

Test Report

Report No.: MTi240629002-01E1

Date of issue: 2024-09-03

Applicant: Shenzhen Aileshang Technology Co., LTD

Product name: Cooling wireless car charger

Model(s): X16, X17, X18, X19, X20

FCC ID: 2BHE4-X16

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gen	eral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 5 6
2	Sum	nmary of Test Result	7
3	Test	Facilities and accreditations	8
	3.1	Test laboratory	8
4	List	of test equipment	9
5	Eval	luation Results (Evaluation)	10
	5.1	Antenna requirement	10
6	Radi	io Spectrum Matter Test Results (RF)	11
	6.1 6.2 6.3 6.4	Conducted Emission at AC power line 20dB Occupied Bandwidth Emissions in frequency bands (below 30MHz) Emissions in frequency bands (30MHz - 1GHz)	14 17
Ph	otogr	aphs of the test setup	23
Ph	otogr	aphs of the EUT	23

Test Result Certification Applicant: Shenzhen Aileshang Technology Co., LTD A1705, Building 2, Great Wall Building, No. 2 Baihua 4th Road, Address: Great Wall Community, Yuanling Street, Futian District, Shenzhen Manufacturer: Shenzhen Aileshang Technology Co., LTD A1705, Building 2, Great Wall Building, No. 2 Baihua 4th Road, Address: Great Wall Community, Yuanling Street, Futian District, Shenzhen **Product description** Product name: Cooling wireless car charger **AOLOLOSO** Trademark: Model name: X16 Series Model(s): X17, X18, X19, X20 Standards: 47 CFR Part 15C Test Method: ANSI C63.10-2013 **Date of Test** Date of test: 2024-07-31 to 2024-09-03 Test result: **Pass**

Test Engineer :	:	James Qin
		(James Qin)
Reviewed By :	:	David. Cee
		(David Lee)
Approved By :	:	leor chen
		(Leon Chen)

1 General Description

1.1 Description of the EUT

Product name:	Cooling wireless car charger
Model name:	X16
Series Model(s):	X17, X18, X19, X20
Model difference:	All the models are the same circuit and module, except the model name.
Electrical rating:	Input: 9VDC 2A, 9VDC 3A, 12VDC 2.08A Output: 15W(Max)
Accessories:	Cable: Type-c to Type-c Cable: 100cm
Hardware version:	1.0
Software version:	1.0
Test sample(s) number:	MTi240629002-01S1001
RF specification	
Operating frequency range:	115-205KHz
Modulation type:	ASK

1.2 Description of test modes

No.	Emission test modes
Mode1	Wireless Output(5W)
Mode2	Wireless Output(7.5W)
Mode3	Wireless Output(10W)
Mode4	Wireless Output(15W)
Mode5	Stand by

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list							
Description	Model	Serial No.	Manufacturer				
wireless charging load	YBZ1.1	/	YBZ				
HUAWEI QUICK CHARGE(65W)	HW-200200ZP1	JN67LSN7N03451	HUAWEI				
Support cable list							
Description	Length (m)	From	То				
/	/	/	/				

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	±5%

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15C	47 CFR Part 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15C	47 CFR Part 15.207(a)	Pass
3	20dB Occupied Bandwidth	47 CFR Part 15C	47 CFR Part 15.215(c)	Pass
4	Emissions in frequency bands (below 30MHz)	47 CFR Part 15C	47 CFR Part 15.209	Pass
5	Emissions in frequency bands (30MHz - 1GHz)	47 CFR Part 15C	47 CFR Part 15.209	Pass

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due		
110.	Equipment				Jai. date	Oai. Duc		
	Conducted Emission at AC power line							
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2024-03-20	2025-03-19		
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2024-03-21	2025-03-20		
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2024-03-20	2025-03-19		
		20dB Od	cupied Bandwid	th				
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03-20	2025-03-19		
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2024-03-21	2025-03-20		
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20		
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2024-03-21	2025-03-20		
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2024-03-21	2025-03-20		
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2024-03-21	2025-03-20		
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2024-03-21	2025-03-20		
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2024-03-20	2025-03-19		
9	DC Power Supply	Agilent	E3632A	MY40027695	2024-03-21	2025-03-20		
		Emissions in frequ	iency bands (bel	low 30MHz)				
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19		
2	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22		
3	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19		
	Emissions in frequency bands (30MHz - 1GHz)							
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19		
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10		
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22		
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19		

5 Evaluation Results (Evaluation)

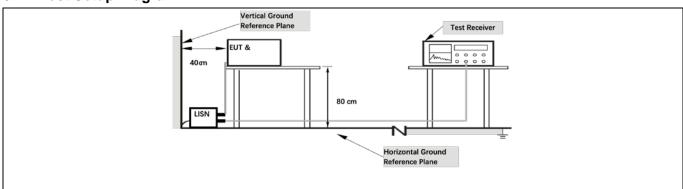
5.1 Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	---

5.1.1 Conclusion:

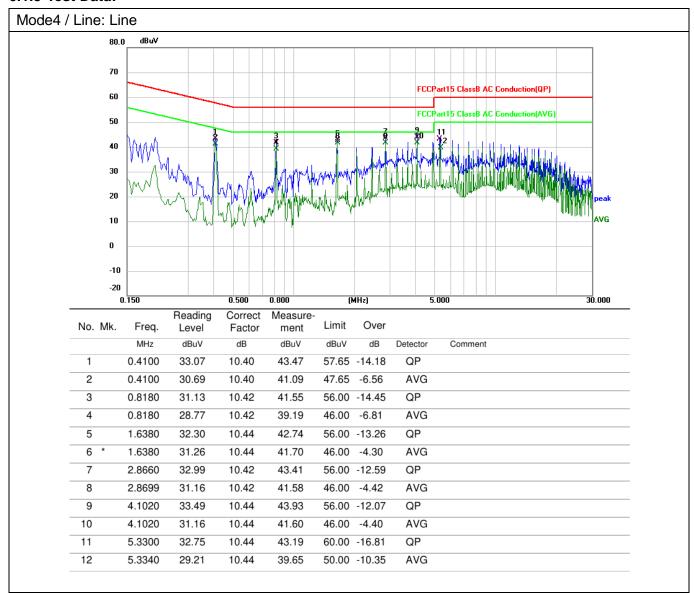
The antenna of the EUT is permanently attached.
The EUT complies with the requirement of FCC PART 15.203.

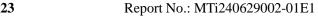
6 Radio Spectrum Matter Test Results (RF)

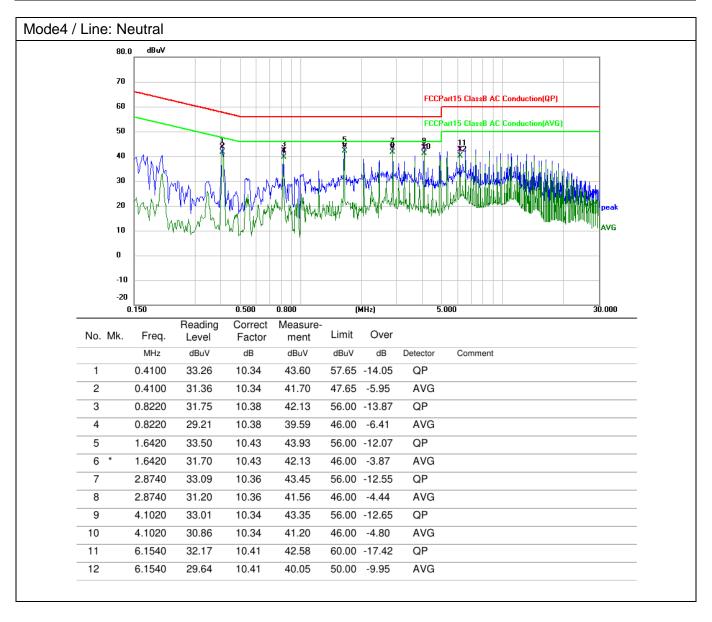

6.1 Conducted Emission at AC power line

Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line the radio frequency voltage that is conducted back onto the AC power line any frequency or frequencies, within the band 150 kHz to 30 MHz, shall nexceed the limits in the following table, as measured using a 50 μH/50 oh line impedance stabilization network (LISN).					
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)			
		Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	*Decreases with the logarithm of the frequency.				
Test Method: ANSI C63.10-2013 section 6.2					
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices				

6.1.1 E.U.T. Operation:

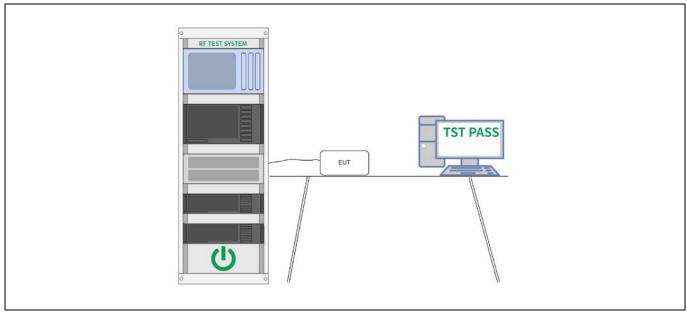

Operating Environment:							
Temperature:	25 °C	5 °C Humidity: 58 % Atmospheric Pressure: 100 kPa					
Pre test mode:	Mode1, Mode2, Mode3, Mode4, Mode5						
Final test mode	e:		•	re-test mode w ded in the repo	ere tested, only the data or	of the worst mode	


6.1.2 Test Setup Diagram:

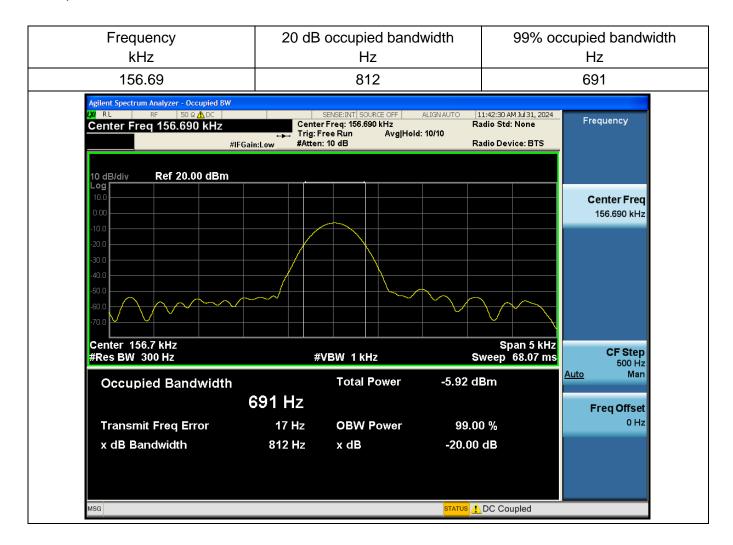


6.1.3 Test Data:

6.2 20dB Occupied Bandwidth


Test Limit: Refer to alternary 15.217 ensure otherwise operate section	R Part 15.215(c) o 47 CFR 15.215(c), intentional radiators operating under the tive provisions to the general emission limits, as contained in §§ through 15.257 and in subpart E of this part, must be designed to that the 20 dB bandwidth of the emission, or whatever bandwidth may ise be specified in the specific rule section under which the equipment es, is contained within the frequency band designated in the rule under which the equipment is operated. 263.10-2013, section 6.9.2 spectrum analyzer center frequency is set to the nominal EUT channel
Test Method: ANSI C	spectrum analyzer center frequency is set to the nominal EUT channel
center shall be b) The 5% of t times F c) Set t from ex genera (OBW/d) Step toleran e) The than 10 require at the serferen f) Set of g) Detecarrier spectrum the refer h) Detecarrier spectrum the refer h) Detecarrier spectrum the refer h) Place frequer or slight marker as possibetween of the expectation of the expect	dynamic range of the instrument at the selected RBW shall be more of dB below the target "-xx dB down" requirement; that is, if the ment calls for measuring the -20 dB OBW, the instrument noise floor selected RBW shall be at least 30 dB below the ce value. Retection mode to peak and trace mode to max hold. Retection mode to peak and trace mode to max hold. Retection mode to peak and trace mode to max hold. Retection mode to peak and trace mode to max hold. Retection mode to peak and trace mode to max hold. Retection mode to peak and trace mode to max hold. Retection mode to peak and trace mode to max hold. Retection mode to peak and trace mode to max hold. Retection mode to peak and trace mode to max hold. Retection mode to peak and trace mode to max hold. Retection mode to peak and trace mode to max hold. Retection mode to peak and trace mode to max hold. Retection mode to peak and trace mode to max hold. Retection mode the first place to stabilize. Retection mode to peak and trace mode to max hold. Retection mode to peak and trace mode to the section mode to the stabilize and trace mode to the section mode to the section to the section mode to the section to the section mode to the section to the section that the max hold is a section mode to the section and move the max hold is play, such that the max hold is a close to this value. The occupied bandwidth is the frequency difference on the two markers. Alternatively, set a marker at the lowest frequency envelope of the spectral display, such that the marker is at or slightly the "-xx dB down amplitude" determined in step h). Reset the marker-unction and move the marker to the other side of the emission until the narker amplitude is at the same level as the reference marker detection and move the marker to the other side of the emission until the instrument display; the plot axes and the scale units per division to be clearly labeled. Tabular data may be reported in addition to the

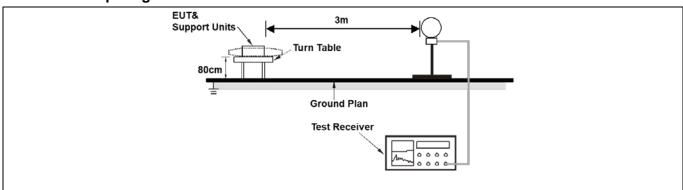
6.2.1 E.U.T. Operation:


Operating Environment:							
Temperature:	25 °C	5 °C Humidity: 59 % Atmospheric Pressure: 100 kPa					
Pre test mode: Mode1, Mode2				Mode3, Mode4	, Mode5		
Final test mode	e:		•	re-test mode w ded in the repo	ere tested, only the data	of the worst mode	

6.2.2 Test Setup Diagram:

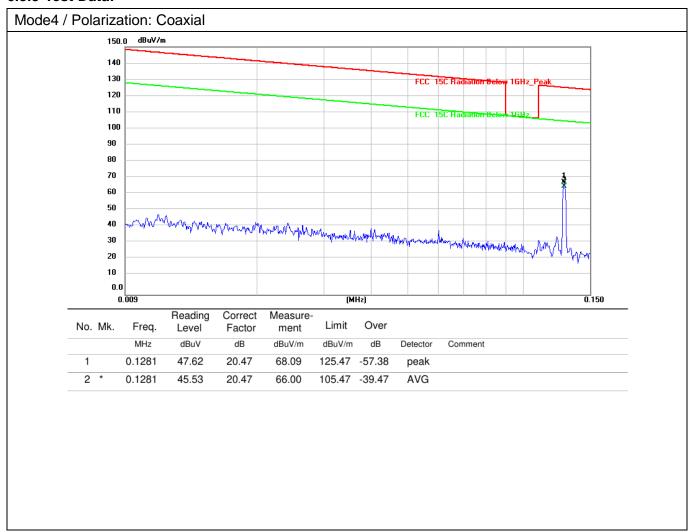
6.2.3 Test Data:

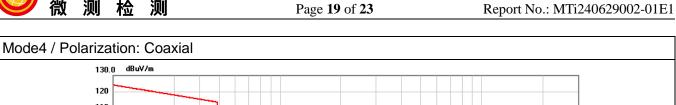
Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

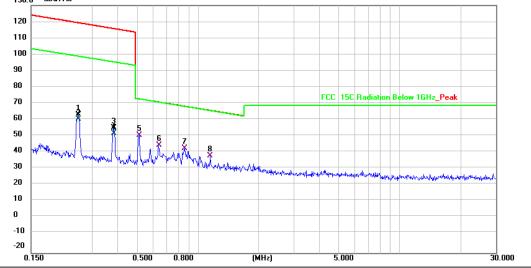

6.3 Emissions in frequency bands (below 30MHz)

Test Requirement:	47 CFR Part 15.209				
Test Limit:	Frequency (MHz)	Field strength	Measuremen		
		(microvolts/meter)	t distance		
			(meters)		
	0.009-0.490	2400/F(kHz)	300		
	0.490-1.705	24000/F(kHz)	30		
	1.705-30.0	30	30		
	30-88	100 **	3		
	88-216	150 **	3		
	216-960	200 **	3		
	Above 960	500	3		
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. As shown in § 15.35(b), for frequencies above 1000 MHz, the field strengt limits in paragraphs (a)and (b)of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB un any condition of modulation. For point-to-point operation under paragraph (b)of this section, the peak field strength shall not exceed 2500				
Test Method:	millivolts/meter at 3 me ANSI C63.10-2013 sec	ters along the antenna azimu	uth.		
Procedure:	ANSI C63.10-2013 sed				
110000010.	ANSI Cos. 10-2013 Sec	UUII U.4			

6.3.1 E.U.T. Operation:

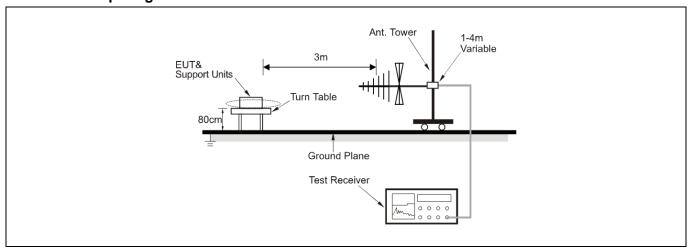

Operating Environment:							
Temperature:	22.5 °C	22.5 °C Humidity: 59 % Atmospheric Pressure: 101 kPa				101 kPa	
Pre test mode:	Mode1, Mode2, Mode3, Mode4, Mode5						
i Final test mode.		All of the listed pre-test mode were tested, only the data of the worst mode (Mode4) is recorded in the report					


6.3.2 Test Setup Diagram:



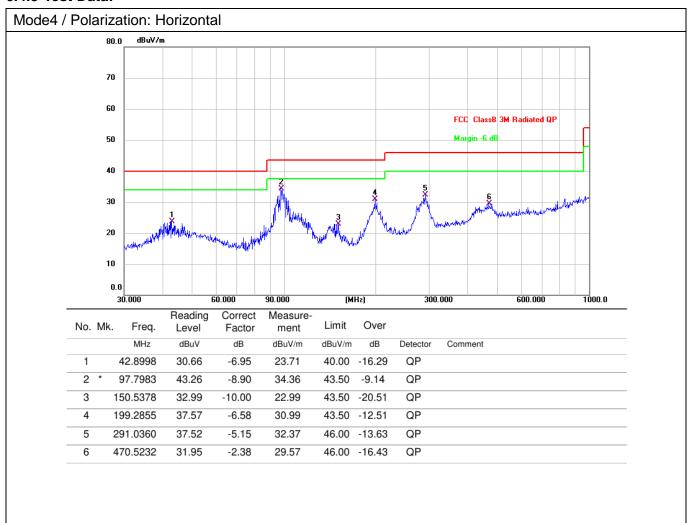
6.3.3 Test Data:

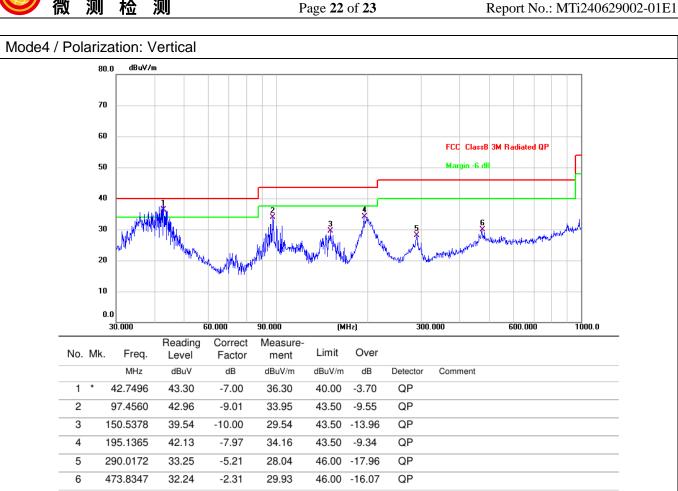
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0.2562	42.97	20.85	63.82	119.44	-55.62	peak	
2	0.2562	40.35	20.85	61.20	99.44	-38.24	AVG	
3	0.3832	34.69	21.13	55.82	115.94	-60.12	peak	
4	0.3832	31.47	21.13	52.60	95.94	-43.34	AVG	
5 *	0.5128	29.92	21.43	51.35	73.41	-22.06	QP	
6	0.6406	23.84	21.74	45.58	71.48	-25.90	QP	
7	0.8618	21.48	22.26	43.74	68.91	-25.17	QP	
8	1.1534	16.25	22.91	39.16	66.39	-27.23	QP	


6.4 Emissions in frequency bands (30MHz - 1GHz)

Test Requirement:	47 CFR Part 15.209				
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)		
	0.009-0.490	2400/F(kHz)	300		
	0.490-1.705	24000/F(kHz)	30		
	1.705-30.0	30	30		
	30-88	100 **	3		
	88-216	150 **	3		
	216-960	200 **	3		
	Above 960	500	3		
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. As shown in § 15.35(b), for frequencies above 1000 MHz, the field strengt limits in paragraphs (a)and (b)of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB ur any condition of modulation. For point-to-point operation under paragraph (b)of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.				
Test Method:	ANSI C63.10-2013 sec	ion 6.5			
Procedure:	ANSI C63.10-2013 sec	ion 6.5			

6.4.1 E.U.T. Operation:


Operating Environment:							
Temperature:	22.5 °C	22.5 °C Humidity: 58 % Atmospheric Pressure: 101 kPa				101 kPa	
Pre test mode:	Mode1, Mode2, Mode3, Mode4, Mode5						
Final test mode		•	re-test mode w ded in the repo	ere tested, only the data	of the worst mode		


6.4.2 Test Setup Diagram:

6.4.3 Test Data:

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

Refer to Appendix - EUT Photos

----End of Report----