

TEST REPORT FCC ID:2BGZE-WKD02

Product

Vertical series

Model Name

WKD02, F-XD02, F-XL06, F-XN09, F-XQ04, F-XT03, WKL06, WKN09, WKQ04, WKS01, WKV12, XD02, XL06, XLS03, XLS04, XLS06, XLS09, XN09, XQ04, XT02, XT03

Brand

N/A

Report No.

NCT24024312XE1-1

Prepared for

shanghai jianyuan trading co., Itd Haiye Building, Fengpu Street, Fengxian District, Shanghai

Prepared by

Shenzhen NCT Testing Technology Co., Ltd.

A101&2F B2, Fuqiao 6th Area, Xintian Community, Fuhai Street, Baoan District, Shenzhen, People's Republic of China

TEL: 400-8868-419

Hotline: 400-8868-419

Fax: 86-755-27790922

Page 1 of 34 http://www.ncttesting.cn

1 TEST RESULT CERTIFICATION

Applicant's name	:	shanghai jianyuan trading co., Itd
Address	:	Haiye Building, Fengpu Street, Fengxian District, Shanghai
Manufacture's name	2	shanghai jianyuan trading co., Itd
Address	-	Haiye Building, Fengpu Street, Fengxian District, Shanghai
Product name		Vertical series
Model name	5	WKD02, F-XD02, F-XL06, F-XN09, F-XQ04, F-XT03, WKL06, WKN09, WKQ04, WKS01, WKV12, XD02, XL06, XLS03, XLS04, XLS06, XLS09, XN09, XQ04, XT02, XT03
Standards	:/	FCC CFR47 Part 15 Section 15.247
Test procedure	: y	ANSI C63.10:2013
Date of test	F.	Jun. 12, 2024 to Jun. 20, 2024
Date of Issue	U,	Jun. 20, 2024

This device described above has been tested by NCT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of NCT, this document may be altered or revised by NCT, personal only, and shall be noted in the revision of the document.

Keven Wu / Engineer

Technical Manager:

Test Engineer:

Hotline: 400-8868-419

Fax: 86-755-27790922

Page 2 of 34 http://www.ncttesting.cn

Contents

	Page
1 TEST RESULT CERTIFICATION	2
2 TEST SUMMARY	5
2.1 TEST SITE	6
3 GENERAL INFORMATION	
3.1 GENERAL DESCRIPTION OF E.U.T.	7
3.2 Channel List	
3.3 TEST SETUP CONFIGURATION	9
3.4 Test Mode	9
4 EQUIPMENT DURING TEST	10
4.1 EQUIPMENTS LIST	10
4.2 Measurement Uncertainty	12
4.3 DESCRIPTION OF SUPPORT UNITS	12
5 CONDUCTED EMISSION	
5.1 E.U.T. OPERATION	13
5.2 EUT SETUP	
5.3 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	14
5.4 MEASUREMENT PROCEDURE	
5.5 CONDUCTED EMISSION LIMIT	
5.6 MEASUREMENT DESCRIPTION	
5.7 CONDUCTED EMISSION TEST RESULT	
6 RADIATED SPURIOUS EMISSIONS	17
6.1 EUT OPERATION	17
6.2 TEST SETUP	
6.3 SPECTRUM ANALYZER SETUP	19
6.4 TEST PROCEDURE	20
6.5 SUMMARY OF TEST RESULTS	22
7 CONDUCT BAND EDGE AND SPURIOUS EMISSIONS MEASUREMENT	29
7.1 Test Procedure	29

NCT Technology

Report No.: NCT24024312XE1-1

7.2 TEST RESULT	29
8 6DB BANDWIDTH MEASUREMENT	
8.1 Test Procedure	30
8.2 TEST RESULT	30
9 MAXIMUM PEAK OUTPUT POWER	
9.1 Test Procedure	31
9.2 TEST RESULT	
10 POWER SPECTRAL DENSITY	
10.1 Test Procedure	32
10.2 TEST RESULT	32
11 ANTENNA APPLICATION	33
11.1 ANTENNA REQUIREMENT	
11.2 RESULT	33
12 TEST SETUP PHOTOS AND EUT PHOTOS	

2 Test Summary

Test Requirement	Result	
FCC part 15.207	PASS	
FCC part 15.205/15.209	PASS	
FCC part 15. 247(d)	PASS	
FCC part 15.247(d)	PASS	
FCC part 15.247 (a)(2)	PASS	
FCC part 15.247 (b)(3)	PASS	
FCC part 15.247 (e)	PASS	
FCC part 15.203/15.247 (c)	PASS	
	FCC part 15.207 FCC part 15.205/15.209 FCC part 15.247(d) FCC part 15.247(d) FCC part 15.247 (a)(2) FCC part 15.247 (b)(3) FCC part 15.247 (e)	

Remark:

chen.

1. "N/A" denotes test is not applicable in this Test Report.

2.1 Test Site

Site Description	
EMC Lab.	: Accredited by CNAS, 2022-09-27
	The certificate is valid until 2028.01.07
	The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2006 (identical to ISO/IEC 17025:2017)
	The Certificate Registration Number is L8251
	Designation Number: CN1347
	Test Firm Registration Number: 894804
	Accredited by A2LA, June 14, 2023
	The Certificate Registration Number is 6837.01
9	Accredited by Industry Canada, November 09, 2018
	The Conformity Assessment Body Identifier is CN0150
N	Company Number: 30806
Name of Firm	: Shenzhen NCT Testing Technology Co., Ltd.
Site Location	: A101&2F B2, Fuqiao 6th Area, Xintian Community, Fuhai Street, Baoan District, Shenzhen, People's Republic of China
	2008

Report No.: NCT24024312XE1-1

3 General Information

3.1 General Description of E.U.T.

Product Name	:	Vertical series
Model Name	1	WKD02
Sample ID		20240612A-001#
Sample(s) Status:		Engineer sample
Series Model	5	F-XD02, F-XL06, F-XN09, F-XQ04, F-XT03, WKL06, WKN09, WKQ04, WKS01, WKV12, XD02, XL06, XLS03, XLS04, XLS06, XLS09, XN09, G-XQ04, XT02, XT03
Model Different.:	:	NOTE:WKD02 is tested model, other models are derivative models .The models are identical in circuit, only different on the model names, size and shape. So the test data of WKD02 can represent the remaining models.
Operating frequency	:	2402-2480MHz
Number of Channels	÷	40 channels
Type of Modulation		GFSK
Rate		1M
Antenna installation	1:	PCB Antenna
Antenna Gain		2.3 dBi
Power supply	:	DC 5V from Adapter input AC 120V/60Hz
Hardware Version	:	V1.0
Software Version		V1.0

Remark: the Antenna gain is provided by customer from Antenna spec. and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

3.2 Channel List

The EUT has been tested under its typical operating condition. Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting. Only the worst case data were reported.

The EUT has been associated with peripherals pursuant to ANSI C63.10-2013 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation (9 KHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

The details of test channels and bandwidth were for RF conductive measurement.

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456	Martin State	- N - D

Channel List:

Note:

1. Test of channel was included the lowest, middle and highest frequency in highest data rate and to perform the test, then record on this report.

Test Channel:

	Channel	Frequency(MHz)
Low Channel	0	2402
Mid Channel	19	2440
High Channel	39	2480

3.3 Test Setup Configuration

nducted Emission	
→ Adapter →	EUT
diated Emission	
→ Adapter →	EUT G TOCHA
diated Spurious	cnn
Adapter	EUT
nducted Spurious	
→ Adapter →	EUT spectrum
t Mode Transmitting mode	Keep the EUT in continuously transmitting mode.
rated supply voltage, and four	test voltage was tuned from 85% to 115% of the nominal nd that the worst case was under the nominal rated supply hows that condition's data.
conductori. So the report just s	2000 ALES SI
Test Software	Blue tool 1.4.4.9
5	Blue tool 1.4.4.9 0 dBm

3.

2

4 Equipment During Test

4.1 Equipments List

Conducted emission Test Equipment

Name	Model No.	Serial No.	Manufacturer	Date of Cal.	Due Date
944 Shielded Room	944 Room	tipa	EMToni	2022/5/31	2025/5/30
EMI Test Receiver	ESPI	101604	Rohde & Schwarz	2023/6/21	2024/6/20
LISN	ENV 216	102796	Rohde & Schwarz	2023/6/21	2024/6/20
LISN	VN1-13S	004023	CRANAGE	2023/6/21	2024/6/20
Cable	RG223- 1500MM	NA	RG	2023/6/21	2024/6/20

Radiated emission & Radio Frequency Test Equipment

Name	Model No.	Serial No.	Manufacturer	Date of Cal.	Due Date
966 Shielded Room	966 Room	1	EMToni	2022/5/31	2025/5/30
EMI Test Receiver	ESCI	101178	Rohde & Schwarz	2023/6/21	2024/6/20
Amplifi (30MHz-1GHz)	BBV 9743 B	00374	SCHNWARZBECK	2023/6/21	2024/6/20
Bilog Antenna (30MHz-1GHz)	VULB9162	00473	SCHNWARZBECK	2023/3/19	2025/3/18
Horn antenna (1GHz-18GHz)	BBHA 9120 D	02622	SCHNWARZBECK	2023/3/19	2025/3/18
Pream plifier (1GHz-18GHz)	BBV 9718D	0024	SCHNWARZBECK	2023/6/21	2024/6/20
Spectrum Analyze (10Hz-40GHz)	FSV 40	100952	Rohde & Schwarz	2023/6/21	2024/6/20
Pream plifier (18GHz-40GHz)	BBV 9721	0056	SCHNWARZBECK	2023/6/21	2024/6/20
Double Ridge Guide Horn Antenna (18GHz-40GHz)	SAS-574	588	A.H.System	2023/3/19	2025/3/18
Loop Antenna (9KHz-30MHz)	FMZB1519B	014	SCHNWARZBECK	2023/6/21	2024/6/20
Comprehensive tester	CWM500	104995	Rohde & Schwarz	2023/6/21	2024/6/20

Amplifier (9KHz-30MHz)	BBV 9745	00109	CHNWARZBECK	2023/6/21	2024/6/20
MXG Signal Analyzer	N9020A	MY50510202	Agilent	2023/6/21	2024/6/20
MXG Vector Signal Generator	N5182A	MY50140020	Agilent	2023/6/21	2024/6/20
MXG Analog Signal Generator	N5181A	MY47420919	Agilent	2023/6/21	2024/6/20
Power Sensor	TR1029-2	512364	Techoy	2023/6/21	2024/6/20
RF Swith	TR1029-1	512364	Techoy	2023/6/21	2024/6/20
Cable	DA800- 4000MM	NA	DA	2023/6/21	2024/6/20
Cable	DA800- 11000MM	NA	DA	2023/6/21	2024/6/20
Other				2	

Iter	n Name	Manufacturer	Model	Software version
1	EMC Conduction Test System	AUDIX	e3	6.120718
2	EMC radiation test system	AUDIX	e3	6.120718
3	RF test system	TACHOY	RFTest	V1.0.0
4	RF communication test system	TACHOY	RFTest	V1.0.0

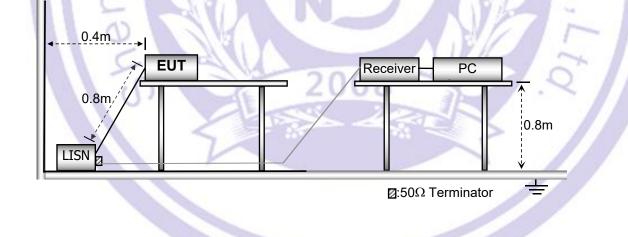
008

4.2 Measurement Uncertainty

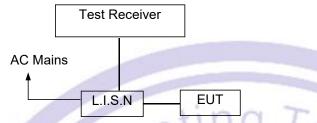
Parameter	Uncertainty
RF output power, conducted	±1.0dB
Power Spectral Density, conducted	±2.2dB
Radio Frequency	± 1 x 10 ⁻⁶
Bandwidth	± 1.5 x 10 ⁻⁶
Time C.Stills	±2%
Duty Cycle	±2%
Temperature	±1°C
Humidity	±5%
DC and low frequency voltages	±3%
Conducted Emissions (150kHz~30MHz)	±3.64dB
Radiated Emission(9KHz~30MHz)	±4.51dB
Radiated Emission(30MHz~1GHz)	±5.03dB
Radiated Emission(1GHz~25GHz)	±4.74dB
Radiated Emission(25GHz~40GHz)	±3.38dB
Remark: The coverage Factor (k=2), and measurement L	Incertainty for a level of Confidence of 95%

4.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Vertical series	N/A	WKD02	N/A	EUT
E-2	Adapter	QL	QL010-0502000V	N/A	Auxiliary

Note: (1)The support equipment was authorized by Declaration of Confirmation.


(2) For detachable type I/O cable should be specified the length in cm in [Length] column.

5 Conducted Emission	
Test Requirement	: FCC CFR 47 Part 15 Section 15.207, RSS-Gen§8.8, RSS-247§ 3.1
Test Method	: ANSI C63.10: 2013
Test Result	: PASS
Frequency Range	: 150kHz to 30MHz
Class/Severity	Class B
5.1 E.U.T. Operation	-np
Operating Environment :	102-01 0
Temperature	: 25.5 °C
Humidity	: 51 % RH
Atmospheric Pressure	: 101.2kPa
5.2 EUT Setup	
The conducted emission tests were C63.10:2013.	performed using the setup accordance with the ANSI

5.3 Test SET-UP (Block Diagram of Configuration)

5.4 Measurement Procedure

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured was complete.

5.5 Conducted Emission Limit

ducted Emission						
Frequency(MHz)	Quasi-peak	Average				
0.15-0.5	66-56	56-46				
0.5-5.0	56	46				
5.0-30.0	60	50				

Note:

Co

- 1. The lower limit shall apply at the transition frequencies
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

5.6 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

5.7 Conducted Emission Test Result

Pass

Conducted emission at both 120V & 240V is assessed, and emission at 120V represents the worst case. All the modulation modes were tested the data of the worst mode (GFSK,Lowest channel) are recorded in the following pages and the others modulation methods do not exceed the limits.

emperature: 2	6°C	Relative Humidity:	54%
Pressure: 1	01kPa	Phase :	L
est Voltage : A	C 120V/60Hz		
80 Level (dBuV)			Date: 2024-06-13
72.0			
64.0			FCC PART15B QP
56.0			FCC PART15B AV
48.0	6 10		
40.0		lall it trans. It to contract	
32.0	VIY9 VVV	and the second states and a second of the second states and the second states and the second states and second states a	which which the work of the
24.0	Munim	have a state for the state and	m
16.0 8.0			
0.15 0.2	0.5 1	2 5 Frequency (MHz)	10 20 30

10.1	-		101				151/	100	
No.	Freq MHz	Cable Loss dB	LISN Factor dB/m	Aux Factor dB	Receiver Reading dBuV	Emission Le∨el dBuV/m	Limit dBuV/m	O∨er Limit dB	Remark
1.	0.158	0.08	9.53	10.16	5.01	24.78	55.56	-30.78	Average
2.	0.158	0.08	9.53	10.16	22.00	41.77	65.56	-23.79	QP
3.	0.238	0.10	9.55	10.14	3.14	22.93	52.17	-29.24	Average
4.	0.238	0.10	9.55	10.14	17.11	36.90	62.17	-25.27	QP -
5.	0.313	0.11	9.56	10.13	5.88	25.68	49.88	-24.20	Average
6.	0.313	0.11	9.56	10.13	21.80	41.60	59.88	-18.28	QP
7.	0.398	0.08	9.57	10.12	4.04	23.81	47.90	-24.09	Average
8.	0.398	0.08	9.57	10.12	21.01	40.78	57.90	-17.12	QP
9.	0.474	0.07	9.58	10.12	7.00	26.77	46.45	-19.68	Average
10.	0.474	0.07	9.58	10.12	23.99	43.76	56.45	-12.69	QP
11.	0.538	0.06	9.58	10.11	3.53	23.28	46.00	-22.72	Average
12.	0.538	0.06	9.58	10.11	18.51	38.26	56.00	-17.74	QP

nperature:	Ž	26°C			Rel	ative Hum	nidity:	5	4%	
Pressure:		101kPa		Pha	hase :		N	N		
t Voltage :	/	AC 120V/6	0Hz							
		1								
80	evel (dBu	V)							Date: 2024-0	6-13
72.0										
64.0								FCO	C PART15B Q	P
56.0	-		-							
48.0			10					FC	C PART15B A	N
/	2		12				<u> </u>			
40.0	M	MA	MA		he. M. M. M. M. Musik	Mundulation		الألابية وحسايا	والمجيمان بالله	
32.0	+		9 4 4 1/	1 Maria	Max whi	A CARLES AND	A. A. W. W. WW	UNITED AND AND AND AND AND AND AND AND AND AN	A A A A A A A A A A A A A A A A A A A	$\left(- \right)$
02.0			1 11 11							A
	w	W W	AK V	¥[2				hat	M
24.0	1 w	WM	Min	Langer Hirrer	man when when	and the second second second	num negerigene	- Agenerations	and a service of the	M.
24.0 16.0	W	WM	MA	W. Marine	Man Mar Mar	ere and an an an an an an	4	- home and a defense		4
24.0	- Write		Min	www.	man war	*****	9	-Alexandra	~~~~	
24.0 16.0 8.0	15 0.2	WM	0.5	1	2	anat and a second s	5	10	20	30
24.0 16.0 8.0	15 0.2	WM	0.5	1	2 Frequency	(MHz)	5	10	20	30
24.0 16.0 8.0 00	15 0.2				Frequency		5		20	30
24.0 16.0 8.0 0	. 1	Cable	LISN	Aux	Frequency Receiver	Emission		Over		30
24.0 16.0 8.0 00	15 0.2 Free MHz	Loss			Frequency		5 Limit dBuV/m		20 Remark	30
24.0 16.0 8.0 0_ 0. Trace: 3 No.	Frec MHz	Loss dB	LISN Factor dB/m	Aux Factor dB	Frequency Receiver Reading dBuV	Emission Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark	
24.0 16.0 8.0 0. Trace: 3 No.	Fred	Loss dB 0.08	LISN Factor	Aux Factor	Frequency Receiver Reading	Emission Level	Limit	Over Limit		
24.0 16.0 8.0 0 Trace: 3 No. 1. 2. 3.	Frec MHz 0.162 0.162 0.238	Loss dB 0.08 0.08 0.10	LISN Factor dB/m 9.54 9.54 9.55	Aux Factor dB 10.16 10.16 10.14	Frequency Receiver Reading dBu∨ 4.74 21.70 4.87	Emission Level dBuV/m 24.52 41.48 24.66	Limit dBuV/m 55.34 65.34 52.17	Over Limit dB -30.82 -23.86 -27.51	Remark Average QP Average	
24.0 16.0 8.0 0. Trace: 3 No. 1. 2. 3. 4.	Fred MHz 0.162 0.162 0.238 0.238	Loss dB 0.08 0.08 0.10 0.10	LISN Factor dB/m 9.54 9.54 9.55 9.55	Aux Factor dB 10.16 10.16 10.14 10.14	Frequency Receiver Reading dBu∨ 4.74 21.70 4.87 19.81	Emission Level dBuV/m 24.52 41.48 24.66 39.60	Limit dBuV/m 55.34 65.34 52.17 62.17	Over Limit dB -30.82 -23.86 -27.51 -22.57	Remark Average QP	
24.0 16.0 8.0 0. Trace: 3 No. 1. 2. 3. 4. 5.	Free MHz 0.162 0.162 0.238 0.238 0.238 0.318	Loss dB 0.08 0.08 0.10 0.10 0.10 0.10	LISN Factor dB/m 9.54 9.54 9.55 9.55 9.56	Aux Factor dB 10.16 10.16 10.14 10.14 10.13	Frequency Receiver Reading dBu∨ 4.74 21.70 4.87 19.81 8.23	Emission Level dBuV/m 24.52 41.48 24.66 39.60 28.02	Limit dBuV/m 55.34 65.34 52.17 62.17 49.75	Over Limit dB -30.82 -23.86 -27.51 -22.57 -21.73	Remark Average QP Average QP Average	
24.0 16.0 8.0 0. Trace: 3 No. 1. 2. 3. 4. 5. 6.	Free MH2 0.162 0.238 0.238 0.318 0.318	Loss dB 0.08 0.08 0.10 0.10 0.10 0.10 0.10	LISN Factor dB/m 9.54 9.54 9.55 9.55 9.56 9.56	Aux Factor dB 10.16 10.16 10.14 10.14 10.14 10.13 10.13	Frequency Receiver Reading dBu∨ 4.74 21.70 4.87 19.81 8.23 24.21	Emission Level dBuV/m 24.52 41.48 24.66 39.60 28.02 44.00	Limit dBuV/m 55.34 65.34 52.17 62.17 49.75 59.75	Over Limit dB -30.82 -23.86 -27.51 -22.57 -21.73 -15.75	Remark Average QP Average QP Average QP	
24.0 16.0 8.0 0. Trace: 3 No. 1. 2. 3. 4. 5. 6. 7.	Free MH2 0.162 0.238 0.238 0.318 0.318 0.398	Loss dB 0.08 0.08 0.10 0.10 0.10 0.10 0.10 0.08	LISN Factor dB/m 9.54 9.55 9.55 9.55 9.56 9.56 9.57	Aux Factor dB 10.16 10.16 10.14 10.14 10.14 10.13 10.13 10.12	Frequency Receiver Reading dBu∨ 4.74 21.70 4.87 19.81 8.23 24.21 7.12	Emission Level dBuV/m 24.52 41.48 24.66 39.60 28.02 44.00 26.89	Limit dBuV/m 55.34 65.34 52.17 62.17 49.75 59.75 47.90	Over Limit dB -30.82 -23.86 -27.51 -22.57 -21.73 -15.75 -21.01	Remark Average QP Average QP Average QP Average	
24.0 16.0 8.0 0. Trace: 3 No. 1. 2. 3. 4. 5. 6. 7. 8.	Free MH2 0.162 0.238 0.238 0.318 0.318 0.398 0.398	Loss dB 0.08 0.10 0.10 0.10 0.10 0.10 0.10 0.08 0.08	LISN Factor dB/m 9.54 9.55 9.55 9.55 9.56 9.56 9.57 9.57	Aux Factor dB 10.16 10.16 10.14 10.14 10.14 10.13 10.13 10.12 10.12	Frequency Receiver Reading dBu∨ 4.74 21.70 4.87 19.81 8.23 24.21 7.12 23.10	Emission Level dBuV/m 24.52 41.48 24.66 39.60 28.02 44.00 26.89 42.87	Limit dBuV/m 55.34 65.34 52.17 62.17 49.75 59.75 47.90 57.90	Over Limit dB -30.82 -23.86 -27.51 -22.57 -21.73 -15.75 -21.01 -15.03	Remark Average QP Average QP Average QP Average QP	
24.0 16.0 8.0 0. Trace: 3 No. 1. 2. 3. 4. 5. 6. 7.	Free MH2 0.162 0.238 0.238 0.318 0.318 0.398	Loss dB 0.08 0.08 0.10 0.10 0.10 0.10 0.10 0.08	LISN Factor dB/m 9.54 9.55 9.55 9.55 9.56 9.56 9.57 9.57 9.57	Aux Factor dB 10.16 10.16 10.14 10.14 10.14 10.13 10.13 10.12 10.12 10.12	Frequency Receiver Reading dBu∨ 4.74 21.70 4.87 19.81 8.23 24.21 7.12 23.10 10.89	Emission Level dBuV/m 24.52 41.48 24.66 39.60 28.02 44.00 26.89 42.87 30.65	Limit dBuV/m 55.34 65.34 52.17 62.17 49.75 59.75 47.90	Over Limit dB -30.82 -23.86 -27.51 -22.57 -21.73 -15.75 -21.01 -15.03 -15.84	Remark Average QP Average QP Average QP Average	
24.0 16.0 8.0 0. Trace: 3 No. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Free MH2 0.162 0.238 0.238 0.318 0.318 0.398 0.398 0.398 0.471 0.47	Loss dB 0.08 0.10 0.10 0.10 0.10 0.10 0.08 0.08	LISN Factor dB/m 9.54 9.55 9.55 9.55 9.56 9.57 9.57 9.57 9.57	Aux Factor dB 10.16 10.16 10.14 10.14 10.14 10.13 10.13 10.12 10.12 10.12 10.12	Frequency Receiver Reading dBuV 4.74 21.70 4.87 19.81 8.23 24.21 7.12 23.10 10.89 27.79	Emission Level dBuV/m 24.52 41.48 24.66 39.60 28.02 44.00 26.89 42.87 30.65 47.55	Limit dBuV/m 55.34 65.34 52.17 62.17 49.75 59.75 47.90 57.90 46.49 56.49	Over Limit dB -30.82 -23.86 -27.51 -22.57 -21.73 -15.75 -21.01 -15.03 -15.84 -8.94	Remark Average QP Average QP Average QP Average QP Average QP	9
24.0 16.0 8.0 0 Trace: 3 No. 1. 2. 3. 4. 5. 6. 7. 8. 9.	Free MH2 0.162 0.238 0.238 0.318 0.318 0.398 0.398 0.398 0.471	Loss dB 0.08 0.10 0.10 0.10 0.10 0.10 0.10 0.08 0.08	LISN Factor dB/m 9.54 9.55 9.55 9.55 9.56 9.56 9.57 9.57 9.57	Aux Factor dB 10.16 10.16 10.14 10.14 10.14 10.13 10.13 10.12 10.12 10.12	Frequency Receiver Reading dBu∨ 4.74 21.70 4.87 19.81 8.23 24.21 7.12 23.10 10.89	Emission Level dBuV/m 24.52 41.48 24.66 39.60 28.02 44.00 26.89 42.87 30.65	Limit dBuV/m 55.34 65.34 52.17 62.17 49.75 59.75 47.90 57.90 46.49	Over Limit dB -30.82 -23.86 -27.51 -22.57 -21.73 -15.75 -21.01 -15.03 -15.84	Remark Average QP Average QP Average QP Average QP Average QP Average	9

Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

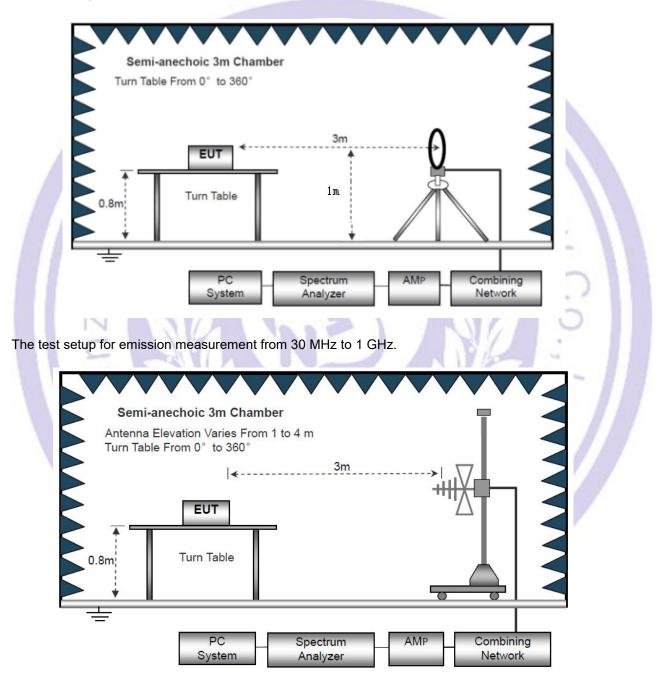
3.Mesurement Level = Reading level + Correct Factor

Radiated Spurious Emissions 6

Fest Requirement	•	FCC CFR47 Part 15 Section 15.209 & 15.247, RSS-Gen §8.9, RSS-Gen §8.10					
Test Method	: Al	ANSI C63.10:2013					
Test Result	: P/	ASS					
Measurement Distance	: 3r	n					
Limit	: Se	ee the follow	table				
	Field Strer	ngth	Field Strength Limit at	3m Measurement Dist			
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m			
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80			
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40			
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40			
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾			
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾			
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾			
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾			

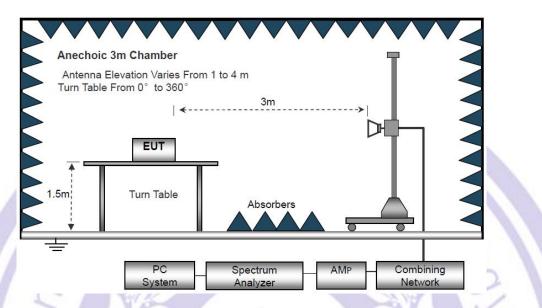
.- 0

......


Operating Environment :	
Temperature :	23.5 °C
Humidity :	51.1 % RH
Atmospheric Pressure	101.2kPa

NCT Technology

6.2 Test Setup


The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site

The test setup for emission measurement below 30MHz

The test setup for emission measurement above 1 GHz

6.3 Spectrum Analyzer Setup

5	Frequency	Detector	RBW	VBW	Remark
N	Below 30MHz		10kHz	10kHz	0
Receiver Setup	30MHz ~ 1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value
0	Above 1GHz	Peak	1MHz	3MHz	Peak Value
2		RMS	1MHz	3MHz	Average Value

6.4 Test Procedure

- 1. The testing follows the guidelines in Spurious Radiated Emissions of ANSI C63.10-2013.
- 2. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (From 1m to 4m) and turntable (from 0 degree to 360 degree) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Final measurement (Above 1GHz): The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1MHz. The measurement will be performed in horizontal and vertical polarization of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 degree to 360 degree in order to have the antenna inside the cone of radiation.
- 7. Test Procedure of measurement (For Above 1GHz):
- 1) Monitor the frequency range at horizontal polarization and move the antenna over all sides of the EUT(if necessary move the EUT to another orthogonal axis).
- 2) Change the antenna polarization and repeat 1) with vertical polarization.
- 3) Make a hardcopy of the spectrum.
- 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 5) Change the analyser mode to Clear/ Write and found the cone of emission.
- 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3m and the antenna will be still inside the cone of emission.
- 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarization and azimuth and the peak and average detector, which causes the maximum emission.
- 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.
- 8. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

For Average Measurement:

VBW=10Hz, when duty cycle is no less than 98 percent.

VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

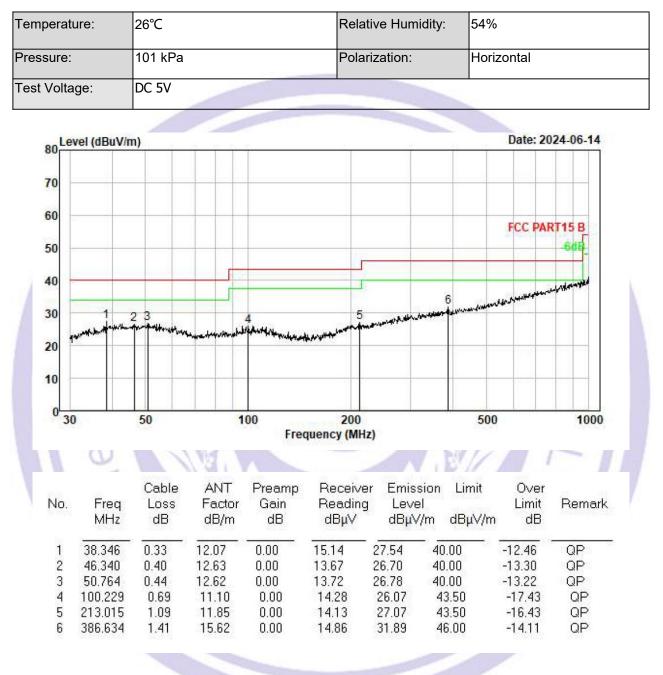
6.5 Summary of Test Results

Test Frequency: 9KHz-30MHz

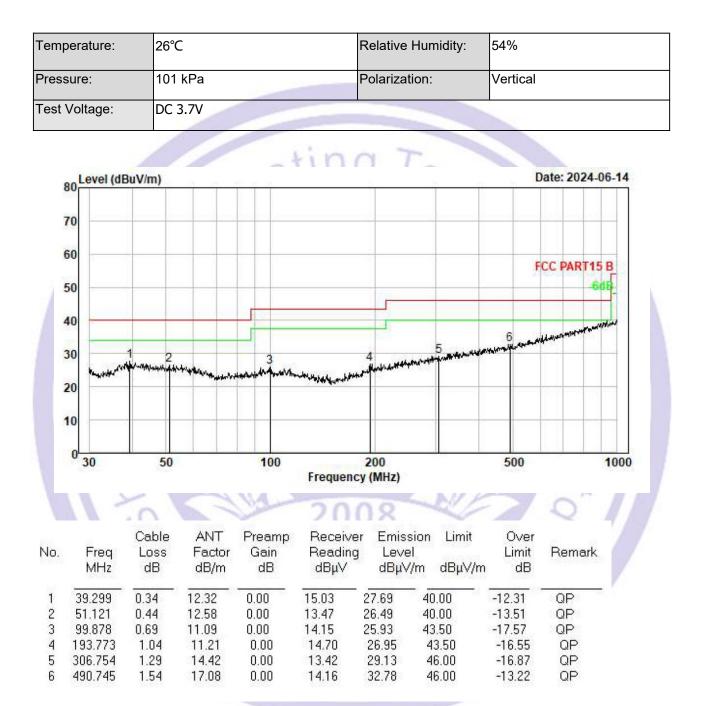
Freq.	Ant.Pol.	Emission Level	Limit 3m	Over
(MHz)	H/V	(dBuV/m)	(dBuV/m)	(dB)
	-	Ling	T	>20
·		CTI III		

Note:

The amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

Test Frequency: 30MHz ~ 1GHz


Pass.

Please refer to the following test plots for the worst test mode (GFSK, Lowest Channel).

Remark:Emission Level=Reading+Cable Loss+ANT Factor-AMP Factor

Remark:Emission Level=Reading+Cable Loss+ANT Factor-AMP Factor

Polar	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
Low Channel:2402MHz									
V	4804.00	48.64	34.12	5.03	32.39	51.94	74.00	-22.06	Pk
V	4804.00	37.69	34.12	5.03	32.39	40.99	54.00	-13.01	AV
V	7206.00	48.69	32.54	6.29	35.86	58.30	74.00	-15.70	Pk
V	7206.00	38.03	32.54	6.29	35.86	47.64	54.00	-6.36	AV
V	9608.00	44.55	32.98	7.55	38.40	57.52	74.00	-16.48	Pk
V	9608.00	35.56	32.98	7.55	38.40	48.53	54.00	-5.47	AV
V	12010.00	42.67	32.09	8.93	39.00	58.51	74.00	-15.49	Pk
V	12010.00	29.53	32.09	8.93	39.00	45.37	54.00	-8.63	AV
н	4804.00	47.65	34.12	5.03	32.39	50.95	74.00	-23.05	Pk
н	4804.00	39.43	34.12	5.03	32.39	42.73	54.00	-11.27	AV
н	7206.00	43.47	32.54	6.29	35.86	53.08	74.00	-20.92	Pk
н	7206.00	37.07	32.54	6.29	35.86	46.68	54.00	-7.32	AV
н	9608.00	45.24	32.98	7.55	38.40	58.21	74.00	-15.79	Pk
н	9608.00	32.69	32.98	7.55	38.40	45.66	54.00	-8.34	AV
Н	12010.00	38.12	32.09	8.93	39.00	53.96	74.00	-20.04	Pk
Н	12010.00	27.02	32.09	8.93	39.00	42.86	54.00	-11.14	AV

Test Frequency 1GHz-25GHz:

Polar	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type	
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
			١	viddle Ch	nannel:2440	MHz		•	•	
V	4880.00	50.73	34.07	5.09	32.59	54.34	74.00	-19.66	Pk	
V	4880.00	38.65	34.07	5.09	32.59	42.26	54.00	-11.74	AV	
V	7320.00	43.06	32.63	6.34	35.96	52.73	74.00	-21.27	Pk	
V	7320.00	31.69	32.63	6.34	35.96	41.36	54.00	-12.64	AV	
V	9760.00	38.57	32.92	7.59	38.40	51.64	74.00	-22.36	Pk	
V	9760.00	28.10	32.92	7.59	38.40	41.17	54.00	-12.83	AV	
V	12200.00	38.34	31.96	8.88	39.04	54.30	74.00	-19.70	Pk	
V	12200.00	27.57	31.96	8.88	39.04	43.53	54.00	-10.47	AV	
н	4880.00	47.39	34.07	5.09	32.59	51.00	74.00	-23.00	Pk	
н	4880.00	39.47	34.07	5.09	32.59	43.08	54.00	-10.92	AV	
н	7320.00	42.77	32.63	6.34	35.96	52.44	74.00	-21.56	Pk	
Н	7320.00	33.35	32.63	6.34	35.96	43.02	54.00	-10.98	AV	
н	9760.00	40.63	32.92	7.59	38.40	53.70	74.00	-20.30	Pk	
Н	9760.00	29.79	32.92	7.59	38.40	42.86	54.00	-11.14	AV	
н	12200.00	39.99	31.96	8.88	39.04	55.95	74.00	-18.05	Pk	
Н	12200.00	27.52	31.96	8.88	39.04	43.48	54.00	-10.52	AV	

Polar	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Type
	•			High Cha	nnel:2480N	IHz			
V	4960.00	47.11	34.02	5.15	32.80	51.04	74.00	-22.96	Pk
V	4960.00	37.23	34.02	5.15	32.80	41.16	54.00	-12.84	AV
V	7440.00	43.51	32.71	6.40	36.05	53.25	74.00	-20.75	Pk
V	7440.00	32.81	32.71	6.40	36.05	42.55	54.00	-11.45	AV
V	9920.00	41.36	32.86	7.62	38.40	54.52	74.00	-19.48	Pk
V	9920.00	29.68	32.86	7.62	38.40	42.84	54.00	-11.16	AV
V	12400.00	42.00	31.82	8.84	39.08	58.10	74.00	-15.90	Pk
V	12400.00	28.29	31.82	8.84	39.08	44.39	54.00	-9.61	AV
н	4960.00	47.19	34.02	5.15	32.80	51.12	74.00	-22.88	Pk
н	4960.00	36.43	34.02	5.15	32.80	40.36	54.00	-13.64	AV
н	7440.00	45.56	32.71	6.40	36.05	55.30	74.00	-18.70	Pk
н	7440.00	34.79	32.71	6.40	36.05	44.53	54.00	-9.47	AV
н	9920.00	40.13	32.86	7.62	38.40	5 3.29	74.00	-20.71	Pk
н	9920.00	32.36	32.86	7.62	38. <mark>4</mark> 0	45.52	54.00	-8.48	AV
Н	12400.00	37.45	31.82	8.84	39.08	53.55	74.00	-20.45	Pk
Н	12400.00	27.52	31.82	8.84	39.08	43.62	54.00	-10.38	AV

Note: 1. Emission Level = Meter Reading + Antenna Factor + Cable Loss - Pre-amplifier,

Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

	Polar (H/V)	Frequency (MHz)	Meter Reading (dBuV)	Pre- amplifier (dB)	Cable Loss (dB)	Antenna Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV /m)	Detec tor Type	Result		
	Low Channel: 2402MHz											
	н	2390.00	58.47	35.17	3.48	27.49	54.27	74.00	PK	PASS		
	Н	2390.00	49.37	35.17	3.48	27.49	45.17	54.00	AV	PASS		
	н	2400.00	59.46	35.16	3.49	27.52	55.31	74.00	PK	PASS		
	н	2400.00	49.57	35.16	3.49	27.52	45.42	54.00	AV	PASS		
	V	2390.00	57.52	35.17	3.48	27.49	53.32	74.00	PK	PASS		
GFSK	V	2390.00	49.71	35.17	3.48	27.49	45.51	54.00	AV	PASS		
	V	2400.00	59.14	35.16	3.49	27.52	54.99	74.00	PK	PASS		
	V	2400.00	49.88	35.16	3.49	27.52	45.73	54.00	AV	PASS		
	High Channel: 2480MHz											
	н	2483.50	58.01	35.11	3.56	27.75	54.21	74.00	PK	PASS		
	н	2483.50	49.05	35.11	3.56	27.75	45.25	54.00	AV	PASS		
	н	2500.00	59.59	35.10	3.57	27.80	55.86	74.00	PK	PASS		
	н	2500.00	49.27	35.10	3.57	27.80	45.54	54.00	AV	PASS		
	V	2483.50	59.02	35.11	3.56	27.75	55.22	74.00	PK	PASS		
	V	2483.50	49.96	35.11	3.56	27.75	46.16	54.00	AV	PASS		
	V	2500.00	58.32	35.10	3.57	27.80	54.59	74.00	PK	PASS		
	V	2500.00	49.90	35.10	3.57	27.80	46.17	54.00	AV	PASS		

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss - Pre-amplifier, Margin= Emission Level - Limit

7 Conduct Band Edge And Spurious Emissions Measurement

	- -
Test Requirement	 Section 15.247(d) In addition, radiated emissions which fall in the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)). RSS-247 § 5.5
Test Method	: ANSI C63.10:2013
Test Limit	 Regulation 15.247 (d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). RSS-247 § 5.5: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits. If the transmitter complies with the conducted power limits. Jest of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be30 dB instead of 20 dB. Attenuation below the gene
7.1 Test Procedur	re

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold

7.2 Test Result

Please see the Appendix for the BLE data

Hotline: 400-8868-419

Fax: 86-755-27790922

NCT Technology

Report No.: NCT24024312XE1-1

100U

8 6dB Bandwidth Measurement

Test Requirement : FCC CFR47 Part 15 Section 15.247, RSS-247

Test Method : ANSI C63.10:2013

Test Limit

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

8.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

8.2 Test Result

JU90

Please see the Appendix for the BLE data

9 Maximum Peak Output Power

Test Requirement :	FCC CFR47 Part 15 Section 15.247, RSS-247 § 5.4				
Test Method :	ANSI C63.10:2013				
Test Limit :	Regulation 15.247 (b)(3), For systems using digital modulation in the 902- 928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. RSS-247 § 5.4				
0.4 Test Presedure	For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).				

9.1 Test Procedure

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Measure the conducted output power and record the results in the test report.

9.2 Test Result

Please see the Appendix for the BLE data

10 Power Spectral density

Test Requirement	:	FCC CFR47 Part 15 Section 15.247,RSS-247 §5.2 (b)
Test Method	:	ANSI C63.10:2013
Test Limit		Regulation 15.247(f) The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. RSS-247 §5.2 (b) The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

10.2 Test Result

Please see the Appendix for the BLE data

11 Antenna Application

11.1 Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

According to RSS-GEN section 6.8

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

11.2 Result

The antenna is PCB antenna, the Max gain of the antennas is 2.3 dBi, reference to the attachment for details.

12 Test Setup Photos and EUT Photos

Please see the attachment for details.

