

RADIO TEST REPORT

Test Report No. 15377688H-A

Customer	Kowa Company. Ltd.
Description of EUT	Hand-held Slit-Lamp
Model Number of EUT	KOWA SL-19
FCC ID	2BH7QA322330
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	September 9, 2024
Remarks	Wireless LAN (2.4 GHz band) part

Representative Test Engineer	Approved By
D. Matsui	Tahayuki L
Daiki Matsui Engineer	Takayuki Shimada Leader
	ACCREDITED
	CERTIFICATE 5107.02
☐ The testing in which "Non-accreditation" is displayed	is outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

Test Report No. 15377688H-A Page 2 of 43

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements.
 (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 15377688H-A

Revision	Test Report No.	Date	Page Revised Contents
1	15377688H-A	September 9, 2024	-
(Original)			

Test Report No. 15377688H-A Page 3 of 43

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	Vert.	Vertical
Hori.	Horizontal	WLAN	Wireless LAN
	1		

CONTENTS		PAGE
SECTION 1: Custon	mer Information	5
SECTION 2: Equip	ment Under Test (EUT)	5
SECTION 3: Test S	pecification, Procedures & Results	6
	tion of EUT during testing	
	ed Spurious Emission	
	na Terminal Conducted Tests	
	data	
	Bandwidth and 6 dB Bandwidth	
	Output Power	
	ous Émission	
	rious Emission	
	Instruments	
	ographs of Test Setup	
Radiated Spurio	ous Emission	42
	al Conducted Tests	

Test Report No. 15377688H-A Page 5 of 43

SECTION 1: Customer Information

Company Name	Kowa Company. Ltd.
Address	3-1, Chofugaoka 3-chome, Chofu, Tokyo, 182-0021 Japan
Telephone Number	+81-042-440-7630
Contact Person	Yoshiharu Kawai

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Hand-held Slit-Lamp
Model Number	KOWA SL-19
Serial Number	Refer to SECTION 4.2
Condition	Production model
Modification	No Modification by the test lab
Receipt Date	July 4, 2024
Test Date	July 30 to August 1, 2024

2.2 Product Description

General Specification

Rating	DC 3.6 V, 2 A
Operating temperature	10 deg. C to 35 deg.C

Radio Specification

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

WLAN (IEEE802.11b/11g/11n-20)

Equipment Type	Transceiver	
Frequency of Operation	20 MHz Band	2412 MHz to 2462 MHz
Type of Modulation	DSSS, OFDM	
Antenna Gain ^{a)}	3 dBi	

WLAN (IEEE802.11a/11n-20)

Equipment Type	Transceiver	
Frequency of Operation	20 MHz Band	5180 MHz to 5240 MHz
Type of Modulation	OFDM	
Antenna Gain ^{a)}	4 dBi	

Test Report No. 15377688H-A Page 6 of 43

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C		
	The latest version on the first day of the testing period		
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators		
	Section 15.207 Conducted limits		
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,		
	and 5725-5850 MHz		

^{*} Also the EUT complies with FCC Part 15 Subpart B.

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013 6. Standard test methods	FCC: Section 15.207	-	N/A	*1)
0.15.5	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8	0 1 .		
6dB Bandwidth	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(a)(2)	See data.	Complied	Conducted
	ISED: -	ISED : RSS-247 5.2(a)	1		
Maximum Peak Output Power	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(b)(3)		Complied	Conducted
	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4(d)			
Power Density	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section 15.247(e)		Complied	Conducted
	ISED: -	ISED : RSS-247 5.2(b)	1		
Spurious Emission Restricted	FCC: KDB 558074 D01 15.247 Meas Guidance v05r02	FCC: Section15.247(d)	0.3 dB 588.0 MHz, QP, Vertical	Complied	Conducted (below 30 MHz)/ Radiated
Band Edges	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10			(above 30 MHz) *2)

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF Part regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99% Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

^{*1)} The test was not performed on since the EUT is not an AC power operated device.

^{*2)} Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

Test Report No. 15377688H-A Page 7 of 43

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

Measurement distance	Frequency range		Unit	Calculated Uncertainty (+/-)
3 m	9 kHz to 30 MHz		dB	3.3
10 m			dB	3.1
3 m	30 MHz to 200 MHz	Horizontal	dB	4.7
		Vertical	dB	4.7
	200 MHz to 1000 MHz	Horizontal	dB	4.8
		Vertical	dB	6.0
10 m	30 MHz to 200 MHz	Horizontal	dB	5.2
		Vertical	dB	5.1
	200 MHz to 1000 MHz	Horizontal	dB	5.2
		Vertical	dB	5.2
3 m	1 GHz to 6 GHz	1 GHz to 6 GHz		
	6 GHz to 18 GHz	6 GHz to 18 GHz		
1 m	10 GHz to 18 GHz	10 GHz to 18 GHz		
	18 GHz to 26.5 GHz	dB	5.3	
	26.5 GHz to 40 GHz			
0.5 m	26.5 GHz to 40 GHz		dB	5.0

Antenna Terminal Conducted

Item	Unit	Calculated Uncertainty (+/-)
Antenna terminated conducted emission / Power density / Burst power	dB	3.47
Adjacent channel power (ACP)	dB	2.28
Bandwidth (OBW)	%	0.96
Time readout (time span upto 100 msec)	%	0.11
Time readout (time span upto 1000 msec)	%	0.11
Time readout (time span upto 60 sec)	%	0.02
Power measurement (Power meter < 8 GHz)	dB	1.46
Power measurement (Call box < 6 GHz)	dB	1.69
Frequency readout (Frequency counter)	ppm	0.67
Frequency readout (Spectrum analyzer frequency readout function)	ppm	2.13
Temperature (constant temperature bath)	deg. C	0.69
Humidity (constant temperature bath)	%RH	2.98
Modulation characteristics	%	6.93
Frequency for mobile	ppm	0.08
Contention-based protocol	dB	2.26

Test Report No. 15377688H-A Page 8 of 43

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

Test Report No. 15377688H-A Page 9 of 43

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Mode	Remarks*
IEEE 802.11b (11b)	11 Mbps, PN9
IEEE 802.11g (11g)	48 Mbps, PN9
IEEE 802.11n 20 MHz BW (11n-20)	MCS 7, PN9

^{*}The worst condition was determined based on the test result of Maximum Peak Output Power (Mid Channel)

*Power of the EUT was set by the software as follows;

Power Setting: 11b: 16, 11g: 15, 11n-20: 14 Software: SL192 3110 FW RfTest 0007

(Date:05/17/2024, Storage location: Driven by connected PC)

Any conditions under the normal use do not exceed the condition of setting.

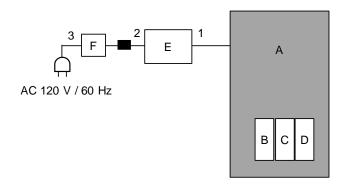
In addition, end users cannot change the settings of the output power of the product.

Test operating mode was determined as follows according to "Section 1 of 6 802.11 a/b/g/n testing -

Managing Complex Regulatory Approvals - " of TCB Council Workshop October 2009.

*The Details of Operating Mode(s)

Test Item	Operating Mode	Tested Frequency
Radiated Spurious Emission (Below 1 GHz)	Tx 11g *1)	2462 MHz
Conducted Spurious Emission		
Radiated Spurious Emission (Above 1 GHz) *2),	Tx 11b	2412 MHz
6dB Bandwidth,	Tx 11g	2437 MHz
Maximum Peak Output Power,	Tx 11n-20	2462 MHz
Power Density,		
99% Occupied Bandwidth		


^{*1)} The mode was tested as a representative, because it had the highest power at antenna terminal test.

^{*}This setting of software is the worst case.

^{*2)} Since 11g and 11n-20 have the same modulation method and no differences in transmitting specification, test was performed on 11g that had the highest peak output power and 11n-20 was performed only band-edge.

Test Report No. 15377688H-A Page 10 of 43

4.2 Configuration and Peripherals

: Standard Ferrite Core

Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remarks
Α	Hand-held Slit-	KOWA SL-19	32213400251 (For AT*)	Kowa Company.	EUT
	Lamp		32213400250 (For RE*)	Ltd.	
В	Nickel metal	BK-3MCC	-	Panasonic	-
	hydride battery			Corporation	
С	Nickel metal	BK-3MCC	-	Panasonic	-
	hydride battery			Corporation	
D	Nickel metal	BK-3MCC	-	Panasonic	-
	hydride battery			Corporation	
E	Laptop PC	Latitude 3500	CYXJWZ2	DELL	-
F	AC Adapter	HA65NS5-00	CN-0G6J41-CH600-04E-	DELL	-
	·		0LPM-A07		

List of Cables Used

Elot of Gabios Good						
No.	Name	Length (m)	Shield	Remarks		
			Cable	Connector		
1	USB Cable	1.00	Shielded	Shielded	-	
2	DC Cable	1.75	Unshielded	Unshielded	-	
3	AC Cable	0.90	Unshielded	Unshielded	-	

*AT: Antenna Terminal Conducted test

*RE: Radiated Emission

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Test Report No. 15377688H-A Page 11 of 43

SECTION 5: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

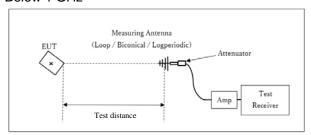
The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

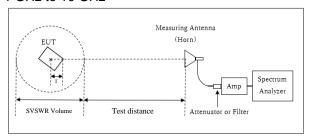
In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.


20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

and outside the re	and outside the restricted band of 1 00 10.2007 Table 0 of 1.000 Octif 0.10 (10 Lb).					
Frequency	Below 1 GHz	Above 1 GHz		20 dBc		
Instrument Used	Test Receiver	Spectrum Anal	yzer	Spectrum Analyzer		
Detector	QP	PK	AV	PK		
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	<u>11.12.2.5.1</u>	RBW: 100 kHz		
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz		
			VBW: 3 MHz			
			Detector:			
			Power Averaging (RMS)			
			Trace: 100 traces			
			<u>11.12.2.5.2</u>			
			The duty cycle was less			
			than 98% for detected			
			noise, a duty factor was			
			added to the 11.12.2.5.1			
			results.			

Test Report No. 15377688H-A Page 12 of 43

Figure 1: Test Setup


Below 1 GHz

Test Distance: 3 m

× : Center of turn table

1 GHz to 10 GHz

- r: Radius of an outer periphery of EUT
- ×: Center of turn table

[1 GHz to 6 GHz]

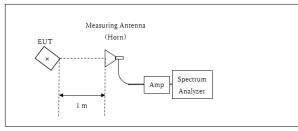
Distance Factor: $20 \times \log (3.95 \text{ m}^*/3.0 \text{ m}) = 2.39 \text{ dB}$ *(Test Distance + SVSWR Volume /2) - r = 3.95 m

Test Distance: 3 m SVSWR Volume: 2 m

(SVSWR Volume has been calibrated based on CISPR

16-1-4.) r: 0.05 m

[6 GHz to 10 GHz]


Distance Factor: $20 \times \log (4.95 \text{ m}^*/3.0 \text{ m}) = 4.35 \text{ dB}$ *(Test Distance + SVSWR Volume /2) - r = 4.95 m

Test Distance: 4.3 m SVSWR Volume: 1.4 m

(SVSWR Volume has been calibrated based on CISPR

16-1-4.) r: 0.05 m

10 GHz to 26.5 GHz

×: Center of turn table

Distance Factor: $20 \times (1.0 \text{ m}^* / 3.0 \text{ m}) = -9.5 \text{ dB}$

*Test Distance: 1 m

The test was made on EUT at the normal use position.

Test results are rounded off and limit are rounded down, so some differences might be observed.

Measurement Range : 30 MHz to 26.5 GHz

Test Data : APPENDIX **Test Result** : Pass

Test Report No. 15377688H-A Page 13 of 43

SECTION 6: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument Used
6dB Bandwidth	20 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *2)
Conducted	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Spurious Emission *3) *4)	150 kHz to 30 MHz	9.1 kHz	27 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

Test results are rounded off and limit are rounded down, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test Data : APPENDIX **Test Result** : Pass

^{*2)} Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

^{*3)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart. (9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 10 kHz)

⁴⁾ The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

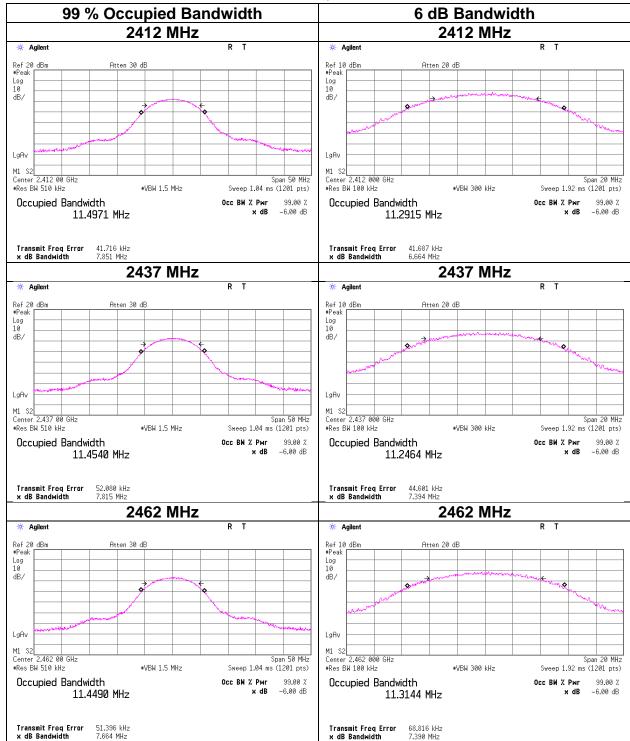
Test Report No. 15377688H-A Page 14 of 43

APPENDIX 1: Test data

99 % Occupied Bandwidth and 6 dB Bandwidth

Test place Ise EMC Lab. No.8 Measurement Room

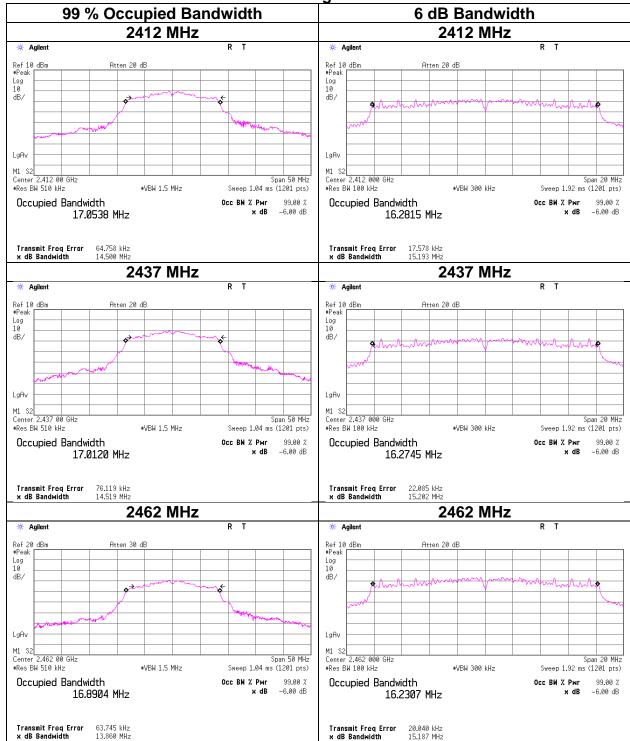
Date July 31, 2024
Temperature / Humidity 22 deg. C / 60 % RH
Engineer Takumi Nishida


Mode Tx

Mode	Frequency	99% Occupied	6dB Bandwidth	Limit for
	. ,	Bandwidth		6dB Bandwidth
	[MHz]	[kHz]	[MHz]	[MHz]
11b	2412	11497.1	6.664	> 0.5000
	2437	11454.0	7.394	> 0.5000
	2462	11449.0	7.390	> 0.5000
11g	2412	17053.8	15.193	> 0.5000
	2437	17012.0	15.202	> 0.5000
	2462	16890.4	15.187	> 0.5000
11n-20	2412	17997.2	15.175	> 0.5000
	2437	17912.0	16.370	> 0.5000
	2462	17852.9	15.175	> 0.5000

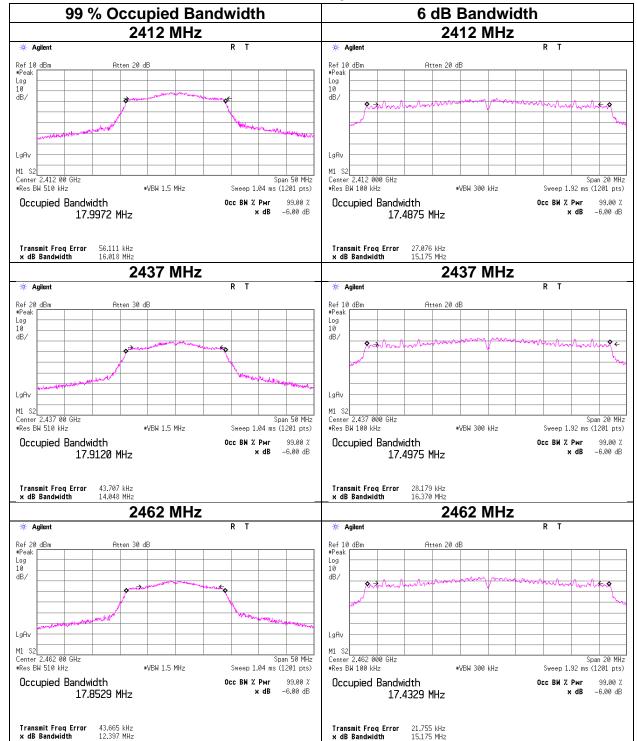
Test Report No. 15377688H-A Page 15 of 43

99 % Occupied Bandwidth and 6 dB Bandwidth


11b

Test Report No. 15377688H-A Page 16 of 43

99 % Occupied Bandwidth and 6 dB Bandwidth


11g

Test Report No. 15377688H-A Page 17 of 43

99 % Occupied Bandwidth and 6 dB Bandwidth

11n-20

Test Report No. 15377688H-A Page 18 of 43

Maximum Peak Output Power

Test place Ise EMC Lab. No.8 Ise EMC Lab. No.8 Measurement Room Measurement Room

Date July 30, 2024 July 31, 2024
Temperature / Humidity Engineer Z4 deg. C / 63 % RH Takumi Nishida Takumi Nishida

Mode Rate check Tx 11b

					Con	ducted Po	ower			e.	i.r.p. for F	RSS-247		
Freq.	Reading	Cable	Atten.	Result Limit				Margin	Antenna	Res	sult	Lir	nit	Margin
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	dBm] [mW] [dBm] [mW]			[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2412	-1.85	0.60	19.76	18.51	70.96	30.00	1000	11.49	3.00	21.51	141.58	36.02	4000	14.51
2437	-1.15	0.60	19.76	19.21	83.37	30.00	1000	10.79	3.00	22.21	166.34	36.02	4000	13.81
2462	-0.76	0.60	19.76	19.60 91.20 30.00 1000		10.40	3.00	22.60	181.97	36.02	4000	13.42		

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain

Main Antenna, 2437 MHz

Rate	Reading	Remark
[Mbps]	[dBm]	
1	-5.95	
2	-5.73	
5.5	-5.63	
11	-5.57	*

^{*:} Worst Rate

All comparison were carried out on same frequency and measurement factors.

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test Report No. 15377688H-A Page 19 of 43

Maximum Peak Output Power

Test place Ise EMC Lab. No.8 Ise EMC Lab. No.8 Measurement Room Measurement Room

Date July 30, 2024 July 31, 2024
Temperature / Humidity Engineer Z4 deg. C / 63 % RH Takumi Nishida Takumi Nishida

Mode Rate check Tx 11g

					Con	ducted Po	ower		e.i.r.p. for RSS-247						
Freq.	Reading	Cable	Atten.	Result Limit				Margin	Antenna	Re	sult	Lir	nit	Margin	
		Loss	Loss					Gain							
[MHz]	[dBm]	[dB]	[dB]	[dBm] [mW] [dBm] [mW]			[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]		
2412	0.79	0.60	19.76	21.15	130.32	30.00	1000	8.85	3.00	24.15	260.02	36.02	4000	11.87	
2437	1.41	0.60	19.76	21.77	150.31	30.00	1000	8.23	3.00	24.77	299.92	36.02	4000	11.25	
2462	2.05	0.60	19.76	22.41 174.18 30.00 1000			7.59	3.00	25.41	347.54	36.02	4000	10.61		

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

e.i.r.p. Result = Conducted Power Result + Antenna Gain

Main Antenna, 2437 MHz

Rate	Reading	Remark
[Mbps]	[dBm]	
6	-0.01	
9	-0.02	
12	0.04	
18	-0.04	
24	-0.1	
36	-0.16	
48	0.32	*
54	-0.1	

^{*:} Worst Rate

All comparison were carried out on same frequency and measurement factors.

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test Report No. 15377688H-A Page 20 of 43

Maximum Peak Output Power

Test place Ise EMC Lab. No.8 Ise EMC Lab. No.8 Measurement Room Measurement Room

Date July 30, 2024 July 31, 2024
Temperature / Humidity 24 deg. C / 63 % RH
Engineer Takumi Nishida Takumi Nishida
Mode Rate check Tx 11n-20

					Con	ducted Po	ower		e.i.r.p. for RSS-247						
Freq.	Reading	Cable	Atten.	Result Limit				Margin	Antenna	Re	sult	Lir	mit	Margin	
		Loss	Loss						Gain						
[MHz]	[dBm]	[dB]	[dB]	[dBm]	dBm] [mW] [dBm] [mW]		[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]		
2412	0.59	0.60	19.76	20.95	124.45	30.00	1000	9.05	3.00	23.95	248.31	36.02	4000	12.07	
2437	1.27	0.60	19.76	21.63	145.55	30.00	1000	8.37	3.00	24.63	290.40	36.02	4000	11.39	
2462	1.96	0.60	19.76	22.32 170.61 30.00 1000		7.68	3.00	25.32	340.41	36.02	4000	10.70			

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain

Main Antenna, 2437 MHz

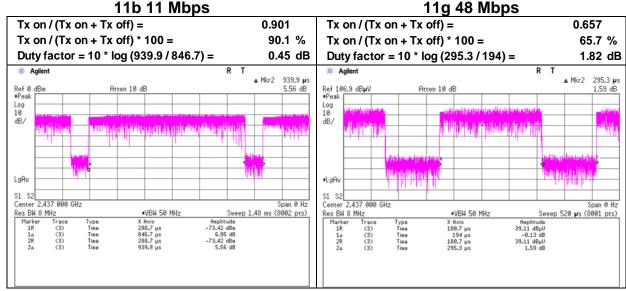
MCS Number	Reading	Remark
	[dBm]	
0	0.02	
1	0.19	
2	0.20	
3	0.15	
4	0.12	
5	0.35	
6	0.18	
7	0.40	*

^{*:} Worst MCS

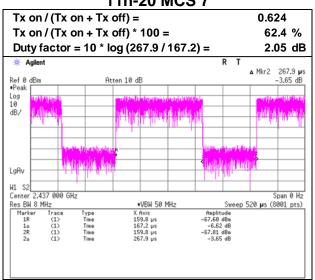
All comparison were carried out on same frequency and measurement factors.

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test Report No. 15377688H-A Page 21 of 43


Burst rate confirmation

Test place Ise EMC Lab. No.4 Semi Anechoic Chamber


Date July 31, 2024 22 deg. C / 57 % RH Temperature / Humidity Engineer Daiki Matsui

Mode

11g 48 Mbps

11n-20 MCS 7

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Test Report No. 15377688H-A Page 22 of 43

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

Date Temperature / Humidity

Engineer

July 31, 2024 22 deg. C / 57 % RH Daiki Matsui (1 GHz to 6 GHz)

No.4 August 1, 2024 22 deg. C / 57 % RH Daiki Matsui (6 GHz to 18 GHz)

No.4 August 1, 2024 25 deg. C / 55 % RH Takumi Nishida (18 GHz to 26.5 GHz)

Mode

Tx 11b 2412 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2352.0	51.9	37.6	27.8	3.3	31.8	-	51.2	36.9	73.9	53.9	22.7	17.0	
Hori.	2390.0	45.3	34.4	27.8	3.3	31.8	0.5	44.6	34.2	73.9	53.9	29.3	19.8	*1)
Hori.	2940.0	45.8	36.4	28.5	3.7	31.5	-	46.5	37.0	73.9	53.9	27.4	16.9	
Hori.	4824.0	42.4	32.3	31.5	5.5	30.8	-	48.5	38.4	73.9	53.9	25.4	15.5	Floor noise
Hori.	7236.0	43.5	35.5	35.6	11.1	32.1	0.5	58.1	50.5	73.9	53.9	15.8	3.4	*2)
Hori.	9648.0	43.6	31.7	35.8	11.9	32.3	-	59.0	47.1	73.9	53.9	14.9	6.8	Floor noise
Vert.	2352.0	52.3	40.9	27.8	3.3	31.8	-	51.6	40.2	73.9	53.9	22.3	13.7	
Vert.	2390.0	50.9	34.7	27.8	3.3	31.8	0.5	50.2	34.4	73.9	53.9	23.7	19.5	*1)
Vert.	2940.0	45.4	34.8	28.5	3.7	31.5	-	46.0	35.4	73.9	53.9	27.9	18.5	
Vert.	4824.0	41.8	32.4	31.5	5.5	30.8	-	47.9	38.5	73.9	53.9	26.0	15.4	Floor noise
Vert.	7236.0	43.0	34.7	35.6	11.1	32.1	0.5	57.6	49.8	73.9	53.9	16.3	4.1	*2)
Vert.	9648.0	43.5	31.8	35.8	11.9	32.3	-	58.9	47.2	73.9	53.9	15.0	6.7	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

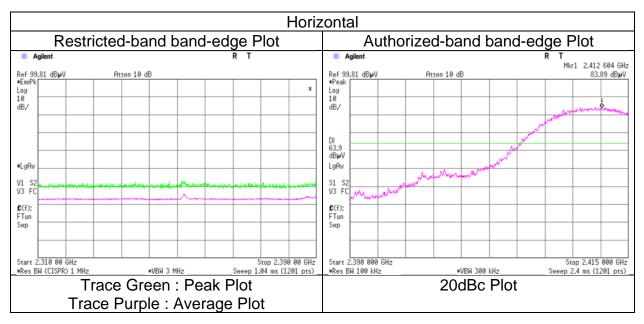
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

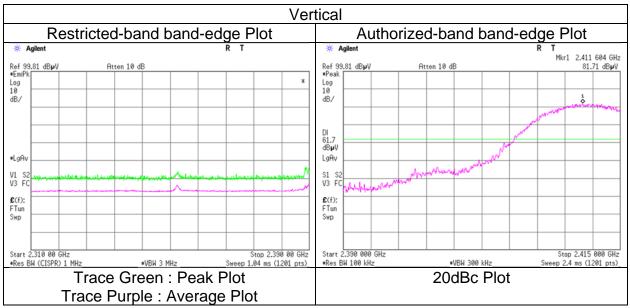
20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2412.0	83.9	27.7	3.3	31.8	83.1		-	Carrier
Hori.	2400.0	48.6	27.8	3.3	31.8	47.9	63.1	15.2	
Vert.	2412.0	81.7	27.7	3.3	31.8	80.9	-	-	Carrier
Vert.	2400.0	45.4	27.8	3.3	31.8	44.7	60.9	16.2	

 $Result = Reading + Ant Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amprifier)$

Distance factor: 1 GHz - 6 GHz 20log (3.95 m / 3.0 m) = 2.39 dB 6 GHz - 10 GHz 20log (4.95 m / 3.0 m) = 4.35 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB


^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).
*QP detector was used up to 1GHz.
*1) Not Out of Band emission(Leakage Power)


^{*2)} Noise synchronized with duty of carrier frequency

Test Report No. 15377688H-A Page 23 of 43

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Ise EMC Lab.
Semi Anechoic Chamber No.4
Date July 31, 2024
Temperature / Humidity 22 deg. C / 57 % RH
Engineer Daiki Matsui
Mode Tx 11b 2412 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 15377688H-A Page 24 of 43

No.4

August 1, 2024

25 deg. C / 55 % RH

Radiated Spurious Emission

No.4

Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

Date July 31, 2024 August 1, 2024 22 deg. C / 57 % RH 22 deg. C / 57 % RH Temperature / Humidity

Daiki Matsui Takumi Nishida Engineer Daiki Matsui (18 GHz to 26.5 GHz) (1 GHz to 6 GHz) (6 GHz to 18 GHz)

Mode Tx 11b 2437 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2352.0	51.6	37.6	27.8	5.7	31.8		53.3	39.3	73.9	53.9	20.6	14.6	
Hori.	2940.0	45.7	36.1	28.5	6.1	31.5	-	48.8	39.2	73.9	53.9	25.1	14.7	
Hori.	4874.0	42.0	31.7	31.5	7.3	30.8	-	50.0	39.6	73.9	53.9	23.9	14.3	Floor noise
Hori.	7311.0	42.9	33.2	35.5	11.1	32.1	0.5	57.5	48.2	73.9	53.9	16.5	5.7	*1)
Hori.	9748.0	42.4	31.9	36.0	12.0	32.4	-	57.9	47.4	73.9	53.9	16.0	6.5	Floor noise
Vert.	2352.0	50.6	41.0	27.8	5.7	31.8	-	52.4	42.8	73.9	53.9	21.6	11.1	
Vert.	2940.0	44.2	35.0	28.5	6.1	31.5	-	47.3	38.1	73.9	53.9	26.6	15.8	
Vert.	4874.0	43.5	31.4	31.5	7.3	30.8	-	51.5	39.4	73.9	53.9	22.4	14.5	Floor noise
Vert.	7311.0	43.6	34.9	35.5	11.1	32.1	0.5	58.1	49.9	73.9	53.9	15.8	4.0	*1)
Vert.	9748.0	42.3	31.8	36.0	12.0	32.4	-	57.9	47.4	73.9	53.9	16.0	6.5	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 6 GHz 20log (3.95 m / 3.0 m) = 2.39 dB

6 GHz - 10 GHz 20log (4.95 m / 3.0 m) = 4.35 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}QP detector was used up to 1GHz.

^{*1)} Noise synchronized with duty of carrier frequency

Test Report No. 15377688H-A Page 25 of 43

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

Date July 31, 2024 Temperature / Humidity 22 deg. C / 57 % RH Daiki Matsui Engineer

> (1 GHz to 6 GHz) Tx 11b 2462 MHz

No.4 No.4 August 1, 2024

August 1, 2024 22 deg. C / 57 % RH 25 deg. C / 55 % RH Takumi Nishida Daiki Matsui (18 GHz to 26.5 GHz) (6 GHz to 18 GHz)

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2352.0	51.0	40.8	27.8	5.7	31.8	-	52.8	42.5	73.9	53.9	21.2	11.4	
Hori.	2483.5	45.8	37.5	27.7	5.8	31.7	0.5	47.6	39.7	73.9	53.9	26.3	14.2	*1)
Hori.	2940.0	46.7	37.3	28.5	6.1	31.5	-	49.8	40.4	73.9	53.9	24.1	13.5	
Hori.	4924.0	41.4	32.7	31.6	7.3	30.8	-	49.5	40.8	73.9	53.9	24.4	13.1	Floor noise
Hori.	7386.0	42.6	35.2	35.5	11.1	32.1	0.5	57.1	50.1	73.9	53.9	16.8	3.8	*2)
Hori.	9848.0	42.0	31.9	36.1	12.0	32.4	-	57.7	47.5	73.9	53.9	16.2	6.4	Floor noise
Vert.	2352.0	50.5	41.3	27.8	5.7	31.8	-	52.3	43.0	73.9	53.9	21.6	10.9	
Vert.	2483.5	46.1	37.4	27.7	5.8	31.7	0.5	47.9	39.7	73.9	53.9	26.0	14.2	*1)
Vert.	2940.0	44.0	35.1	28.5	6.1	31.5	-	47.1	38.2	73.9	53.9	26.8	15.7	
Vert.	4924.0	41.5	32.9	31.6	8.0	30.8	-	50.3	41.6	73.9	53.9	23.6	12.3	Floor noise
Vert.	7386.0	42.8	35.4	35.5	11.1	32.1	0.5	57.2	50.3	73.9	53.9	16.7	3.6	*2)
Vert.	9848.0	42.3	31.9	36.1	12.0	32.4	-	58.0	47.6	73.9	53.9	15.9	6.3	Floor noise

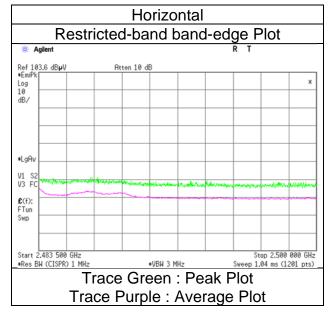
result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) Result (QV) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

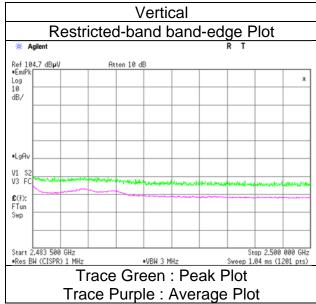
Mode

20log (3.95 m / 3.0 m) = 2.39 dB Distance factor: 1 GHz - 6 GHz

20log (4.95 m / 3.0 m) = 4.35 dB 6 GHz - 10 GHz 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}QP detector was used up to 1GHz.
*1) Not Out of Band emission(Leakage Power)


^{*2)} Noise synchronized with duty of carrier frequency


Test Report No. 15377688H-A Page 26 of 43

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer Mode

Ise EMC Lab. No.4 July 31, 2024 22 deg. C / 57 % RH Daiki Matsui Tx 11b 2462 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 15377688H-A Page 27 of 43

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

Date Temperature / Humidity

Engineer

July 31, 2024

22 deg. C / 57 % RH Daiki Matsui (1 GHz to 6 GHz)

No.4 August 1, 2024 22 deg. C / 57 % RH Daiki Matsui

(6 GHz to 18 GHz)

No.4 August 1, 2024 25 deg. C / 55 % RH Takumi Nishida (18 GHz to 26.5 GHz)

Mode Tx 11g 2412 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2352.0	51.2	40.3	27.8	5.7	31.8	-	52.9	42.0	73.9	53.9	21.0	11.9	
Hori.	2390.0	48.1	38.1	27.8	5.8	31.8	1.8	49.8	41.7	73.9	53.9	24.1	12.2	*1)
Hori.	2940.0	45.3	37.6	28.5	3.7	31.5	-	45.9	38.3	73.9	53.9	28.0	15.6	
Hori.	4824.0	41.5	32.4	31.5	5.5	30.8	-	47.6	38.5	73.9	53.9	26.3	15.4	Floor noise
Hori.	7236.0	42.8	34.5	35.6	11.1	32.1	1.8	57.4	50.9	73.9	53.9	16.5	3.0	*2)
Hori.	9648.0	42.3	31.9	35.8	11.9	32.3	-	57.6	47.3	73.9	53.9	16.3	6.7	Floor noise
Vert.	2352.0	52.1	40.8	27.8	5.7	31.8	-	53.9	42.5	73.9	53.9	20.0	11.4	
Vert.	2390.0	46.8	36.9	27.8	5.8	31.8	1.8	48.5	40.4	73.9	53.9	25.4	13.5	*1)
Vert.	2940.0	45.2	34.6	28.5	3.7	31.5	-	45.9	35.2	73.9	53.9	28.0	18.7	
Vert.	4824.0	41.7	32.3	31.5	5.5	30.8	-	47.8	38.4	73.9	53.9	26.1	15.5	Floor noise
Vert.	7236.0	43.1	34.8	35.6	11.1	32.1	1.8	57.7	51.3	73.9	53.9	16.2	2.7	*2)
Vert.	9648.0	42.4	31.7	35.8	11.9	32.3	-	57.8	47.1	73.9	53.9	16.1	6.8	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

20dBc Data Sheet

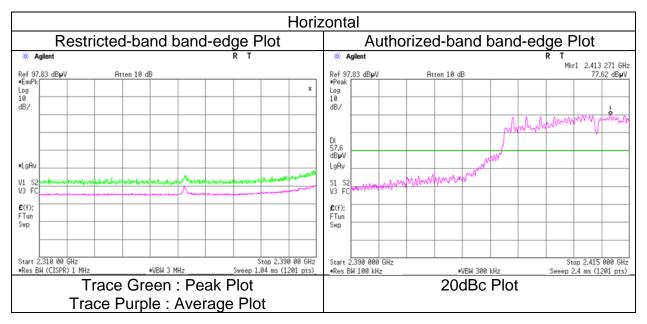
Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2412.0	77.6	27.7	3.3	31.8	76.8	-	-	Carrier
Hori.	2400.0	42.7	27.8	5.8	31.8	44.4	56.8	12.4	
Vert.	2412.0	75.2	27.7	3.3	31.8	74.4	-	-	Carrier
Vert	2400.0	417	27.8	5.8	31.8	43.5	54.4	11.0	

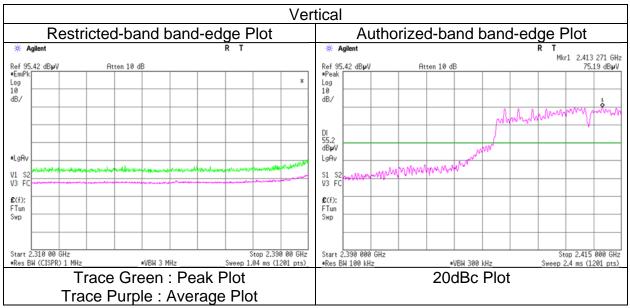
Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

20log (3.95 m / 3.0 m) = 2.39 dB Distance factor: 1 GHz - 6 GHz

6 GHz - 10 GHz 20log (4.95 m / 3.0 m) = 4.35 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.


^{*1)} Not Out of Band emission(Leakage Power)


^{*2)} Noise synchronized with duty of carrier frequency

Test Report No. 15377688H-A Page 28 of 43

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Ise EMC Lab.
Semi Anechoic Chamber No.4
Date July 31, 2024
Temperature / Humidity 22 deg. C / 57 % RH
Engineer Daiki Matsui
Mode Tx 11g 2412 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 15377688H-A Page 29 of 43

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.4 No.4 No.4

 Date
 July 31, 2024
 August 1, 2024
 August 1, 2024

 Temperature / Humidity
 22 deg. C / 57 % RH
 22 deg. C / 57 % RH
 25 deg. C / 55 % RH

 Engineer
 Daiki Matsui
 Daiki Matsui
 Takumi Nishida

(1 GHz to 6 GHz) (6 GHz to 18 GHz) (18 GHz to 26.5 GHz)
Mode Tx 11g 2437 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2352.0	51.3	37.6	27.8	5.7	31.8	-	53.1	39.4	73.9	53.9	20.8	14.5	
Hori.	2940.0	45.7	36.2	28.5	6.1	31.5	-	48.8	39.3	73.9	53.9	25.1	14.6	
Hori.	4784.0	41.5	31.8	31.5	7.2	30.9	-	49.3	39.6	73.9	53.9	24.6	14.3	Floor noise
Hori.	7311.0	42.9	33.2	36.5	11.1	32.1	1.8	58.4	50.6	73.9	53.9	15.5	3.3	*1)
Hori.	9748.0	42.4	31.9	38.4	12.0	32.4	-	60.4	49.9	73.9	53.9	13.5	4.0	Floor noise
Vert.	2352.0	50.5	41.1	27.8	5.7	31.8	-	52.2	42.9	73.9	53.9	21.7	11.0	
Vert.	2940.0	45.2	35.4	28.5	6.1	31.5	-	48.3	38.6	73.9	53.9	25.6	15.4	
Vert.	4784.0	41.7	31.8	31.5	7.2	30.9	-	49.5	39.6	73.9	53.9	24.4	14.3	Floor noise
Vert.	7311.0	43.6	34.9	36.5	11.1	32.1	1.8	59.1	52.2	73.9	53.9	14.8	1.7	*1)
Vert.	9748.0	42.3	31.8	38.4	12.0	32.4	-	60.4	49.9	73.9	53.9	13.5	4.0	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 6 GHz 20log (3.95 m / 3.0 m) = 2.39 dB

6 GHz - 10 GHz 20log (4.95 m / 3.0 m) = 4.35 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Dutyfactor

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

^{*1)} Noise synchronized with duty of carrier frequency

Test Report No. 15377688H-A Page 30 of 43

Radiated Spurious Emission

Test place

Semi Anechoic Chamber

Date

Temperature / Humidity

Engineer

Ise EMC Lab. No.4

July 31, 2024 22 deg. C / 57 % RH

Daiki Matsui (1 GHz to 6 GHz) No.4 August 1, 2024 22 deg. C / 57 % RH

Daiki Matsui (6 GHz to 18 GHz) No.4 August 1, 2024

25 deg. C / 55 % RH Takumi Nishida (18 GHz to 26.5 GHz) No.4 August 1, 2024 25 deg. C / 55 % RH Takumi Nishida (Below 1 GHz)

Mode

Tx 11g 2462 MHz

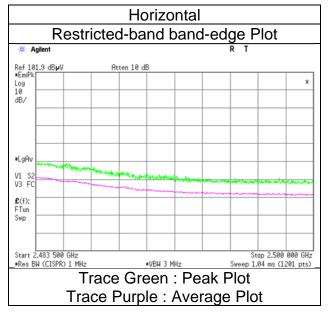
Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP / PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	111.4	39.4	-	12.0	8.0	28.4	-	31.0		43.5		12.6	-	
Hori.	222.7	43.9	-	11.2	8.9	27.9	-	36.2	-	46.0	-	9.8	-	
Hori.	371.2	38.4	-	15.1	10.0	28.2	-	35.3	-	46.0	-	10.8	-	
Hori.	523.1	37.2	-	17.6	10.9	29.2	-	36.5	-	46.0	-	9.5	-	
Hori.	550.1	41.1	-	17.8	11.0	29.3	-	40.6	-	46.0	-	5.4	-	
Hori.	588.0	43.0	-	19.0	11.2	29.3	-	43.9	-	46.0	-	2.1	-	
Hori.	2352.0	51.3	41.2	27.8	5.7	31.8	-	53.1	43.0	73.9	53.9	20.8	10.9	
Hori.	2483.5	52.6	42.2	27.7	5.8	31.7	1.8	54.4	45.8	73.9	53.9	19.5	8.1	*1)
Hori.	2940.0	46.8	37.3	28.5	6.1	31.5	-	49.9	40.4	73.9	53.9	24.0	13.5	
Hori.	4924.0	41.2	32.4	31.6	7.3	30.8	-	49.3	40.5	73.9	53.9	24.6	13.4	Floor noise
Hori.	7416.0	42.5	33.9	35.4	11.2	32.2	1.8	56.9	50.1	73.9	53.9	17.0	3.8	*2)
Hori.	9888.0	42.1	31.9	36.1	12.0	32.4	-	57.8	47.6	73.9	53.9	16.1	6.3	Floor noise
Vert.	111.4	42.0	-	12.0	8.0	28.4	-	33.5	-	43.5	-	10.0	-	
Vert.	222.7	40.4	-	11.2	8.9	27.9	-	32.7	-	46.0	-	13.3		
Vert.	334.1	38.3	-	14.7	9.8	27.9	-	34.8	-	46.0	-	11.2	-	
Vert.	371.2	44.0	-	15.1	10.0	28.2	-	40.8	-	46.0	-	5.2	-	
Vert.	550.1	36.4	-	17.8	11.0	29.3	-	36.0	-	46.0	-	10.1	-	
Vert.	588.0	44.8	-	19.0	11.2	29.3	-	45.7	-	46.0	-	0.3		
Vert.	2352.0	50.5	42.3	27.8	5.7	31.8	-	52.3	44.0	73.9	53.9	21.6	9.9	
Vert.	2483.5	53.2	43.6	27.7	5.8	31.7	1.8	54.9	47.2	73.9	53.9	19.0	6.7	*1)
Vert.	2940.0	45.1	35.3	28.5	6.1	31.5	-	48.2	38.5	73.9	53.9	25.7	15.4	
Vert.	4924.0	41.5	32.9	31.6	7.3	30.8	-	49.6	40.9	73.9	53.9	24.3	13.0	Floor noise
Vert.	7416.0	42.6	34.2	35.4	11.2	32.2	1.8	57.0	50.5	73.9		16.9	3.4	*2)
Vert.	9888.0	42.2	31.9	36.1	12.0	32.4	-	57.9	47.6			16.0	6.3	Floor noise

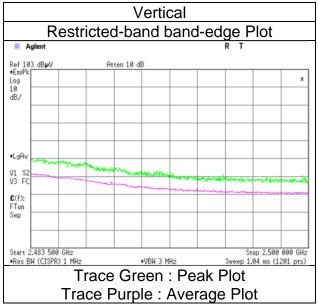
Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor
*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 6 GHz 20log (3.95 m / 3.0 m) = 2.39 dB

20log (4.95 m / 3.0 m) = 4.35 dB 6 GHz - 10 GHz 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}QP detector was used up to 1GHz.
*1) Not Out of Band emission(Leakage Power)


^{*2)} Noise synchronized with duty of carrier frequency


Test Report No. 15377688H-A Page 31 of 43

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer Mode

Ise EMC Lab. No.4 July 31, 2024 22 deg. C / 57 % RH Daiki Matsui Tx 11g 2462 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 15377688H-A Page 32 of 43

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

Date July 31, 2024 22 deg. C / 57 % RH Temperature / Humidity

Daiki Matsui Engineer

(1 GHz to 6 GHz)

Mode Tx 11n-20 2412 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	47.9	36.8	27.8	5.8	31.8	2.1	49.6	40.6	73.9	53.9	24.3	13.35	*1)
Vert.	2390.0	47.5	35.7	27.8	5.8	31.8	2.1	49.2	39.5	73.9	53.9	24.7	14.4	*1)

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

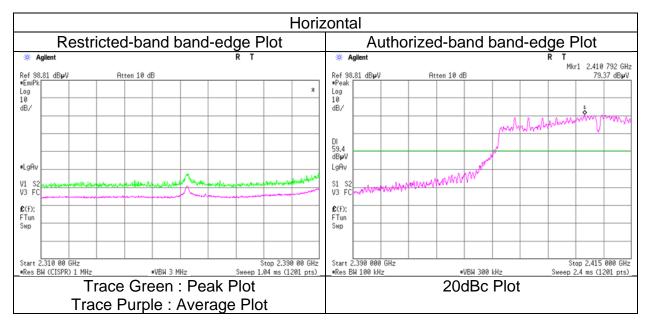
20dBc Data Sheet

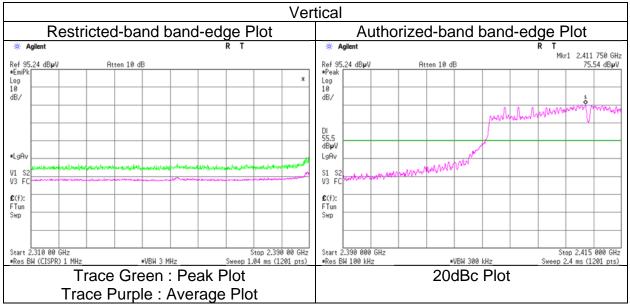
Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2412.0	79.4	27.7	5.8	31.8	81.1	-	-	Carrier
Hori.	2400.0	46.7	27.8	5.8	31.8	48.4	61.1	12.7	
Vert.	2412.0	75.5	27.7	5.8	31.8	77.2	-	-	Carrier
Vert.	2400.0	45.7	27.8	5.8	31.8	47.4	57.2	9.8	

 $Result = Reading + Ant Factor + Loss \; (Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) - Gain (Amprifier)$

1 GHz - 6 GHz 20log (3.95 m / 3.0 m) = 2.39 dB

Result (AP) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifler) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).


*QP detector was used up to 1GHz.


*1) Not Out of Band emission(Leakage Power)

Test Report No. 15377688H-A Page 33 of 43

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Ise EMC Lab.
Semi Anechoic Chamber No.4
Date July 31, 2024
Temperature / Humidity 22 deg. C / 57 % RH
Engineer Daiki Matsui
Mode Tx 11n-20 2412 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 15377688H-A Page 34 of 43

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.4

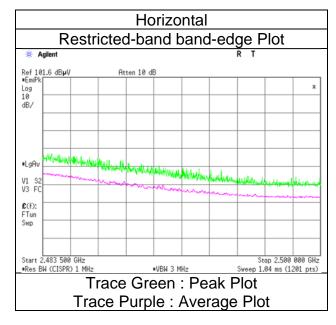
Date July 31, 2024 Temperature / Humidity 22 deg. C / 57 % RH

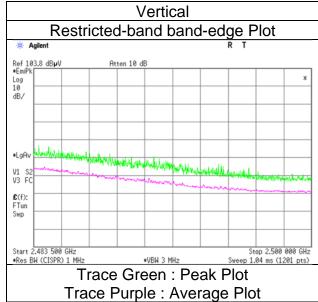
Daiki Matsui Engineer

(1 GHz to 6 GHz) Mode Tx 11n-20 2462 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	62.1	46.1	27.7	5.8	31.7	2.1	63.9	49.9	73.9	53.9	10.0	4.0	*1)
Vert.	2483.5	63.0	47.7	27.7	5.8	31.7	2.1	64.8	51.6	73.9	53.9	9.1	2.3	*1)

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).


20log (3.95 m / 3.0 m) = 2.39 dB Distance factor: 1 GHz - 6 GHz


^{*}QP detector was used up to 1GHz.
*1) Not Out of Band emission(Leakage Power)

Test Report No. 15377688H-A Page 35 of 43

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.4 July 31, 2024 22 deg. C / 57 % RH Daiki Matsui Tx 11n-20 2462 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

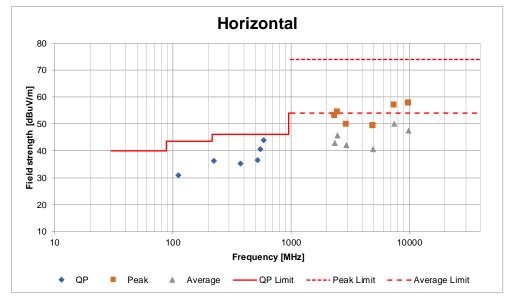
Final result of restricted band edge was shown in tabular data.

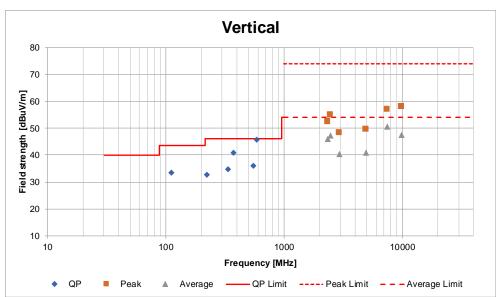
Test Report No. 15377688H-A Page 36 of 43

Radiated Spurious Emission (Plot data, Worst case mode for Maximum Peak Output Power)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

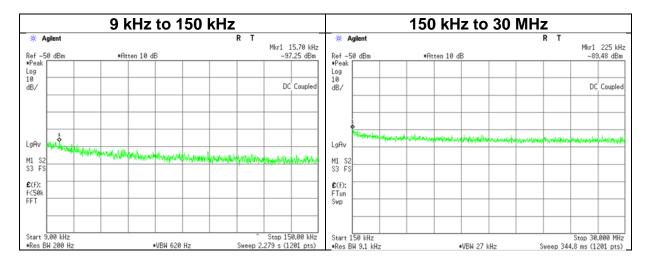

Daiki Matsui (1 GHz to 6 GHz) Tx 11g 2462 MHz


Ise EMC Lab. No.4 July 31, 2024 22 deg. C / 57 % RH

No.4 August 1, 2024 22 deg. C / 57 % RH Daiki Matsui (6 GHz to 18 GHz)

No.4 August 1, 2024 25 deg. C / 55 % RH Takumi Nishida (18 GHz to 26.5 GHz)

No.4 August 1, 2024 25 deg. C / 55 % RH Takumi Nishida (Below 1 GHz)


^{*}These plots data contain sufficient number to show the trend of characteristic features for EUT.

Test Report No. 15377688H-A Page 37 of 43

Conducted Spurious Emission

Test place Ise EMC Lab. No.8 Measurement Room

Date July 31, 2024
Temperature / Humidity 22 deg. C / 60 % RH
Engineer Takumi Nishida
Mode Tx 11g 2462 MHz

Frequenc	y Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
		Loss	Loss	Gain	(Number			bounce	(field strength)	-		
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
15.7	-97.3	0.00	9.7	3.0	1	-84.6	300	6.0	-23.3	43.6	66.9	
225.0	-89.5	0.01	9.7	3.0	1	-76.8	300	6.0	-15.5	20.5	36.0	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output

Test Report No. 15377688H-A Page 38 of 43

Power Density

Test place Ise EMC Lab. No.8 Measurement Room Date July 31, 2024
Temperature / Humidity 22 deg. C / 60 % RH

Engineer Takumi Nishida

Mode

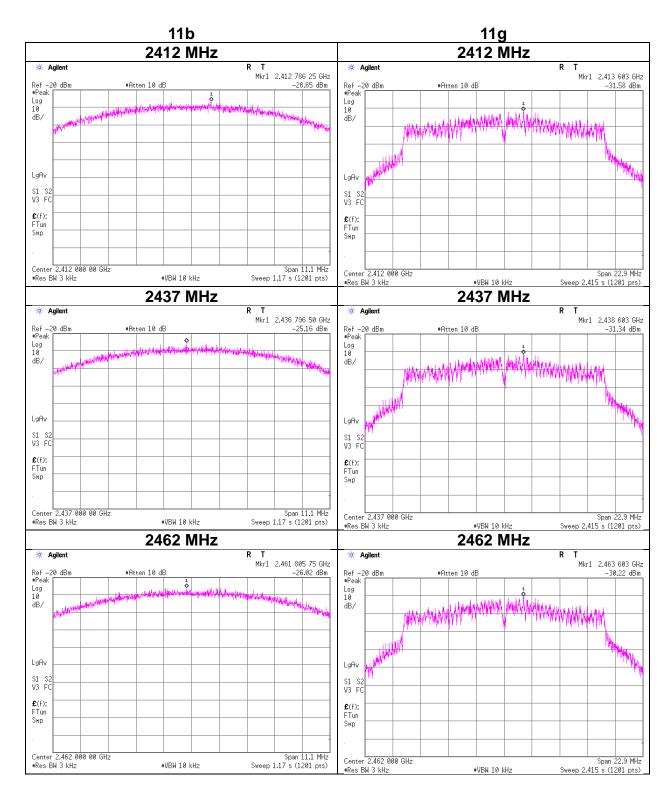
11b

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2412	-26.65	0.60	19.76	-6.29	8.00	14.29
2437	-25.16	0.60	19.76	-4.80	8.00	12.80
2462	-26.02	0.60	19.76	-5.66	8.00	13.66

11g

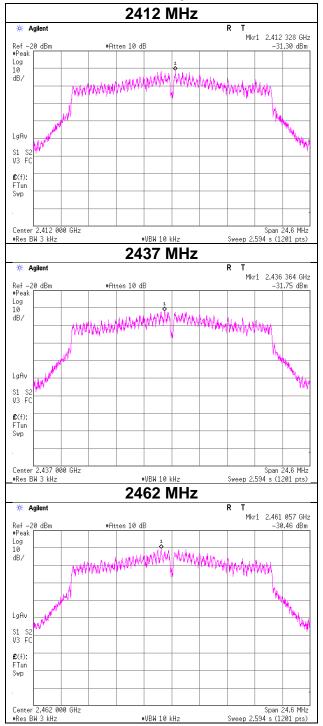
Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2412	-31.58	0.60	19.76	-11.22	8.00	19.22
2437	-31.34	0.60	19.76	-10.98	8.00	18.98
2462	-30.22	0.60	19.76	-9.86	8.00	17.86

11n-20


Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2412	-31.30	0.60	19.76	-10.94	8.00	18.94
2437	-31.75	0.60	19.76	-11.39	8.00	19.39
2462	-30.46	0.60	19.76	-10.10	8.00	18.10

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss


^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Power Density

Power Density

11n-20

Test Report No. 15377688H-A Page 41 of 43

APPENDIX 2: Test Instruments

Test Equipment

Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
AT	141244	Attenuator(10dB)	Weinschel - API Technologies Corp	WA8-10-34	A198	02/17/2024	12
AT	141327	Coaxial Cable	UL Japan	=	•	02/09/2024	12
AT	141333	Attenuator(10dB)	Suhner	6810.19.A	=	12/11/2023	12
AT	141391	Microwave Cable	RS Pro	R-132G7210200CD	-	04/01/2024	12
AT	141419	Attenuator	Weinschel Associates	WA56-10	56100305	05/22/2024	12
AT	141557	DIGIITAL HITESTER	HIOKI E.E. CORPORATION	3805	070900530	01/31/2024	12
AT	141810	Power Meter	Anritsu Corporation	ML2495A	824014	12/12/2023	12
AT	141832	Power sensor	Anritsu Corporation	MA2411B	738174	12/12/2023	12
AT	141902	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46187105	05/30/2024	12
AT	244711	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202105	01/25/2024	12
RE	141232	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	001	09/04/2023	12
RE	141267	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-192	09/21/2023	12
RE	141331	Attenuator(6dB)	TME	UFA-01	-	02/17/2024	12
RE	141425	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103+BBA9106	VHA 91031302	08/10/2023	12
RE	141503	Horn Antenna 18-26.5GHz	EMCO	3160-09	1265	06/25/2024	12
RE	141508	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	557	05/17/2024	12
RE	141545	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201148	02/01/2024	12
RE	141581	MicroWave System Amplifier	Keysight Technologies Inc	83017A	00650	10/05/2023	12
RE	141594	Pre Amplifier	Keysight Technologies Inc	8447D	2944A10150	02/17/2024	12
RE	141885	Spectrum Analyzer	Keysight Technologies Inc	E4448A	US44300523	11/29/2023	12
RE	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	05/17/2024	12
RE	142011	AC4_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	12/13/2023	24
RE	142017	AC4_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/14/2023	24
RE	142230	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
RE	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	234602	Microwave Cable	Huber+Suhner	SF126E/11PC35/11 PC35/1000M,5000M	537063/126E / 537074/126E	03/08/2024	12
RE	244710	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202104	01/25/2024	12
RE	245788	Double Ridge Horn Antenna	Schwarzbeck Mess- Elektronik OHG	BBHA 9120 C	690	03/06/2024	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

AT: Antenna Terminal Conducted test

RE: Radiated Emission