FCC TEST REPORT					
	FCC ID: 2BHEV-MC612				
Report No.	: <u>SSP24070030-1E</u>				
Applicant	: Ningde suolong Technology Co.,Ltd				
Product Name	: Massage Chair				
Model Name	: <u>MC-612</u>				
Test Standard	: FCC Part 15.247				
Date of Issue	: 2024-07-09				
Prepared By	Shenzhen CCUT Quality Technology Co., Ltd.				
Ch					
	e nzhen CCUT Quality Technology Co., Ltd. chnology Industrial Park, Yutang Street, Guangming District, Shenzhen,				
	(Tel.:+86-755-23406590 website: www.ccuttest.com)				
-	bove client company and the product model only. It may not be duplicated ermitted by Shenzhen CCUT Quality Technology Co., Ltd.				

Test Report Basic Information

Applicant: Address of Applicant	Ningde suolong Technology Co.,Ltd No. 302 Century Avenue, Chengyang Town, Fuan, Ningde, Fujian Province, China, 355000			
Manufacturer: Address of Manufacturer:	Ningde suolong Technology Co.,Ltd No. 302 Century Avenue, Chengyang Town, Fuan, Ningde, Fujian Province, China, 355000			
Product Name:	Massage Chair			
Brand Name:				
Main Model	MC-612			
Series Models	MC-612A, MC-612B, MC-612C, MC-612D, MC-821, MC-723, MC-825, TJX-A(SS02), SL-M518, SL-YH-A6, SL-A108, SL-A113			
Test Standard Date of Test Test Result	FCC Part 15 Subpart C KDB558074 D01 15.247 Meas Guidance v05r02 ANSI C63.4-2014 ANSI C63.10-2013 2024-07-03 to 2024-07-04 PASS			
Tested By	Walker Wu (Walker Wu)			
Reviewed By	Lieber Ouyang (Lieber Ouyang)			
Authorized Signatory	Lahm Peng (Lahm Peng)			
-	to the above client company and the product model only. It may not be ted by Shenzhen CCUT Quality Technology Co., Ltd All test data presented in e to presented test sample.			

CONTENTS

1. General Information	5
1.1 Product Information	5
1.2 Test Setup Information	
1.3 Compliance Standards	
1.4 Test Facilities	
1.5 List of Measurement Instruments	
1.6 Measurement Uncertainty	
2. Summary of Test Results	
3. Antenna Requirement	10
3.1 Standard and Limit	
3.2 Test Result	10
4. Conducted Emissions	11
4.1 Standard and Limit	11
4.2 Test Procedure	11
4.3 Test Data and Results	12
5. Radiated Emissions	15
5.1 Standard and Limit	15
5.2 Test Procedure	15
5.3 Test Data and Results	17
6. Band-edge Emissions(Radiated)	21
6.1 Standard and Limit	21
6.2 Test Procedure	
6.3 Test Data and Results	
7. Maximum Peak Conducted Output Power	23
7.1 Standard and Limit	23
7.2 Test Procedure	23
7.3 Test Data and Results	
8. Occupied Bandwidth(-6dB)	25
8.1 Standard and Limit	25
8.2 Test Procedure	25
8.3 Test Data and Results	25
9. Maximum Power Spectral Density	27
9.1 Standard and Limit	27
9.2 Test Procedure	
9.3 Test Data and Results	27
10. Band-edge Emission(Conducted)	29
10.1 Standard and Limit	29
10.2 Test Procedure	
10.3 Test Data and Results	
11. Conducted RF Spurious Emissions	
11.1 Standard and Limit	
11.2 Test Procedure	
11.3 Test Data and Results	31

Revision History

Revision	Issue Date	Description	Revised By
V1.0	2024-07-09	Initial Release	Lahm Peng

1. General Information

1.1 Product Information

Product Name:	Massage Chair			
Trade Name:	-			
Main Model:	MC-612			
Series Models:	MC-612A, MC-612B, MC-612C, MC-612D, MC-821, MC-723, MC-825, TJX-A(SS02),			
Series Models.	SL-M518, SL-YH-A6, SL-A108, SL-A113			
Rated Voltage:	-			
Power Adapter:	Input: AC 110-220V, 50/60Hz, 90W			
Battery:	-			
Hardware Version:	V1.0			
Software Version:	V1.0			
Note 1: The test data is gathered from a production sample, provided by the manufacturer.				
Note 2: The color of appearance and model name of series models listed are different from the main model, but				
the circuit and the electronic construction are the same, declared by the manufacturer.				

Wireless Specification	
Wireless Standard:	Bluetooth BLE
Operating Frequency:	2402MHz ~ 2480MHz
RF Output Power:	3.57dBm
Number of Channel:	40
Channel Separation:	2MHz
Modulation:	GFSK
Antenna Gain:	-0.58dBi
Type of Antenna:	PCB Antenna
Type of Device:	Portable Device Mobile Device Modular Device

1.2 Test Setup Information

List of Test Modes							
Test Mode	De	Description		Remark			
TM1	В	LE_GFSK		2402/2440/2480MHz			
TM2	C	Charging		AC 120V/6	0Hz		
List and Detail	s of Auxiliary	Cable					
Descrip	otion	Length (cm)		Shielded/Unshielded	With/Without Ferrite		
-		-		-	-		
-		-				-	
List and Detail	List and Details of Auxiliary Equipment						
Descrip	otion	Manufacturer		Model	Serial Number		
-		-		-	-		
-							

List of Channels							
No. of	Frequency	No. of	Frequency	No. of	Frequency	No. of	Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
01	2402	11	2422	21	2442	31	2462
02	2404	12	2424	22	2444	32	2464
03	2406	13	2426	23	2446	33	2466
04	2408	14	2428	24	2448	34	2468
05	2410	15	2430	25	2450	35	2470
06	2412	16	2432	26	2452	36	2472
07	2414	17	2434	27	2454	37	2474
08	2416	18	2436	28	2456	38	2476
09	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

1.3 Compliance Standards

Compliance Standards			
FCC Part 15 Subpart C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
rec rait 15 Subpart C	Intentional Radiators		
All measurements contained in this	report were conducted with all above standards		
According to standards for test n	nethodology		
DCC Devit 15 Color ant C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
FCC Part 15 Subpart C	Intentional Radiators		
GUIDANCE FOR COMPLIANCE MEASUREMENTS ON			
KDB 558074 D01 15.247 Meas	DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREA		
Guidance v05r02	SPECTRUMSYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER		
SECTION 15.247 OF THE FCC RULES			
ANSI C63.4-2014	American National Standard for Methods of Measurement of Radio-Noise Emissions		
ANSI C63.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.		
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed		
ANSI C63.10-2015	Wireless Devices		
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which			
result is lowering the emission, should be checked to ensure compliance has been maintained.			

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.		
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,		
	Guangming District, Shenzhen, Guangdong, China		
CNAS Laboratory No.:	L18863		
A2LA Certificate No.:	6893.01		
FCC Registration No:	583813		
ISED Registration No.:	CN0164		
All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing			
Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.			

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date		
Conducted Emissions							
AMN	ROHDE&SCHWARZ	ENV216	101097	2023-10-21	2024-10-20		
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2023-07-31	2024-07-30		
		Radiated Emissio	ons				
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2023-07-31	2024-07-30		
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2023-07-31	2024-07-30		
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2023-07-31	2024-07-30		
Amplifier	SCHWARZBECK	BBV 9743B	00251	2023-07-31	2024-07-30		
Amplifier	HUABO	YXL0518-2.5-45		2023-07-31	2024-07-30		
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2023-07-31	2024-07-30		
Loop Antenna	DAZE	ZN30900C	21104	2023-08-07	2024-08-06		
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2023-08-07	2024-08-06		
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2023-08-07	2024-08-06		
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2023-08-07	2024-08-06		
	Conducted RF Testing						
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2023-07-31	2024-07-30		
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2023-07-31	2024-07-30		

1.5 List of Measurement Instruments

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty	
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB	
	9kHz ~ 30MHz	±2.88 dB	
Dedicted Emissions	30MHz ~ 1GHz	±3.32 dB	
Radiated Emissions	1GHz ~ 18GHz	±3.50 dB	
	18GHz ~ 40GHz	±3.66 dB	
Conducted Output Power	9kHz ~ 26GHz	±0.50 dB	
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %	
Conducted Spurious Emission	9kHz ~ 26GHz	±1.32 dB	
Power Spectrum Density	9kHz ~ 26GHz	±0.62 dB	

2. Summary of Test Results

FCC Rule	Description of Test Item	Result
FCC Part 15.203	Antenna Requirement	Passed
FCC Part 15.247(i)	RF Exposure(see the RF exposure report)	Passed
FCC Part 15.207	Conducted Emissions	Passed
FCC Part 15.209, 15.247(d)	Radiated Emissions	Passed
FCC Part 15.247(d)	Band-edge Emissions(Radiated)	Passed
FCC Part 15.247(b)(3)	Maximum Peak Conducted Output Power	Passed
FCC Part 15.247(a)(2)	Occupied Bandwidth(-6dB)	Passed
FCC Part 15.247(e)	Maximum Power Spectral Density	Passed
FCC Part 15.247(d)	Band-edge Emissions(Conducted)	Passed
FCC Part 15.247(d)	Conducted RF Spurious Emissions	Passed
Passed: The EUT complies with the esse	ential requirements in the standard	
Failed: The EUT does not comply with the	ne essential requirements in the standard	
N/A: Not applicable		

3. Antenna Requirement

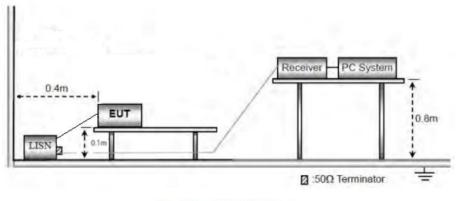
3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Test Result

This product has an PCB Antenna, fulfill the requirement of this section.

4. Conducted Emissions


4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emissions (dBuV)						
(MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56	56 to 46					
0.5-5	56	46					
5-30	60						
Note 1: Decreases with the log	Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz						
Note 2: The lower limit applies	Note 2: The lower limit applies at the band edges						

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

b) The following is the setting of the receiver
Attenuation: 10dB
Start Frequency: 0.15MHz
Stop Frequency: 30MHz
IF Bandwidth: 9kHz

c) The EUT was placed 0.1 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

f) LISN is at least 80 cm from nearest part of EUT chassis.

g) For the actual test configuration, please refer to the related Item - photographs of the test setup.

4.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

Test F	Plots and Data of Co	nducted	d Emissio	ns						
Teste	d Mode:	TM2								
Test V	/oltage:	AC 12	C 120V/60Hz							
Test F	Power Line:	Neutr	al							
Rema	rk:									
90.0	dBuV									
80										
70										
									FCC Part15 CE-Class B_Q	
60										<u>-</u>
50			3 5	7			_		FCC Patt15-GE-Class B_A	Ve
40	Maria	m r	Ň. "Ň	alman and a start	warmen and a second	¥.			III MA	Mar
40	Mental Ment Mental Mental Ment	MUT .	1 Vinn	8	N.	ry how		M		J /N peak
30	A Wathraw	When have	A Martin	her work had with	and a should be should be should be a should be a should be a should be a shou		hall hall	M		W W
20		, r				Warnhight	MN L	M		M AVG
							- I Y			
10										
0								_		
-10										
0.	150	0.50	0		(MHz)		5.0	00		30.000
No.		ading	Factor	Level	Limit (dBuV)	Margin	Detector	P/F	Remark	
1		BuV) 3.87	(dB) 9.25	(dBuV) 48.12	(ubuv) 64.63	(dB) -16.51	QP	P		
2		0.73	9.25	29.98	54.63	-24.65	AVG	P		
3		5.85	9.71	45.56	56.00	-10.44	QP	P		
4	0.6045 2	1.81	9.71	31.52	46.00	-14.48	AVG	Р		
5		6.15	9.62	45.77	56.00	-10.23	QP	Р		
6		3.78	9.62	28.40	46.00	-17.60		Р		
7		4.96	10.03	44.99	56.00	-11.01	QP	P		
8		3.70	10.03	33.73	46.00	-12.27	AVG	P		
9		2.33	10.08	42.41	56.00	-13.59	QP	P		
10		6.48 3.01	10.08 10.17	26.56 48.18	46.00 60.00	-19.44 -11.82	AVG QP	P P		
12		2.20	10.17	40.10	50.00	-7.63	AVG	P		
_ <u>'</u>	11.01.00		10.17	12.07	00.00	1.00		· ·		

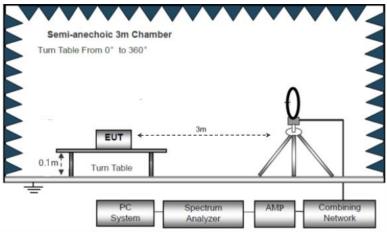
Test P	lots and Data o	f Conducte	ed Emissio	ons						
Testee	d Mode:	de: TM2								
Test V	oltage:	AC 1	C 120V/60Hz							
Test P	ower Line:	Live								
Rema	rk:									
90.0	dBuV									
80										
70										
60									FCC Part15 CE-Class B_QP	
									FCC Pait15 CE-Class B_AVe	
50	man		3	5 7	9 X				<u>1</u> 1	
40		ny w	Marine	A The second second	Mymashi	What they				peak
30		MANI	A Manual and	\$ MANY HAR MANY	10 '''' "	<u>'</u>	Mohamma	werther	VIM X MULI	AVG
20	Ť.		W 1. 10		The Warden	ward when and	L	um	I will much !!	[V]
20							run h	~		¥
10										
0										
-10										
0.1	50	0.50	DO		(MHz)		5.0	00		30.000
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark	
1	0.1545	43.50	9.22	52.72	65.75	-13.03	QP	Ρ		
2	0.1545	28.63	9.22	37.85	55.75	-17.90	AVG	Ρ		
3	0.5460	35.75	9.94	45.69	56.00	-10.31	QP	P		
4	0.5460	21.81 36.05	9.94 9.80	31.75 45.85	46.00 56.00	-14.25 -10.15	AVG QP	P P		
6	0.9420	21.41	9.80	31.21	46.00	-14.79		P		
7	1.2795	36.65	10.03	46.68	56.00	-9.32	QP	Р		
8	1.2795	22.04	10.03	32.07	46.00	-13.93	AVG	Ρ		
9 *	1.7340	37.21	10.04	47.25	56.00	-8.75	QP	Ρ		
10	1.7340	21.92	10.04	31.96	46.00	-14.04	AVG	Ρ		
11	10.7924	33.42	10.09	43.51	60.00	-16.49	QP	Ρ		
12	10.7924	23.62	10.09	33.71	50.00	-16.29	AVG	P		

5. Radiated Emissions

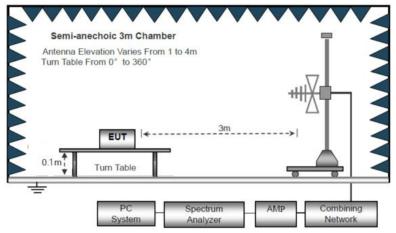
5.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

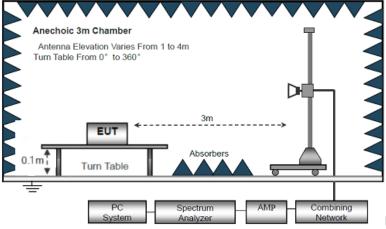
Frequency of Emission	Field Strength	Measurement Distance					
(MHz)	(micorvolts/meter)	(meters)					
0.009~0.490	2400/F(kHz)	300					
0.490~1.705	24000/F(kHz)	30					
1.705~30.0	30	30					
30~88	100	3					
88~216	150	3					
216~960	200	3					
Above 960	500	3					
Note: The more stringent limit applies	Note: The more stringent limit applies at transition frequencies.						


According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.


Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

5.2 Test Procedure


Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

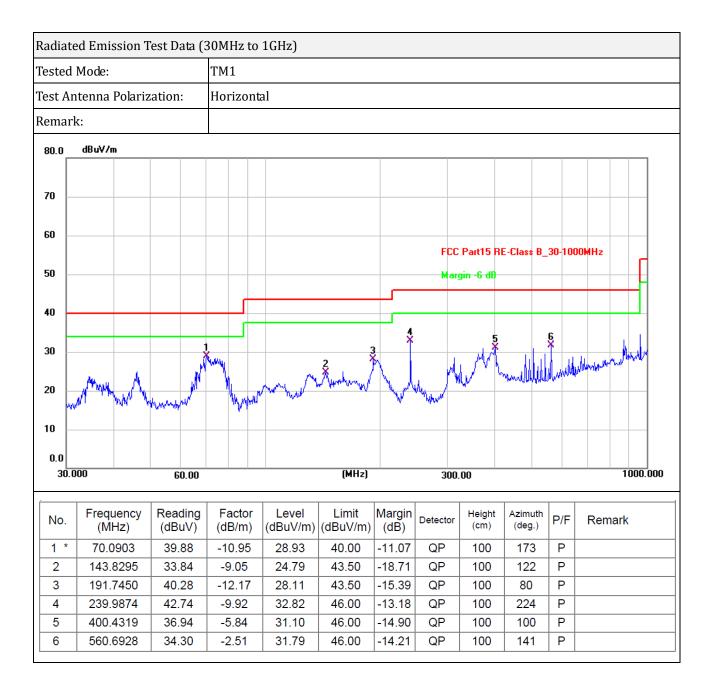
Block Diagram of Radiated Emission Above 1GHz

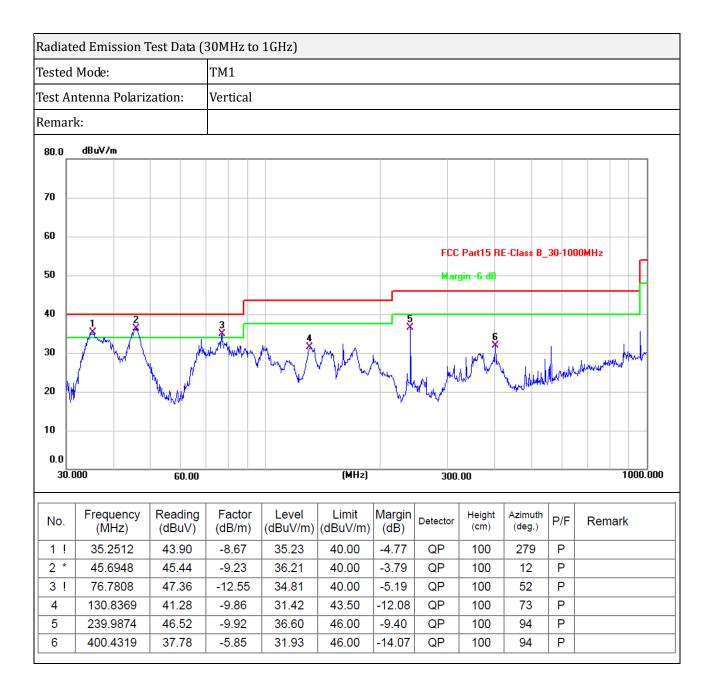
a) The EUT is placed on a turntable, which is 0.1m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.

b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.

c) Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz VBW \ge RBW, Sweep = auto Detector function = peak Trace = max hold

d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.


e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.


f) For the actual test configuration, please refer to the related item - EUT test photos.

5.3 Test Data and Results

All of the modes have been tested, the EUT complied with the FCC Part 15.247 standard limit for a wireless device, and with the worst case BLE_GFSK_2402MHz as below:

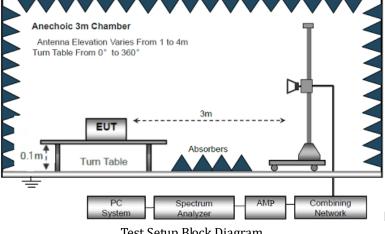
Remark: Level = Reading + Factor, Margin = Level - Limit

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV
			Lowest Chann	el (2402MHz)	L		
4804	79.85	-14.72	65.13	74	-8.87	Н	РК
4804	59.01	-14.72	44.29	54	-9.71	Н	AV
7206	64.31	-8.41	55.9	74	-18.1	Н	РК
7206	48.79	-8.41	40.38	54	-13.62	Н	AV
4804	75.92	-14.72	61.2	74	-12.8	V	РК
4804	59.66	-14.72	44.94	54	-9.06	V	AV
7206	63.96	-8.41	55.55	74	-18.45	V	РК
7206	47.39	-8.41	38.98	54	-15.02	V	AV
			Middle Chann	el (2440MHz)			
4880	79.23	-14.64	64.59	74	-9.41	Н	РК
4880	59.22	-14.64	44.58	54	-9.42	Н	AV
7320	64.81	-8.28	56.53	74	-17.47	Н	РК
7320	50.36	-8.28	42.08	54	-11.92	Н	AV
4880	77.11	-14.64	62.47	74	-11.53	V	РК
4880	57.14	-14.64	42.5	54	-11.5	V	AV
7320	64.91	-8.28	56.63	74	-17.37	V	РК
7320	47.88	-8.28	39.6	54	-14.4	V	AV
			Highest Chanr	nel (2480MHz)			
4960	74.02	-14.53	59.49	74	-14.51	Н	РК
4960	62.99	-14.53	48.46	54	-5.54	Н	AV
7440	64.06	-8.13	55.93	74	-18.07	Н	РК
7440	49.07	-8.13	40.94	54	-13.06	Н	AV
4960	77.59	-14.53	63.06	74	-10.94	V	РК
4960	60.22	-14.53	45.69	54	-8.31	V	AV
7440	64.3	-8.13	56.17	74	-17.83	V	РК
7440	49.46	-8.13	41.33	54	-12.67	V	AV

Note 1: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

Note 3: Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded in report. 18GHz-26GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.


6. Band-edge Emissions(Radiated)

6.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6 and section 6.10.

Test Setup Block Diagram

As the radiated emissions testing, set the Lowest and Highest Transmitting Channel, observed the outside band of 2310MHz to 2400MHz and 2483.5MHz to 2500MHz, than mark the higher-level emission for comparing with the FCC rules.

6.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.247 standard limit, and with the worst case as below:

Test Mode	Frequency	Limit	Result
	MHz	dBuV/dBc	Result
Louroot	2310.00	<54 dBuV	Pass
Lowest	2390.00	<54 dBuV	Pass
Uighost	2483.50	<54 dBuV	Pass
Highest	2500.00	<54 dBuV	Pass

Radiated Emission Test Data (Band edge emissions)												
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector					
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV					
Lowest Channel (2402MHz)												
2310	68.73	-21.34	47.39	74	-26.61	Н	РК					
2310	49.81	-21.34	28.47	54	-25.53	Н	AV					
2390	68.27	-20.96	47.31	74	-26.69	Н	РК					
2390	52.39	-20.96	31.43	54	-22.57	Н	AV					
2400	70.21	-20.91	49.3	74	-24.7	Н	РК					
2400	56.38	-20.91	35.47	54	-18.53	Н	AV					
2310	65.6	-21.34	44.26	74	-29.74	V	РК					
2310	49.8	-21.34	28.46	54	-25.54	V	AV					
2390	68.94	-20.96	47.98	74	-26.02	V	РК					
2390	50.71	-20.96	29.75	54	-24.25	V	AV					
2400	74.19	-20.91	53.28	74	-20.72	V	РК					
2400	54.71	-20.91	33.8	54	-20.2	V	AV					
			Highest Chanr	nel (2480MHz)								
2483.50	67.43	-20.51	46.92	74	-27.08	Н	РК					
2483.50	53.75	-20.51	33.24	54	-20.76	Н	AV					
2500	67.69	-20.43	47.26	74	-26.74	Н	РК					
2500	49.06	-20.43	28.63	54	-25.37	Н	AV					
2483.50	72.45	-20.51	51.94	74	-22.06	V	РК					
2483.50	56.37	-20.51	35.86	54	-18.14	V	AV					
2500	66.08	-20.43	45.65	74	-28.35	V	РК					
2500	50.59	-20.43	30.16	54	-23.84	V	AV					

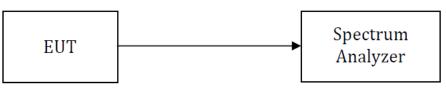
Remark: Level = Reading + Factor, Margin = Level - Limit

7. Maximum Peak Conducted Output Power

7.1 Standard and Limit

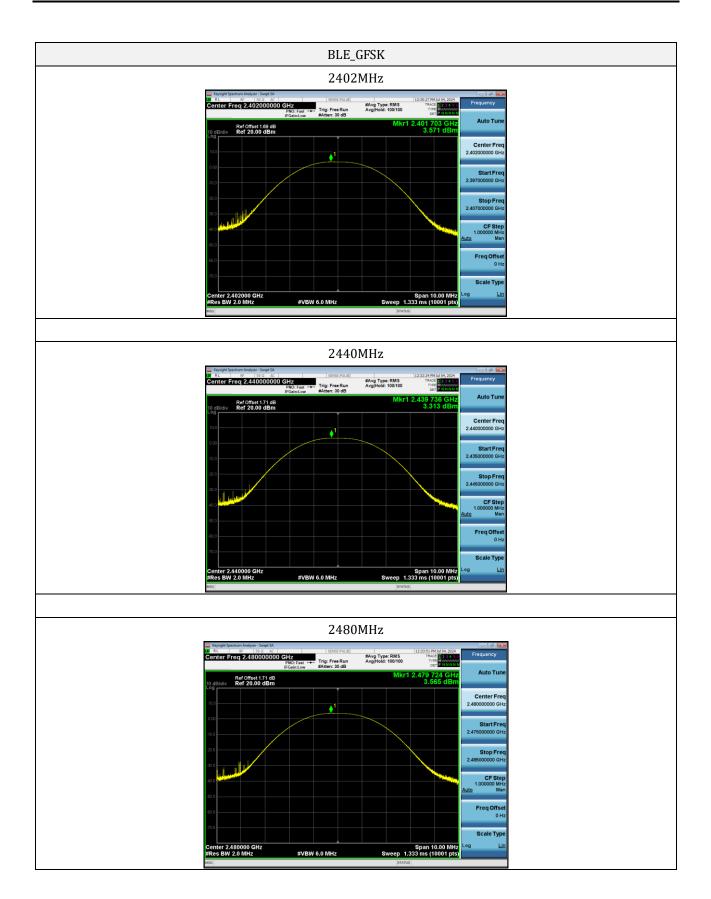
According to 15.247(b)(3). For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

7.2 Test Procedure


1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 2MHz, VBW = 6MHz, Sweep = Auto, Detector = RMS.


4) Measure the highest amplitude appearing on spectral display and mark the value.

5) Repeat the above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Test Mode	Test Channel MHz	Conducted Output Power (dBm)	Limit (dBm)	Test Result
BLE_GFSK	2402	3.57	30	Pass
	2440	3.31	30	Pass
	2480	3.57	30	Pass

8. Occupied Bandwidth(-6dB)

8.1 Standard and Limit

According to 15.247(a)(2), Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

8.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto.

4) Set a reference level on the measuring instrument equal to the highest peak value.

5) Measure the frequency difference of two frequencies that were attenuated 6dB from the reference level. Record the frequency difference as the emission bandwidth.

6) Repeat the above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Test Mode	Test Channel (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	Limit 6 dB Bandwidth (MHz)	Test Result
BLE_GFSK	2402	0.646	1.047	0.5	Pass
	2440	0.652	1.043	0.5	Pass
	2480	0.65	1.045	0.5	Pass

9. Maximum Power Spectral Density

9.1 Standard and Limit

According to FCC 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

9.2 Test Procedure

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 3kHz, VBW = 10kHz, Sweep = Auto, Detector = RMS.


4) Measure the highest amplitude appearing on spectral display and mark the value.

5) Repeat above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Test Mode	Test Channel MHz	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Test Result
	2402	-12.66	8	Pass
BLE_GFSK	2440	-12.84	8	Pass
	2480	-12.68	8	Pass

10. Band-edge Emission(Conducted)

10.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

10.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.10.

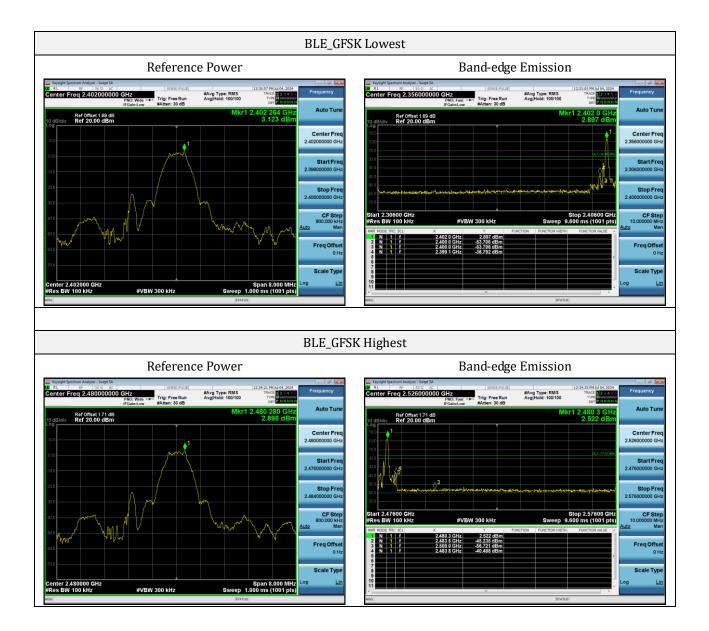
1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = RMS.

4) Measure the highest amplitude appearing on spectral display and set it as a reference level.

5) Set a convenient frequency span including 100 kHz bandwidth from band edge.


6) Measure the emission and marking the edge frequency.

7) Repeat above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Test Mode	Band-edge	Test Channel (MHz)	Max. Value (dBc)	Limit (dBc)	Test Result
BLE_GFSK	Lowest	2402	-41.91	-20	Pass
	Highest	2480	-43.38	-20	Pass

11. Conducted RF Spurious Emissions

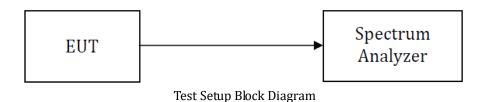
11.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

11.2 Test Procedure

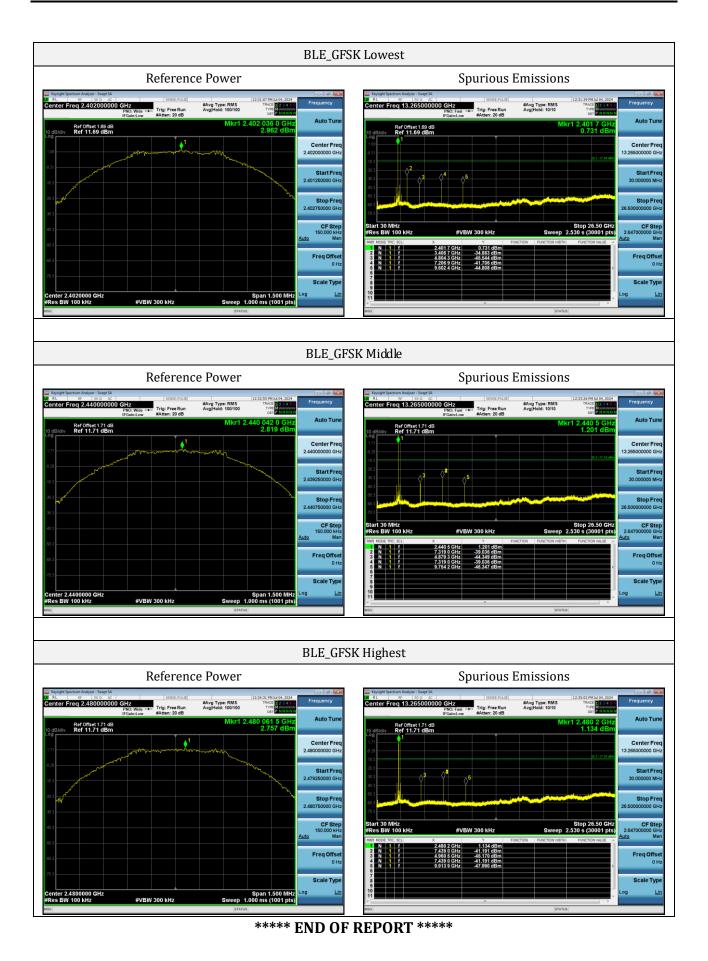
Test is conducting under the description of ANSI C63.10 - 2013 section 6.7.

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.


2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = RMS.

4) Measure the highest amplitude appearing on spectral display and set it as a reference level.


5) Measure the spurious emissions with frequency range from 9kHz to 26.5GHz.

6) Repeat above procedures until all measured frequencies were complete.

11.3 Test Data and Results

Note: The measurement frequency range is from 9kHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions measurement data.

