n	neasurements.
	k sotek Ant		abotek Anbe
	Except as provided elsewh		
hotek Anbo.	intentional radiator shall no	ot exceed the field strength	n levels specified in the
	following table:	Anbore And	potek Anbo
	Frequency (MHz)	Field strength	Measurement
sofek Anbore	All abover	(microvolts/meter)	distance
And	ek Anbore Arr	k aboten And	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30 do 100 pm
	1.705-30.0	30 botek An	30
	30-88	100 **	botel 3 Anbo
	88-216	150 **	AND O TOTOK
	216-960	200 **	Anbor 3 Ans
	Above 960	500	3er Ancor
	** Except as provided in p	V 1201	D.C.
	intentional radiators opera		
	frequency bands 54-72 MI		
sk abotek Ant	However, operation within		
	sections of this part, e.g.,		permitted under other
	In the emission table above		at the hand edges
	The emission limits shown		
	employing a CISPR quasi-		- XC.
	90 kHz, 110–490 kHz and		
	these three bands are bas		
	detector.	K Kotek Anbort	Plus Sek Spot
Test Method:	ANSI C63.10-2020, sectio	n 12.7.4. 12.7.6. 12.7.7	otek Aupon K
- Stek	NOTO ALTO	Polok Pupos, - HV	Cick Vupore, Mu
	Above 1GHz:	IT was also and so the tow	of a matation table 1.5
	a. For above 1GHz, the El		
	meters above the ground		
	rotated 360 degrees to de		
	b. The EUT was set 3 met		
	which was mounted on the		
	c. The antenna height is v		
	ground to determine the m		
Procedure:	and vertical polarizations of		
	d. For each suspected em and then the antenna was		
	test frequency of below 30		
	and the rotatable table wa	s turried from 0 degrees to	5 300 degrees to lind the
	maximum reading. e. The test-receiver syster	n was set to Poak Dotact I	Function and Specified
	Bandwidth with Maximum		unction and Specified
	f. If the emission level of the		10dB lower than the
	limit specified, then testing		
		こししいい いき ろいしいせん すけい けん	- DUAN VAIDES UI LIE EUT

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 36 of 59

would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

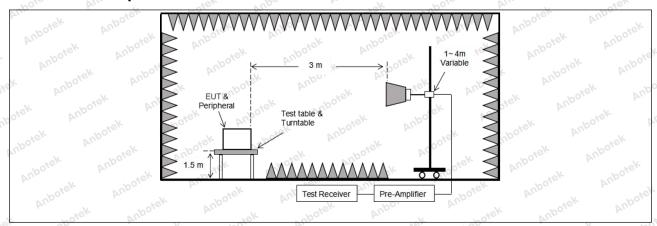
10.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

Test mode:

- 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.



Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 37 of 59

10.2. Test Setup

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 38 of 59

10.3. Test Data

Temperature: 26.3 °C	Humidity: 45 %	Atmospheric Pressure:	101 kPa
----------------------	----------------	-----------------------	---------

		TM1 / B	and: 5150-5	350 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	37.24	15.99 M	53.23	68.20	-14.97	workH as	Peak
5150.00	39.36	15.99	55.35	68.20	-12.85	, V	Peak
5150.00	27.11	15.99	43.10	54.00	-10.90	And Hick	AVG
5150.00	29.23	15.99	45.22	54.00	-8.78	And Sick	AVG
		TM1 / B	and: 5150-53	350 MHz / BV	V: 20 / H		,
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	37.62	16.43	54.05	68.20	-14.15	H	Peak
5350.00	40.73	16.43	57.16	68.20	-11.04	Aups Ank	Peak
5350.00	29.03	16.43	45.46	54.00	-8.54	Pub.	AVG
5350.00	29.84	16.43	46.27	54.00	-7.73	ĬV.po _{sec}	AVG

Remark: 1. Result=Reading + Factor

		TM2 / B	and: 5150-5	350 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.09	15.99	52.08	68.20	-16.12	Hotek	Peak
5150.00	37.56	15.99	53.55	68.20	-14.65	ek V nbore	Peak
5150.00	26.81	15.99	42.80	54.00 NO	-11.20	ek H	orell AVG problem
5150.00	27.78	15.99	43.77	54.00	-10.23 AT	V	AVG
		TM2 / B	and: 5150-5	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	37.96	16.43	54.39	68.20	-13.81	k Habotel	Peak
5350.00	38.95	16.43	55.38	68.20	-12.82	A A	Peak, no
5350.00	28.02	16.43	44.45	54.00	-9.55	H	AVG
5350.00	29.54	16.43	45.97	54.00	-8.03	inpoter A	AVG

Remark: 1. Result=Reading + Factor

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 39 of 59

		TM2 / B	and: 5150-53	350 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.75	15.99	52.74	68.20	-15.46	K Haboten	Peak
5150.00	38.58 ₀₀	15.99	54.57	68.20 100 T	-13.63	otek V Anbo	Peak
5150.00	27.35	otel 15.99 And	43.34	54.00 pm	-10.66	H-Vert	o ^{Nel} AVG
5150.00	28.86	15.99	44.85	54.00	-9.15	V.	AVG
		TM2 / B	and: 5150-53	350 MHz / BV	V: 40 / H	, , , , , , , , , , , , , , , , , , , ,	
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	38.27 ode	16.43	54.70	68.20	-13.50	tek H anboi	Peak
5350.00	37.06	16.43 M	53.49	68.20 M	-14.71 ^{Amb}	V V	Peak
5350.00	28.60	16.43	45.03	54.00	-8.97	H by	AVG
5350.00	29.85	16.43	46.28	54.00	-7.72	Anbord	AVG

Remark: 1. Result=Reading + Factor

	5//	194	700		V ~ ~ ~ ~	011.	26
		TM3 / B	and: 5150-5	350 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	37.24	15.99	53.23	68.20	-14.97	nboieH	Peak
5150.00	39.04	15.99	55.03	68.20	-13.17	Nok Nok	Peak
5150.00	26.72	15.99	42.71	54.00	-11.29	Hootek	AVG
5150.00	29.01	15.99	45.00	54.00	-9.00	y V pote	AVG
		TM3 / B	and: 5150-53	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	38.04	16.43	54.47	68.20	-13.73	NO HE	Peak
5350.00	38.27	16.43	54.70	68.20	-13.50	Votek	Peak
5350.00	28.00	16.43	44.43	54.00	-9.57	H del	AVG
5350.00	28.66	16.43	45.09	54.00	ek -8.91,00te	VARBO	AVG

Remark: 1. Result=Reading + Factor

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 40 of 59

0, 1,	**	40. 70,			WO. W.		
		TM3 / B	and: 5150-53	350 MHz / BV	W: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.16	15.99	52.15	68.20	-16.05	HA	Peak
5150.00	36.52	15.99	52.51	68.20	-15.69	Nupo,	Peak
5150.00	26.47	15.99	42.46	54.00	11.54 NO	otek H Anbo	AVG
5150.00	27.08 An	15.99	43.07	54.00	-10.93	nbotek V A	AVG
		TM3 / B	and: 5150-53	350 MHz / BV	V: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	38.27	16.43	54.70	68.20	-13.50	H ^{nb}	Peak
5350.00	37.34	16.43	6 53.77 noot	68.20	-14.43	tek A Vupo	Peak
5350.00	27.65 AND	16.43	44.08	54.00	-9.92	hotek H An	AVG
5350.00	27.84	16.43	44.27	54.00	-9.73	V	AVG

Remark: 1. Result=Reading + Factor

	18.	TM3 / E	Band: 5150-53	350 MHz / BV	V: 80 / L	1/4	507
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.18 And	15.99	52.17	68.20	-16.03	botek H Ani	Peak
5150.00	36.78	15.99	52.77	68.20	-15.43	Votodo	Peak
5150.00	26.94	15.99	42.93	54.00	-11.07	Hek	AVG
5150.00	27.09	15.99	43.08	54.00	-10.92	Votek	AVG
		TM3 / E	Band: 5150-53	350 MHz / BV	V: 80 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	38.64	16.43	55.07	68.20	-13.13	n H ^{arodo}	Peak
5350.00	37.71	16.43	54.14	68.20	-14.06	N. V.	Peak
5350.00	29.20	16.43	45.63	54.00	-8.37	AUR H JOK	AVG
5350.00	28.36	16.43	44.79	54.00	-9.21	AV ^O	AVG

Remark: 1. Result=Reading + Factor

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 41 of 59

	TM4 / D	and: 5470 50	CO MILL / DV	V- 00 / I	7//-	76
	IM1/B	and: 54/0-58	350 MHZ / BV	V: 20 / L		
Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
38.29	16.37	54.66	68.20	-13.54	H botek	Peak
39.71	16.37	56.08	68.20	-12.12	V	Peak
39.22	16.70	55.92 h	68.20	-12.28	oter H And	Peak
40.00 M	16.70	56.70	68.20	-11.50	spotek V A	Peak
28.85	16.37	45.22	54.00	-8.78	, H	AVG
28.73	16.37	45.10	54.00	-8.90	Aug A Sk	AVG
29.12	16.70	45.82	54.00	-8.18	AnH"	AVG
30.24	16.70	46.94	54.00	-7.06	Vupojek	AVG
	TM1 / B	and: 5470-58	350 MHz / BV	V: 20 / H		
Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
39.26	17.21	56.47	68.20	-11.73	H	Peak
39.64	17.21	56.85	68.20	-11.35	Aupo, A	Peak
29.22	17.21	46.43	54.00	-7.57	An/His	AVG
29.21	17.21	46.42	54.00	-7.58	Votek	AVG
	(dBuV) 38.29 39.71 39.22 40.00 28.85 28.73 29.12 30.24 Reading (dBuV) 39.26 39.64 29.22	Reading (dBuV) Factor (dB/m) 38.29 16.37 39.71 16.37 39.22 16.70 40.00 16.70 28.85 16.37 29.12 16.70 30.24 16.70 TM1 / B Reading (dBuV) Factor (dB/m) 39.26 17.21 39.64 17.21 29.22 17.21	Reading (dBuV) Factor (dB/m) Result (dBuV/m) 38.29 16.37 54.66 39.71 16.37 56.08 39.22 16.70 55.92 40.00 16.70 56.70 28.85 16.37 45.22 28.73 16.37 45.10 29.12 16.70 45.82 30.24 16.70 46.94 TM1 / Band: 5470-58 Reading (dBuV) (dB/m) (dBuV/m) 39.26 17.21 56.47 39.64 17.21 56.85 29.22 17.21 46.43	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) 38.29 16.37 54.66 68.20 39.71 16.37 56.08 68.20 39.22 16.70 55.92 68.20 40.00 16.70 56.70 68.20 28.85 16.37 45.22 54.00 28.73 16.37 45.10 54.00 29.12 16.70 45.82 54.00 30.24 16.70 46.94 54.00 TM1 / Band: 5470-5850 MHz / BV Reading (dBuV) (dB/m) (dBuV/m) (dBuV/m) 39.26 17.21 56.47 68.20 39.64 17.21 56.85 68.20 29.22 17.21 46.43 54.00	(dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 38.29 16.37 54.66 68.20 -13.54 39.71 16.37 56.08 68.20 -12.12 39.22 16.70 55.92 68.20 -12.28 40.00 16.70 56.70 68.20 -11.50 28.85 16.37 45.22 54.00 -8.78 28.73 16.37 45.10 54.00 -8.90 29.12 16.70 45.82 54.00 -8.18 30.24 16.70 46.94 54.00 -7.06 TM1 / Band: 5470-5850 MHz / BW: 20 / H Reading (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 39.26 17.21 56.47 68.20 -11.73 39.64 17.21 56.85 68.20 -11.35 29.22 17.21 46.43 54.00 -7.57	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Over limit (dB) Antenna Pol. 38.29 16.37 54.66 68.20 -13.54 H 39.71 16.37 56.08 68.20 -12.12 V 39.22 16.70 55.92 68.20 -12.28 H 40.00 16.70 56.70 68.20 -11.50 V 28.85 16.37 45.22 54.00 -8.78 H 28.73 16.37 45.10 54.00 -8.90 V 29.12 16.70 45.82 54.00 -8.18 H 30.24 16.70 46.94 54.00 -7.06 V TM1 / Band: 5470-5850 MHz / BW: 20 / H Reading (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Pol. 39.26 17.21 56.47 68.20 -11.73 H 39.64 17.21 56.85 68.20 -11.35 V 29.22

Remark: 1. Result=Reading + Factor

	-/	TMO / D	and. E470 E0	CO MILL / DV	V- 00 / I		N
		I WIZ / B	and: 5470-58	350 MHZ / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	38.27	16.37	54.64	68.20	-13.56	An ^{lo} H	Peak
5460.00	38.88	16.37	55.25	68.20	-12.95	Notek	Peak
5470.00	38.38	16.70	55.08	68.20	-13.12	H Note	Peak
5470.00	38.83	× 16.70 00°	55.53	68.20	-12.67 ⁽²⁰⁰	V	Peak No
5460.00	27.22	16.37	43.59	54.00	-10.41	potek H And	AVG
5460.00	27.68	16.37	44.05	54.00	-9.95	Notely 1	AVG
5470.00	27.66	16.70	44.36	54.00	-9.64	Hx	AVG
5470.00	28.22	16.70	44.92	54.00	-9.08	Aup A	AVG
		TM2 / B	and: 5470-58	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.50	17.21	54.71	68.20	-13.49	otek H Anb	Peak
5850.00	38.07	o ^{te 1} 7.21 Ant	55.28	68.20	-12.92	VYSKV	Peak
5850.00	27.80	17.21	45.01	54.00	-8.99	Hk Hk	AVG
5850.00	28.58	17.21	45.79	54.00	-8.21	Aupol	AVG

Remark: 1. Result=Reading + Factor

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 42 of 59

	700	TM2 / E	Band: 5470-58	350 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	37.85	16.37	54.22	68.20	-13.98	H note	Peak
5460.00	38.76	16.37	55.13	68.20	-13.07	$\Lambda_{U_{\mathcal{D}}}$	Peak
5470.00	38.68	16.70	55.38 NO	68.20	-12.82	otek H Anbo	Peak
5470.00	39.37	16.70 PM	56.07	68.20	-12.13	V _{Aster} V	Peak
5460.00	26.94	16.37	43.31	54.00	-10.69	Th.	AVG
5460.00	28.78	16.37	45.15	54.00	-8.85	Anbov	AVG
5470.00	27.14	16.70	43.84	54.00	-10.16	"Hayer	AVG
5470.00	28.46	16.70	45.16	54.00	-8.84	Votek	AVG
001-		TM2 / B	and: 5470-58	350 MHz / BV	V: 40 / H		'
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	38.21	17.21	55.42	68.20	-12.78	H	Peak
5850.00	38.56	17.21	55.77	68.20	-12.43	Anboro	Peak
5850.00	28.40	17.21	45.61	54.00	-8.39	Hren.	AVG
5850.00	29.45	17.21	46.66	54.00	-7.34	Votek	AVG

Remark: 1. Result=Reading + Factor

		TM3 / B	and: 5470-58	350 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	37.47	16.37	53.84	68.20	-14.36	noH ^e	Peak
5460.00	37.58	16.37	53.95	68.20	-14.25	Vhotek	Peak
5470.00	38.05	16.70	54.75	68.20	-13.45	H	Peak
5470.00	38.38	16.70	55.08	68.20	-13.12 ₀₀ 0	VANDO	Peak
5460.00	28.08	16.37	44.45	54.00	-9.55	notek H Anb	AVG
5460.00	28.76	16.37	45.13	54.00	-8.87	V	AVG
5470.00	28.36	16.70	45.06	54.00	-8.94	Anbo H.	AVG
5470.00	29.22	16.70	45.92	54.00	-8.08	Anb	AVG
		TM3 / B	and: 5470-58	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	38.21	17.21	55.42	68.20	-12.78	otek H anbo	Peak
5850.00	39.08	17.21 M	56.29	68.20	-11.91 ····	V	Peak
5850.00	28.07	17.21	45.28	54.00	-8.72	Mupor H	AVG
5850.00	29.18	17.21	46.39	54.00	-7.61	Np∘V.	AVG

Remark: 1. Result=Reading + Factor

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 43 of 59

		TM3 / B	and: 5470-58	350 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	36.41	16.37	52.78	68.20	-15.42	"Ho _{ter}	Peak
5460.00	37.90	16.37	54.27	68.20	-13.93	k V spotek	Peak
5470.00	36.84	16.70	53.54	68.20	-14.66	H	e Peak
5470.00	38.24	16.70	54.94	68.20	13.26	oter V And	Peak
5460.00	27.39	16.37	43.76	54.00	-10.24	botek H Ar	AVG
5460.00	27.51	16.37	43.88	54.00	-10.12	V	AVG
5470.00	27.64	16.70	44.34	54.00	-9.66	Aup H	AVG
5470.00	28.32	16.70	45.02	54.00	-8.98	PUD.	AVG
20		TM3 / B	and: 5470-58	350 MHz / BV	V: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.75	17.21	54.96	68.20	-13.24	sotek H An	Peak Pr
5850.00	38.62	17.21	55.83	68.20	-12.37	V	Peak
5850.00	27.76	17.21	44.97	54.00	-9.03	Pupo, H	AVG
5850.00	27.41	17.21	44.62	54.00	-9.38	N/View	AVG

Remark: 1. Result=Reading + Factor

	. 200	TM3 / B	and: 5470-58	350 MHz / BV	V: 80 / L	-21	ν
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	35.68	16.37	52.05	68.20	-16.15	nboi ^c H	Peak
5460.00	37.24	16.37	53.61	68.20	-14.59	Nex	Peak
5470.00	36.04	16.70	52.74	68.20	-15.46	H tek	Peak
5470.00	38.19	16.70	54.89	68.20	-13.31	V	Peak
5460.00	26.00	16.37	42.37	54.00	-11.63	ek Hanbote	AVG
5460.00	27.06	16.37	43.43	54.00 school	-10.57	Jek V Jo	AVG M
5470.00	26.75	16.70	43.45	54.00	-10.55	Н	AVG
5470.00	27.27	16.70	43.97	54.00	-10.03	Vupose A b	AVG
		TM3 / B	and: 5470-58	350 MHz / BV	V: 80 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.79	17.21	55.00	68.20	-13.20	H H hote	Peak
5850.00	38.04	17.21	55.25	68.20	-12.95	V V	Peak noo
5850.00	28.23	17.21	45.44	54.00	-8.56 AN	H	AVG
5850.00	28.41	17.21	45.62	54.00	-8.38	nbotel V	AVG

Remark: 1. Result=Reading + Factor

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 44 of 59

11. Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)	Anotak Anbi	or All
Aupotek Aupotek	Unwanted emissions below strength limits set forth in §	1 GHz must comply with the ge 15.209.	neral field
tek Anbotek An		ere in this subpart, the emission t exceed the field strength levels	
Anbotek Anbotek	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490 0.490-1.705	2400/F(kHz) 24000/F(kHz)	300 30
Test Limit:	1.705-30.0 30-88	30 100 ** 150 **	30 3
botek Anbotek	88-216 216-960 Above 960	200 **	3
	** Except as provided in pa intentional radiators operat frequency bands 54-72 MH	ragraph (g), fundamental emissiing under this section shall not b lz, 76-88 MHz, 174-216 MHz or these frequency bands is permitt	ons from e located in the 470-806 MHz.
	The emission limits shown employing a CISPR quasi-p 90 kHz, 110–490 kHz and a	e, the tighter limit applies at the bin the above table are based on beak detector except for the frequency 1000 MHz. Radiated emised on measurements employing	measurements uency bands 9– sion limits in
Test Method:	ANSI C63.10-2020, section	12.7.4, 12.7.5	Vur tek
	meters above the ground a was rotated 360 degrees to b. The EUT was set 3 or 10 antenna, which was mount c. The antenna height is va ground to determine the materials.	T was placed on the top of a rota t a 3 meter semi-anechoic cham determine the position of the hi meters away from the interference ed on the top of a variable-heigh ried from one meter to four meter aximum value of the field strength	ber. The table ghest radiation. nce-receiving t antenna tower. ers above the h. Both horizonta
Procedure:	d. For each suspected emis and then the antenna was test frequency of below 30I and the rotatable table was maximum reading.	ssion, the EUT was arranged to tuned to heights from 1 meter to MHz, the antenna was tuned to he turned from 0 degrees to 360	its worst case 4 meters (for the neights 1 meter) egrees to find the
Anborek Anborek Anborek Anborek	Bandwidth with Maximum If. If the emission level of the limit specified, then testing	was set to Peak Detect Function Hold Mode. E EUT in peak mode was 10dB I could be stopped and the peak was the emissions that did not hat	ower than the values of the EU

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 45 of 59

would be re-tested one by one using quasi-peak method as specified and then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Above 1GHz:

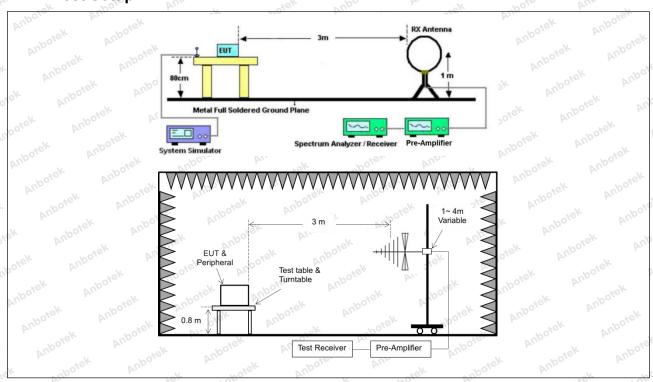
- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 46 of 59

below the limit need not be reported.

- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

11.1. EUT Operation

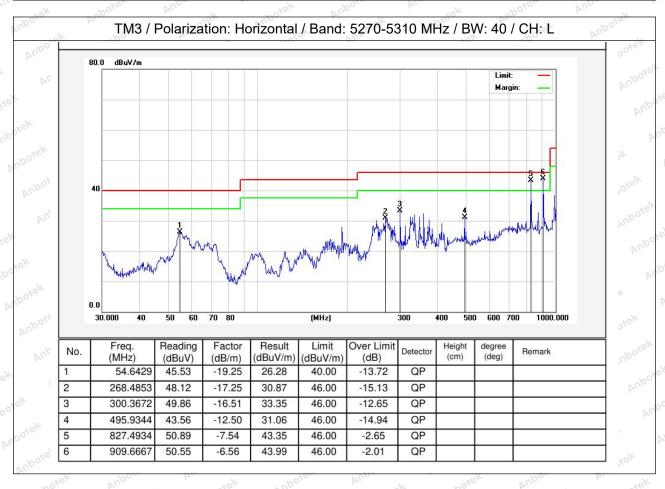

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

Test mode:

- 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

11.2. Test Setup

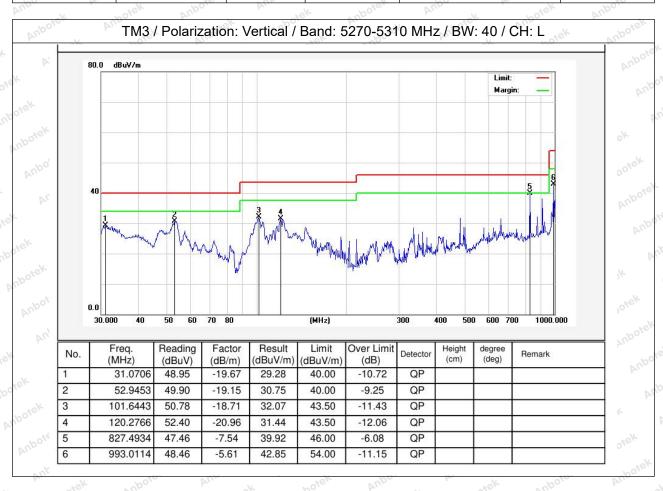

Page 47 of 59 Report No.: 182512C400222104 FCC ID: 2BHM3-EW001

11.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Adapter 1:

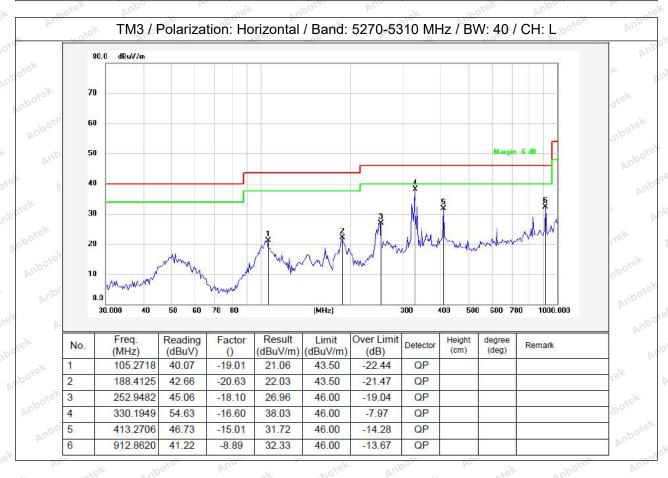
Temperature:	26.3 °C	Humidity:	45 %	Atmospheric Pressure:	101 kPa
0	V	V1.	LO. 7	70~	. 01



Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 48 of 59

Temperature: 26.3 °C Humidity: 45 % Atmospheric Pressure: 101 kPa

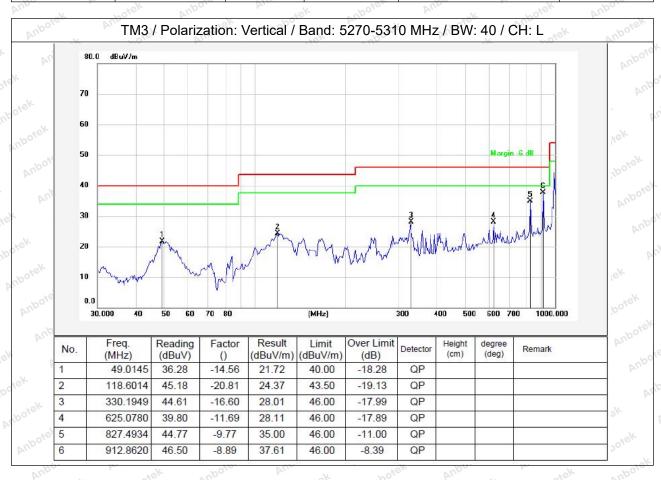
Note:Only record the worst data in the report.



Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 49 of 59

Adapter 2:

Temperature: 26.3 °C Humidity: 45 % Atmospheric Pressure: 101 kPa



Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 50 of 59

Temperature: 26.3 °C Humidity: 45 % Atmospheric Pressure: 101 kPa

Note:Only record the worst data in the report.

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 51 of 59

12. Undesirable emission limits (above 1GHz)

	, N - K	70. N.	_XO.	V Ula		VAV.
	anbore.	47 CFR Part 15.407(b)(1)	Aupo.	rojek.	Anbore	Vur Fek
		47 CFR Part 15.407(b)(2)	aboten			Aupo,
	Test Requirement:	47 CFR Part 15.407(b)(3)				hote
		47 CFR Part 15.407(b)(4)				And
6	K Anbo. K A.	47 CFR Part 15.407(b)(10)	ek abote	Anbo	-k hote	K AND

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Test Limit:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2) soiek
13.36-13.41	Vupo, Vi	de de	View Vup

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

² Above 38.6

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 52 of 59

otek Anbore A		or hotek A	upo, Ve.
ak abotek	The field strength of emiss	sions appearing within thes	se frequency bands shall
Anbore Arr	not exceed the limits show	n in § 15.209. At frequenc	cies equal to or less than
	1000 MHz, compliance with	th the limits in § 15.209sha	all be demonstrated
	using measurement instru	mentation employing a CIS	SPR quasi-peak
	detector. Above 1000 MHz	z, compliance with the emi	ssion limits in §
A. Otek Anboi	15.209shall be demonstra	ted based on the average	value of the measured
	emissions. The provisions	in § 15.35apply to these n	neasurements.
	k cotek Ant		abotek Anbe
	Except as provided elsewh		
hotek Anbo.	intentional radiator shall no	ot exceed the field strength	n levels specified in the
	following table:	Anbore And	potek Anbo
	Frequency (MHz)	Field strength	Measurement
kotek Anbore	All abover	(microvolts/meter)	distance
And	ek Anbore Arr	k aboten And	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30 do 100 pm
	1.705-30.0	30 botek An	30
	30-88	100 **	botel 3 Anbo
	88-216	150 **	AND O TOTOK
	216-960	200 **	Anbor 3 Ans
	Above 960	500	3er Ancor
	** Except as provided in p	V 1201	D.C.
	intentional radiators opera		
	frequency bands 54-72 MI		
sk abotek Ant	However, operation within		
	sections of this part, e.g.,		permitted under other
	In the emission table above		at the hand edges
	The emission limits shown		
	employing a CISPR quasi-		- XC.
	90 kHz, 110–490 kHz and		
	these three bands are bas		
	detector.	K Kotek Anbort	Plus Sek Spot
Test Method:	ANSI C63.10-2020, sectio	n 12.7.4. 12.7.6. 12.7.7	otek Aupon K
- Stek	NOTO ALL	Polok Pupos, - HV	Cick Vupore, Mu
	Above 1GHz:	IT was also and so the tow	of a matation table 1.5
	a. For above 1GHz, the El		
	meters above the ground		
	rotated 360 degrees to de		
	b. The EUT was set 3 met		
	which was mounted on the		
	c. The antenna height is v		
	ground to determine the m		
Procedure:	and vertical polarizations of		
	d. For each suspected em and then the antenna was		
	test frequency of below 30		
	and the rotatable table wa	s turried from 0 degrees to	5 300 degrees to lind the
	maximum reading. e. The test-receiver syster	n was set to Poak Dotact I	Function and Specified
	Bandwidth with Maximum		unction and Specified
	f. If the emission level of the		10dB lower than the
	limit specified, then testing		
		こししいい いき ろいしいせん すけい けん	- DUAN VAIDES UI LIE EUT

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 53 of 59

would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

12.1. EUT Operation

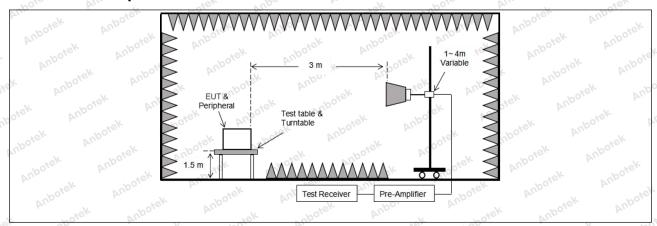
Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

Test mode:

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.



Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 54 of 59

12.2. Test Setup

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 55 of 59

12.3. Test Data

Temperature: 26.3 °C Humidity: 45 % Atmospheric Pressure: 101 kPa

- AV		TM3 / Ban	d: 5190-523	0 MHz / BW:	40 / CH: L	-111	1
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10380.00	29.70	23.81 M	53.51	68.20	-14.69	V	Peak
15570.00	31.10	28.91	60.01	68.20	-8.19	Wpo. A	Peak
10380.00	30.97	23.81	54.78	68.20	-13.42	Anbold	Peak
15570.00	31.70	28.91	60.61	68.20	-7.59	VI HO4SE	Peak
10380.00	20.48	23.81	44.29	54.00	-9.71	Vabotek	AVG
15570.00	21.01	28.91	49.92	54.00	-4.08	V V	AVG 1001
10380.00	20.92	23.81	44.73	54.00	orek -9.27 And	H Amb	AVG
15570.00	21.26	28.91	50.17	54.00	-3.83	nbotek H Ar	AVG
		TM1 / Ban	d: 5190-5230	MHz / BW:	40 / CH: H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10460.00	30.14	23.80	53.94	68.20	-14.26	Kupote	Peak
15690.00	31.29	30.03	61.32	68.20	-6.88	rek V noot	Peak
10460.00	30.52	23.80	54.32	68.20	-13.88	H	ote ^k Peak Anb
15690.00	31.79	30.03	61.82	68.20	-6.38	H bu	Peak
10460.00	20.81	23.80	44.61	54.00	-9.39	Aupore	AVG
15690.00	20.90	30.03	50.93	54.00	-3.07	" PAR ASIA	AVG
10460.00	20.58	23.80	44.38	54.00	-9.62	Horek	AVG
15690.00	20.78	30.03	50.81	54.00	-3.19	H	AVG

- 1. Result =Reading + Factor
- 2. Only the worst case is recorded in the report.

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 56 of 59

		TM3/ Ban	d: 5270-531	0 MHz / BW:	40 / CH: L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10540.00	27.07	23.83	50.90	68.20	-17.30	P.V.	Peak
15810.00	28.82	30.70	59.52	68.20	-8.69	K Nupote	Peak
10540.00	27.61	23.83	51.44	68.20	-16.76	dek H no	Peak
15810.00	28.97	otel 30.70 pm	59.67	68.20	-8.53 Ant	Н	Peak
10540.00	16.92	23.83	40.75	54.00	-13.25	Nupor A	AVG
15810.00	17.96	30.70	48.66	54.00	-5.35	AUP OF	AVG
10540.00	17.29	23.83	41.12	54.00	-12.88	Hotek	AVG
15810.00	18.34	30.70	49.04	54.00	-4.96	H botek	AVG
5.07		TM3 / Ban	d: 5270-531	0 MHz / BW:	40 / CH: H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10620.00	27.76	23.90	51.66	68.20	-16.54	Ŋ.	Peak
15930.00	27.75	31.83	59.58	68.20	-8.62	Anb V.K	Peak
10620.00	28.41	23.90	52.31	68.20	-15.89	AnH	Peak
15930.00	28.51	31.83	60.34	68.20	-7.87	Hoose	Peak
10620.00	18.04	23.90	41.94	54.00	-12.06	ek V nbot	AVG
15930.00	17.39	31.83	49.22	54.00	-4.78	V	AVG M
10620.00	18.47	23.90	42.37	54.00	-11.64	Apole H BU	AVG
15930.00	17.59	31.83	49.42	54.00	-4.58	Anborett H	AVG

- 1. 1. Result =Reading + Factor
- 2. 2. Only the worst case is recorded in the report.

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 57 of 59

		TM3 / Ban	d: 5530-561	0 MHz / BW:	80 / CH: L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11060.000	26.26	24.06	50.32	68.20	-17.88	P.V.	Peak
16590.000	27.27	32.78	60.05	68.20	-8.15	K Nupote	Peak
11060.000	27.28	24.06	51.34	68.20	-16.86	dek H no	Peak
16590.000	27.34	otel 32.78 pm	60.12	68.20	-8.08	Н	Peak
11060.000	16.57	24.06	40.63	54.00	-13.37	Nupor A	AVG
16590.000	18.00	32.78	50.78	54.00	-3.22	AUP OF	AVG
11060.000	16.90	24.06	40.96	54.00	-13.04	Hotek	AVG
16590.000	17.67	32.78	50.45	54.00	-3.55	H botek	AVG
		TM3 / Ban	d: 5530-561	0 MHz / BW:	80 / CH: M		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11220	27.89	23.60	51.49	68.20	-16.71	Ŋ.	Peak
16830	28.07	31.58	59.65	68.20	-8.55	Aup Aug	Peak
11220	26.44	23.60	50.04	68.20	-18.16	AUH.	Peak
16830	27.10	31.58	58.68	68.20	-9.52	Hoose	Peak
11220	17.30	23.60	40.90	54.00	-13.10	ek V nbot	AVG
16830	17.92	31.58	49.50	54.00	-4.50	V	ore AVG AN
11220 M	16.95	23.60	40.55	54.00	-13.45	H bu	AVG
16830	17.75	31.58	49.33	54.00	-4.67	Anborett H	AVG

- 3. 1. Result =Reading + Factor
- 4. 2. Only the worst case is recorded in the report.

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 58 of 59

		TM3 / Ban	nd: 5755-579	5 MHz / BW:	40 / CH: L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11510.000	28.71	23.36	52.07	68.20	-16.13	P.V.	Peak
17265.000	29.35	32.02	61.37	68.20	-6.83	K Nupote	Peak
11510.000	29.70	23.36	53.06	68.20	-15.14	dek H no	Peak
17265.000	29.56	32.02 M	61.58	68.20	-6.62	Н	Peak
11510.000	18.47	23.36	41.83	54.00	-12.17	Nupor A	AVG
17265.000	18.90	32.02	50.92	54.00	-3.08	Aup of C	AVG
11510.000	18.92	23.36	42.28	54.00	-11.72	Hotek	AVG
17265.000	19.45	32.02	51.47	54.00	-2.53	H botek	AVG
		TM3 / Ban	d: 5755-579	5 MHz / BW:	40 / CH: H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11590.00	28.13	23.43	51.56	68.20	-16.64	Ŋ.	Peak
17385.00	29.29	32.23	61.52	68.20	-6.68	Aup Aug	Peak
11590.00	28.52	23.43	51.95	68.20	-16.25	AUH.	Peak
17385.00	28.79	32.23	61.02	68.20	-7.18	Hoose	Peak
11590.00	17.81	23.43	41.24	54.00	-12.76	ek V nbot	AVG
17385.00	17.90	32.23	50.13	54.00	-3.87 And	V	ore AVG AN
11590.00	18.57	23.43	42.00	54.00	-12.00	H bu	AVG
17385.00	18.78	32.23	51.01	54.00	-2.99	Anborett H	AVG

- 1. 1. Result =Reading + Factor
- 2. 2. Only the worst case is recorded in the report.

Report No.: 182512C400222104 FCC ID: 2BHM3-EW001 Page 59 of 59

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----

