

TEST REPORT

Report No. : KES-RF240351-R1 Page **1** / **31** KES Co., Ltd. #3002, #3503, #3701, 40, Simin-daero365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Republic of Korea Tel : +82-31-425-6200, Fax : +82-31-341-3838

FCC TEST REPORT

1. Client

- Name : ALUX Co.,Ltd
- o Address : Madeul-ro 13-gil, Dobong-Gu 1602ho, 61, Seoul, South Korea

2. Sample Description

- Product item : CodingRider Controller
- Model name : ALC-C-95
- Manufacturer etc. : ALUX Co.,Ltd
- 3. Date of test : 2024.08.23 ~ 2024.08.26
- **4. Location of Test :** ☑ Permanent Testing Lab □ On Site Testing ○ Adress : 473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea
 - O Adless : 473-21, Gayeo-10, Teoju-si, Gyeonggi-do, Kol
- 5. Test method used : Part 15 Subpart C 15.247
- 6. Test result : PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This laboratory is not accredited for the test results marked *. This test report is not related to KOLAS accreditation.

Affirmation	,		Technical Manager	
Affirmation	Name : Gu-Bong, Kang	(Signature)	Name : Yeong-Jun Cho	(Signature)

2024.09.11.

KES Co., Ltd.

Accredited by KOLAS, Republic of KOREA

KES-QP16-F01(00-23-01-01)

KES Co., Ltd.

REPORT REVISION HISTORY

Date	Test Report No.	Revision History	
2024.08.28	KES-RF240351	Initial	
2024.09.11	KES-RF240351-R1	Add 6 ^{dB} bandwidth Section 11.8.1 (page 8) Add Output power plot (page 11) fix detector Test procedure above 30 Mz (page 15) Add Antenna Requirement result (page 30)	

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document may be altered or revised by KES Co., Ltd. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by KES Co., Ltd. will constitute fraud and shall nullify the document.

Use of uncertainty of measurement for decisions on conformity (decision rule):

■ No decision rule is specified by the standard, when comparing the measurement result with the applicable limit according to the specification in that standard. The decisions on conformity are made without applying the measurement uncertainty("simple acceptance" decision rule, previously known as "accuracy method").

□ Other (to be specified, for example when required by the standard or client)

TABLE OF CONTENTS

1.	General	information	. 4
	1.1.	EUT description	
	1.2.	Test configuration	
	1.3.	Information about derivative model	. 5
	1.4.	Accessory information	. 5
	1.5.	Device modifications	. 5
	1.6.	Sample calculation	. 5
	1.7.	Measurement Uncertainty	. 5
	1.8.	Frequency/channel operations	
2.		y of tests	
3.	Test resu	ults	
	3.1.	6 dB bandwidth	
	3.2.	Output power	10
	3.3.	Power spectral density	12
	3.4.	Radiated restricted band and emissions	
	3.5.	Conducted spurious emissions & band edge	27
	3.6.	Antenna Requirement	30
App	endix A.	Measurement equipment	31

1. General information

Applicant:	ALUX Co.,Ltd				
Applicant address:	Madeul-ro 13-gil, Dobong-Gu 1602ho, 61, Seoul, South Korea				
Test site:	KES Co., Ltd.				
Test site address: 🛛 #3002, #3503, #3701, 40, Simin-daero365beon-gil,					
	Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Republic of Korea				
🛛 473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea					
Test Facility	FCC Accreditation Designation No.: KR0100, Registration No.: 444148				
FCC rule part(s):	15.247				
FCC ID: 2BGVR-ALC-C-95					
Test device serial No.: Image: Production Image: Pre-production					

1.1. EUT description

Equipment under test	CodingRider Controller		
Frequency range	2 403 MHz ~ 2 480 MHz		
Model	ALC-C-95		
Derivative Model	N/A		
Modulation technique	GFSK		
Number of channels	2 403 MHz ~ 2 480 MHz : 78 ch		
Antenna specification	WIRE Antenna // Peak gain: 0 dBi		
Power source	DC 3.0 V (DC 1.5 V AAA Battery * 2)		
H/W version	1.0		
S/W version	1.0		

1.2. Test configuration

The <u>ALUX Co.,Ltd // CodingRider Controller // ALC-C-95 // FCC ID: 2BGVR-ALC-C-95</u> was tested according to the specification of EUT, the EUT must comply with following standards and KDB documents.

FCC Part 15.247 KDB 558074 D01 v05 r02 ANSI C63.10-2013 Page **4** / **31**

1.3. Information about derivative model

N/A

1.4. Accessory information

Equipment	Manufacturer	Model	Serial No.	Power source
Drone	ALUX Co.,Ltd	ALC-D-95	-	3.7 V (Battery)
Charger	-	-	-	-
Charging cable	-	-	-	-

1.5. Device modifications

N/A

1.6. Sample calculation

Where relevant, the following sample calculation is provided For all conducted test items :

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$

= 0.85 + 10 = 10.85 (dB)

For Radiation test :

Field strength level ($^{dB}\mu$ /m) = Measured level ($^{dB}\mu$) + Antenna factor (dB) + Cable loss (dB) – Amplifier gain (dB)

1.7. Measurement Uncertainty

Test Item		Uncertainty
Uncertainty for Conduction emission test		2.22 dB (SHIELD ROOM #6)
Uncertainty for Radiation emission test (include Fundamental emission)	Below 1 GHz	4.04 dB (SAC #6)
	Above 1 GHz	5.32 dB (SAC #5)

1.8. Frequency/channel operations

Ch.	Frequency (Mb)	Mode
00	2 403	GFSK (DTS)
•		
37	2 440	GFSK (DTS)
77	2 480	GFSK (DTS)

Page 6 / 31

KES-QP16-F01(00-23-01-01)

Page 7 / 31

2. Summary of tests

Section in FCC Part 15	Test description	Test results
15.247(a)(2)	6 dB bandwidth	Pass
15.247(b)(3)	Output power	Pass
15.247(e)	Power spectral density	Pass
15.205, 15.209	Radiated restricted band and emission	Pass
15.247(d)	Conducted spurious emission and band edge	Pass
15.203	Antenna Requirement	Pass
15.207(a)	AC Conducted emissions	N/T ^{Note.1}

*N/T: Not Tested

3. Test results

3.1. 6 dB bandwidth

Test procedure

ANSI C63.10-2013 - Section 11.8.2

lest setup		
EUT	Attenuator	Spectrum
LUI	Allendaloi	analyzer

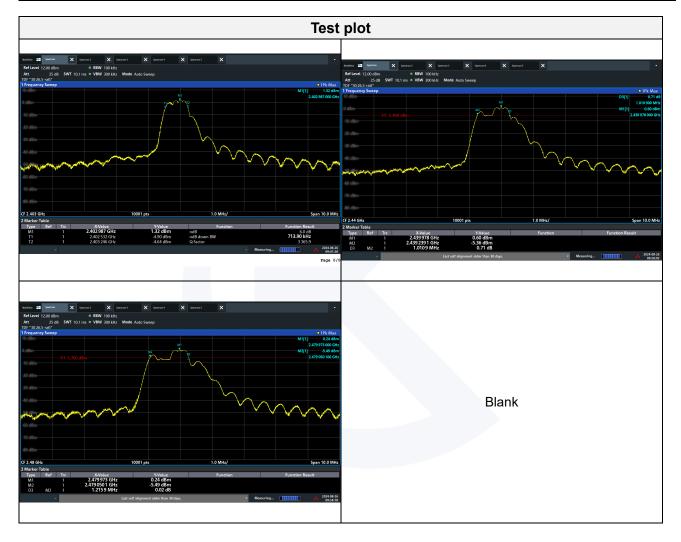
ANSI C63.10-2013 - Section 11.8.1

The steps for the first option are as follows:

- a) Set RBW = 100 kHz.
- b) Set the VBW \geq [3 · RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated
- with the two outermost amplitude points (upper and lower frequencies) that are attenuated by
- 6 dB relative to the maximum level measured in the fundamental emission.

ANSI C63.10-2013 - Section 11.8.2

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \ge 3 × RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \ge 6 dB.


Limit

```
According to \$15.247(a)(2), systems using digital modulation techniques may operate 902 \sim 928 Mb, 2400 \sim 2483.5 Mb, and 5725 \sim 5850 Mb bands. The minimum 6 dB bandwidth shall be at least 500 kb.
```


Test results

Frequency(胍)	6 dB bandwidth(Mb)	Limit(Mb)
2 403	0.71	
2 440	1.01	≥ 0.500
2 480	1.22	

3.2. Output power

Test procedure

ANSI C63.10-2013 - Section 11.9.1.3 and 11.9.2.3.2

Test setup

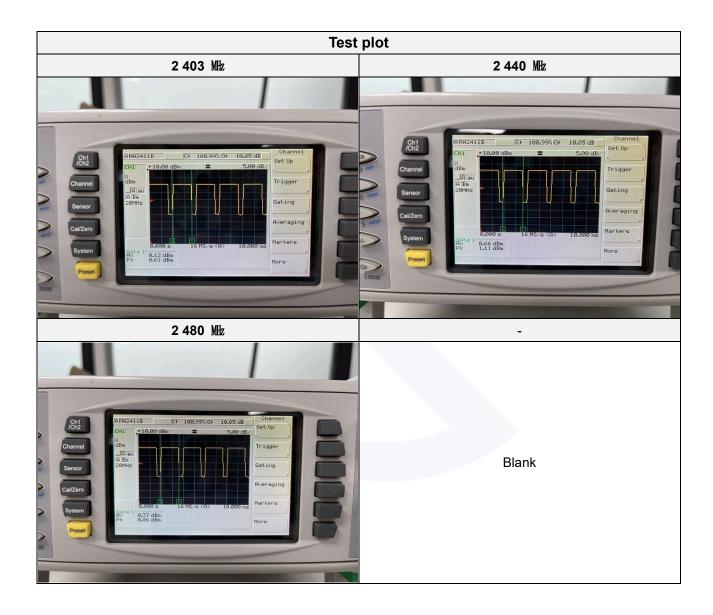
EUT	Attenuator	 Power meter,
EOT	Allenualoi	Power sensor

ANSI C63.10-2013 - Section 11.9.1.3

The maximum peak conducted output power may be measured using a broadband peak RF power m eter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandw idth and shall use a fast-responding diode detector.

ANSI C63.10-2013 - Section 11.9.2.3.2

Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction is required.


Limit

According to §15.247(b)(3), For systems using digital modulation in the 902~928 Mb, 2 400~2 483.5 Mb, and 5 725~5 850 Mb bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted out-put power. Maximum Conducted Out-put Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test results

	2 403 MHz		2 440 M比		2 480 M±			
Mode	Average (dBm)	Peak (dBm)	Average (dBm)	Peak (dBm)	Average (dBm)	Peak (dBm)	Power Limit (dBm)	
GFSK (DTS)	0.12	0.61	0.66	1.11	0.37	0.86	30.00	

KES-QP16-F01(00-23-01-01)

Page **12** / **31**

3.3. Power spectral density

Test procedure

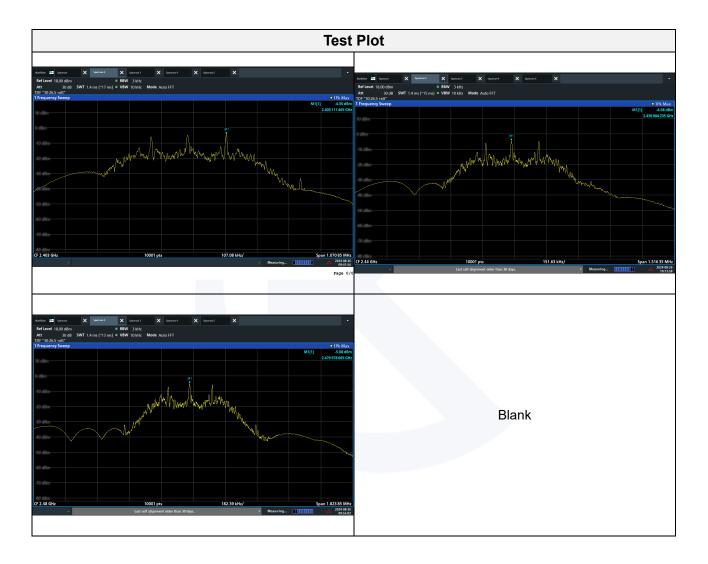
ANSI C63.10-2013 - Section 11.10.2

Test setup

FUT	Attenuator	Spectrum
LUI	Allendaloi	analyzer

Section 10.2 & ANSI C63.10-2013 - Section 11.10.2

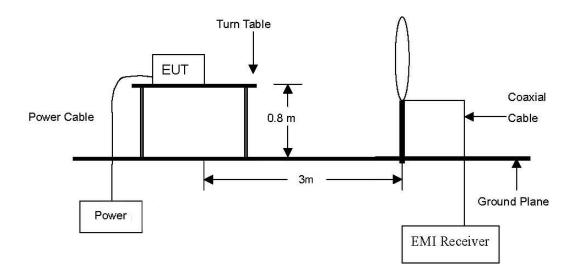
- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to 3 kHz \leq RBW \leq 100 kHz
- d. Set the VBW \geq [3 × RBW].
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.
- j. If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

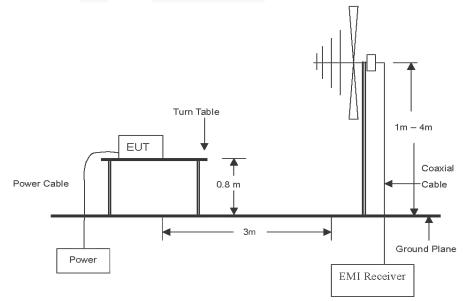

Limit

According to §15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Results

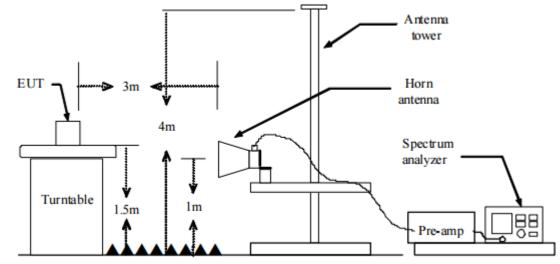
Frequency(쌘)	PSD (dBm/3 址)	Limit(dBm/3 虓力
2 403	-4.35	
2 440	-4.58	≤ 8
2 480	-5.08	




3.4. Radiated restricted band and emissions

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 $\,\rm klz$ to 30 $\,\rm Mz\,$ Emissions.


The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 $\mathbb{G}_{\mathbb{Z}}$ emissions.

KES-QP16-F01(00-23-01-01)

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz emissions, whichever is lower.

Test procedure

Radiated emissions from the EUT were measured according to the dictates in section 11.11 & 11.12 of ANSI C63.10-2013.

Test procedure below 30 Mbz

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel, ground parallel and perpendicular of the antenna are set to make the measurement. It was determined that **parallel** was worst-case orientation; therefore, all final radiated testing was performed with the EUT in **parallel**.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum hold mode.

Test procedure above 30 Mbz

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground for 30 Mb-1 Gb and 1.5 meters for above 1 Gb at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The antenna is a bi-log antenna, a horn antenna ,and its height are varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 5. Spectrum analyzer settings for f < 1 GHz:
 - ① Span = wide enough to fully capture the emission being measured
 - 2 RBW = 100 kHz
 - ③ VBW ≥ RBW
 - ④ Detector = peak
 - 5 Sweep time = auto
 - 6 Trace = max hold

KES-QP16-F01(00-23-01-01)

KES Co., Ltd.

Page 16 / 31

- 6. Spectrum analyzer settings for $f \ge 1$ GHz: Peak
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - 2 RBW = 1 Mbz
 - ③ VBW ≥ 3 Mbz
 - ④ Detector = peak
 - 5 Sweep time = auto
 - 6 Trace = max hold
 - 1 Trace was allowed to stabilize
- 7. Spectrum analyzer settings for $f \ge 1$ GHz: Average
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - 2 RBW = 1 Mbz
 - ③ VBW ≥ 3 × RBW
 - ④ Detector = RMS, if span/(# of points in sweep) ≤ (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
 - ⑤ Averaging type = power(i.e., RMS)
 - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - 2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
 - 6 Sweep = auto
 - ⑦ Trace = max hold
 - 8 Perform a trace average of at least 100 traces.
 - ④ A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (RMS) mode was used in step (5), then the applicable correction factor is 10 log(1/x), where x is the duty cycle.
 - 2) If linear voltage averaging mode was used in step (5), then the applicable correction factor is 20 log(1/x), where x is the duty cycle.
 - If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Note.

- f <30 Mb, extrapolation factor of 40 dB/decade of distance. F_d = 40log(D_m/Ds)
 f ≥30 Mb, extrapolation factor of 20 dB/decade of distance. F_d = 20log(D_m/Ds)
 Where:
 - F_d = Distance factor in dB
 - D_m = Measurement distance in meters
 - D_s = Specification distance in meters
- 2. Field strength($dB\mu N/m$) = Level($dB\mu N$) + CF (dB) + or DCF(dB)
- 3. Margin(dB) = Limit(dBµN/m) Field strength(dBµN/m)
- 4. Emissions below 18 GHz were measured at a 3 meter test distance while emissions above 18 GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 5. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z, it was determined that <u>X orientation</u> was worst-case orientation; therefore, all final radiated testing was performed with the EUT in <u>X orientation</u>.
- 6. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.
- 7. According to exploratory test no any obvious emission were detected from 9 klz to 30 Mz. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values :

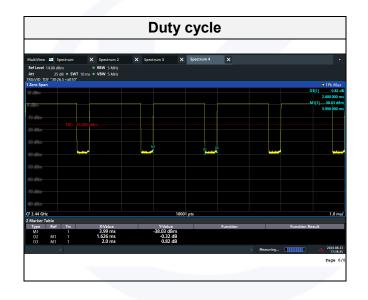
Frequency (Mz)	Distance (Meters)	Radiated (μ /m)
0.009 ~ 0.490	300	2400/F(klz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30.0	30	30
30 ~ 88	3	100**
88 ~ 216	3	150**
216 ~ 960	3	200**
Above 960	3	500

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54 \sim 72$ Mz, $76 \sim 88$ Mz, $174 \sim 216$ Mz or $470 \sim 806$ Mz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

KES-QP16-F01(00-23-01-01)

Duty cycle

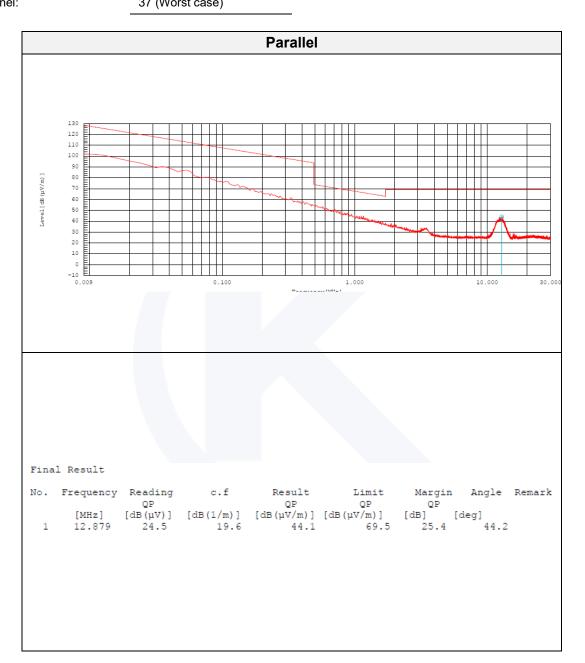
Regarding to KDB 558074 D01_v05 r02, 6. Measurements of duty cycle and transmission duration shall be performed using one of the following techniques:


a) A diode detector and an oscilloscope that together have sufficiently short response time to permit accurate measurements of the on- and off-times of the transmitted signal.

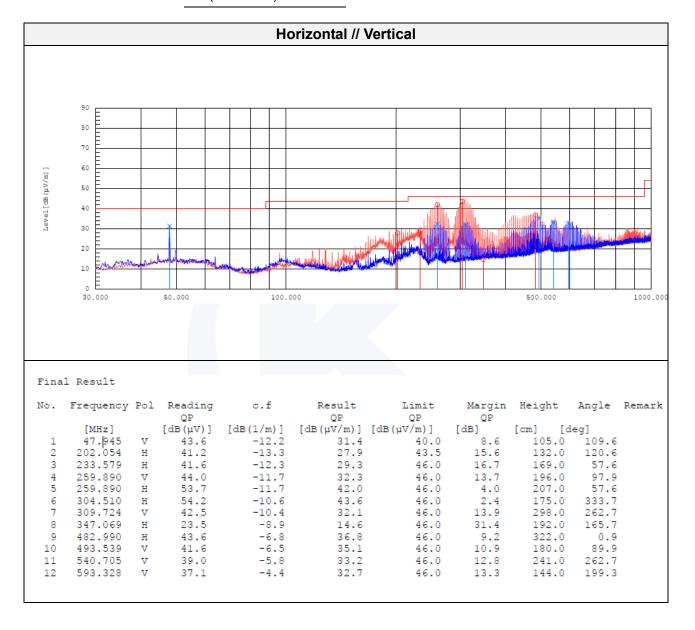
b) The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on- and off-times of the transmitted signal.

Mode	T _{on} time (ms)	Period (ms)	Duty cycle (Linear)	Duty cycle (%)	Duty cycle correction factor (dB)
GFSK	1.626	2.000	0.81	81.3	0.90

Duty cycle (Linear) = T_{on} time/Period


DCF(Duty cycle correction factor (dB)) = 10log(1/duty cycle)

Test results (Below 30 Mz)


Mode:	GFSK			
Distance of measurement:	3 meter			
Channel:	37 (Worst case)			

Test results (Below 1 000 Mb)

Mode:	GFSK
Distance of measurement:	3 meter
Channel:	37 (Worst case)

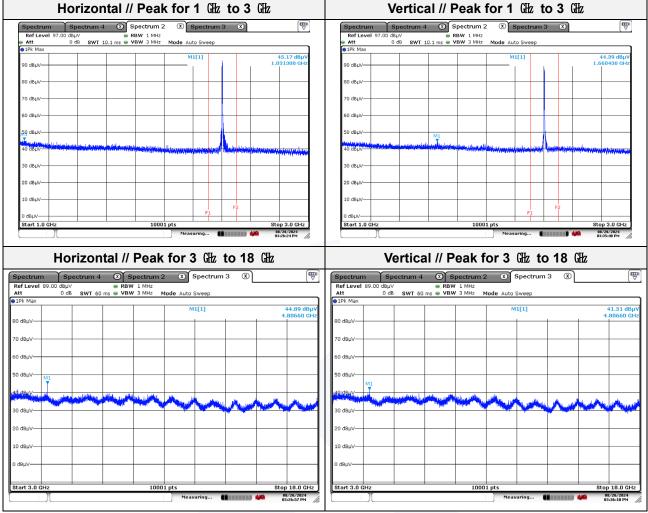
KES-QP16-F01(00-23-01-01)

Test results (Above 1 000 ₩z)

Mode:	GFSK
Distance of measurement:	3 meter
Channel:	00

Spurious -

Frequency (Mb)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB <i>µ</i> V/m)	Limit (dBµN/m)	Margin (dB)
1 031.30	45.17	Peak	Н	-9.51	-	35.66	74.00	38.34
1 660.43	44.39	Peak	V	-5.14	-	39.25	74.00	34.75
4 806.60	44.89	Peak	Н	6.15	-	51.04	74.00	22.96
4 806.60	41.51	Peak	V	6.15	-	47.66	74.00	26.34
- Band edge								

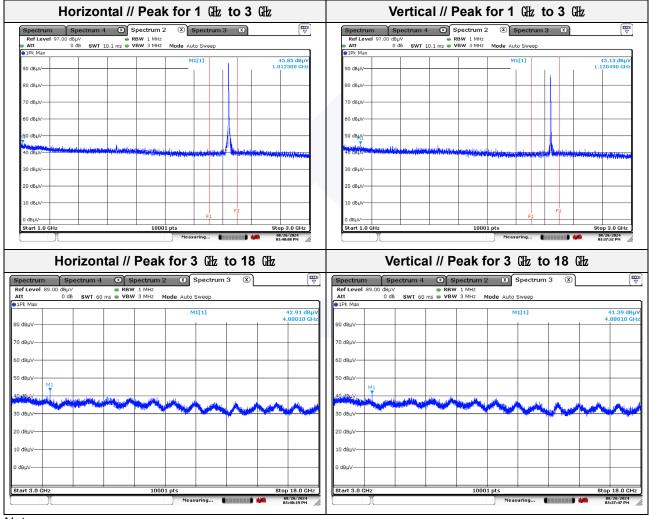

Band edge _

Frequency (Mb)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµX/m)	Limit (dBµN/m)	Margin (dB)
2 378.53	41.51	Peak	V	-0.96	-	40.55	74.00	33.45
2 389.99	44.40	Peak	Н	-0.93	-	43.47	74.00	30.53

Restricted band // Horizontal // Peak						Restricted	d band //	Vertical	// Peal	(
Spectrum Ref Level 97.1	Spectrum 4	Spectrum 2	Spectrum :	3 8 🕎	Spectrum Ref Level 97.0	Spectrum 4 💌	Spectrum 2	Spectrum	13 🛞	
Att	0 dB SWT 15	5.2 µs 👄 VBW 3 MHz	Mode Auto FFT		e Att	0 dB SWT 15.2 µs	🔵 YBW 3 MHz 🛛 M	lode Auto FFT		
●1Pk Max					⊖1Pk Max					
90 dBµV			M1[1]	44.40 dBµV 2.3899870 Ghia	90 dBµV			M1[1]	1 1	41.51 dBµ 2.3785280 GH:
80 dBµV					80 dBµV					
70 dBµV					70 dBµV					
60 dBµV					60 dBµV					
50 dBµV				M1	50 dBµV				M1	
4Q.dBu	www.	mar hand and	humber	www.www.	AD dBHV	and the second sec			www.	~~
30 dBµV					30 dBµV					
20 dBµV					20 dBµV					
10 dBµV				F2	10 dBµV					F2
0 dBµV					0 dBµV F1					
Start 2.3 GHz		1000	1 pts	Stop 2.404 GHz	Start 2.3 GHz	1	10001	ots		Stop 2.404 GHz
Marker Type Ref Tr M1	rc X-value 1 2.38998		Function	Function Result	Marker Type Ref Tro M1	C X-value 1 2.378528 GHz	<u>Y-value</u> 41.51 dBµV	Function	Functio	n Result
			Measuring 🔳	08/25/2024 03:25:43 PM				Measuring		08/25/2024 03:33:39 PM

KES-QP16-F01(00-23-01-01)

Note.


1. Average test would be performed if the peak result were greater than the average limit.

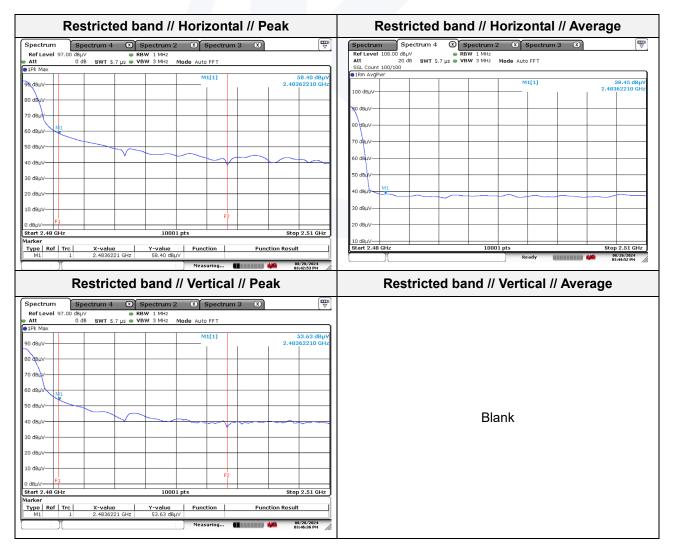
Mode:	GFSK
Distance of measurement:	3 meter
Channel:	37

Spurious

Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB _/ N/m)	Limit (dBµV/m)	Margin (dB)
1 012.30	45.85	Peak	Н	-9.63	-	36.22	74.00	37.78
1 120.49	45.13	Peak	V	-8.95	-	36.18	74.00	37.82
4 880.10	42.91	Peak	Н	6.64	-	49.55	74.00	24.45
4 880.10	41.39	Peak	V	6.64	-	48.03	74.00	25.97

Note.

1. Average test would be performed if the peak result were greater than the average limit.

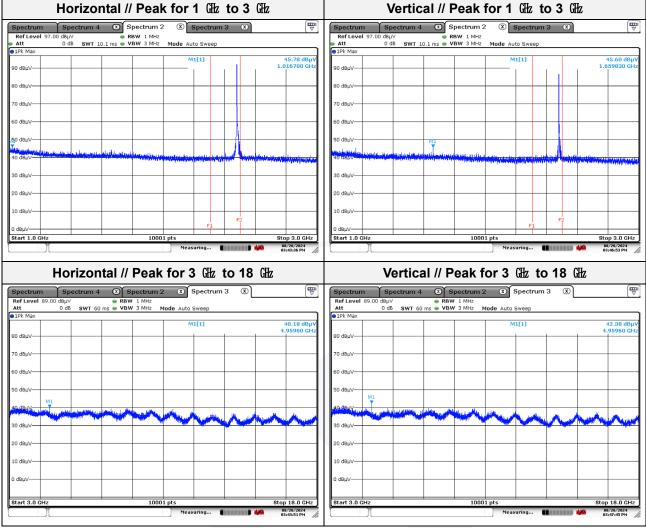

Mode:	GFSK
Distance of measurement:	3 meter
Channel:	77

Spurious

Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB _# V/m)	Limit (dBµN/m)	Margin (dB)
1 016.70	45.78	Peak	Н	-9.60	-	36.18	74.00	37.82
1 659.83	45.60	Peak	V	-5.14	-	40.46	74.00	33.54
4 959.60	40.18	Peak	Н	7.17	-	47.35	74.00	26.65
4 959.60	42.38	Peak	V	7.17	-	49.55	74.00	24.45

- Band edge

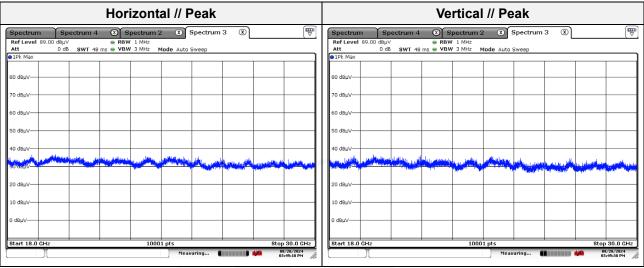
Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dB _/ //m)	Limit (dBµN/m)	Margin (dB)
2 483.62	58.40	Peak	Н	-0.72	-	57.68	74.00	16.32
2 483.62	38.45	Average	Н	0.18	0.90	38.63	54.00	15.37
2 483.62	53.63	Peak	V	-0.72	-	53.58	74.00	20.42



KES-QP16-F01(00-23-01-01)

Page 25 / 31

KES-QP16-F01(00-23-01-01)


Test results (18 GHz to 30 GHz) – Worst case

 Mode:
 GFSK

 Distance of measurement:
 3 meter

Channel:

3 meter 37 (Worst case)

Note.

1. No spurious emission were detected above 18 $\,{\rm Ghz}$

3.5. Conducted spurious emissions & band edge

Test	setu	р

FUT	Attenuator	Spectrum
EOT	Allenualoi	analyzer

Test procedure Band edge

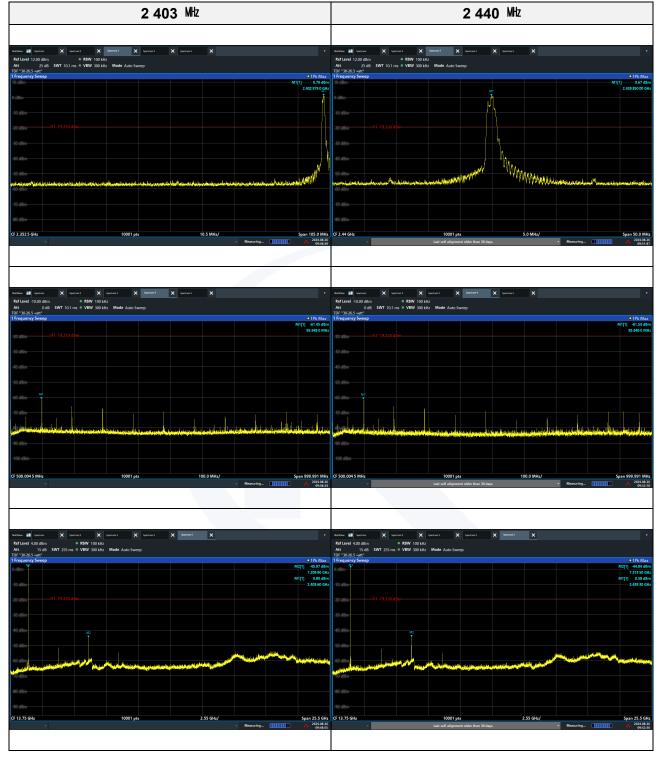
ANSI C63.10-2013 - Section 11.11

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. Set the RBW = 100 kHz
- 4. Set the VBW = $[3 \times \text{RBW}]$.
- 5. Detector = Peak
- 6. Sweep time = auto
- 7. Trace mode = max hold
- 8. Allow trace to fully stabilize.

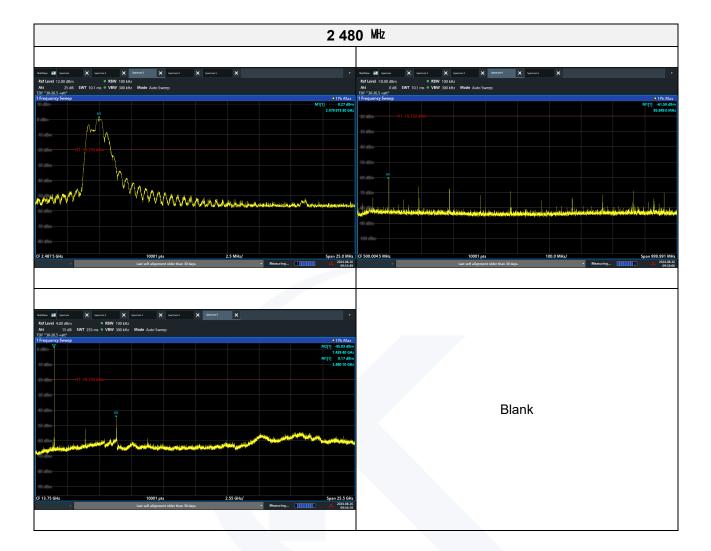
Out of band emissions

ANSI C63.10-2013 - Section 11.11

- 1. Start frequency was set to 30 Mb and stop frequency was set to 25 Gb for 2.4 Gb frequencies and 40 Gb for 5 Gb frequencies
- 2. Set the RBW = 100 kHz
- 3. Set the VBW = $[3 \times RBW]$.
- 4. Detector = Peak
- 5. Sweep time = auto
- 6. Trace mode = max hold
- 7. Allow trace to fully stabilize.


Limit

According to 15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval , as permitted under paragraph(b)(3) of this section , the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section 15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section 15.205(a), must also comply the radiated emission limits specified in section 15.209(a) (see section 15.205(c))


Page 28 / 31

Test results

KES-QP16-F01(00-23-01-01)

Page 29 / 31

KES-QP16-F01(00-23-01-01)

3.6. Antenna Requirement

According to 15.207(a), An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

Test results

Pass and meet the requirement of permanently attachment.

Reason: Antenna is internal wired antenna which is soldered onto the PCB and not possible to be removed by users.

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum analyzer	R&S	FSV40	101725	1 year	2025.06.12
Spectrum analyzer	R&S	FSV3044	101272	1 year	2025.03.12
SIGNAL GENERATOR	KEYSIGHT	N5182B	MY59100115	1 year	2025.04.15
SIGNAL GENERATOR	Anritsu	68369B	002118	1 year	2025.04.15
Power Meter	Anritsu	ML2495A	2010001	1 year	2025.04.15
Pulse Power Sensor	Anritsu	MA2411B	1911111	1 year	2025.04.15
Attenuator	Mini-Circuits	BW-S10-2W263+	3	1 year	2025.01.15
BAND REJECT FILTER	MICRO-TRONICS	BRM50702	G272	1 year	2025.01.12
ACTIVE LOOP ANTENNA	SCHWARZBECK	FMZB 1513	1513-257	2 years	2025.11.16
TRILOG-BROADBAND ANTENNA	Schwarzbeck	VULB 9163	714	2 years	2026.04.19
Attenuator	HUBER+SHHNER	6806.17.A	NONE	1 year	2025.02.13
Horn Antenna	A.H.	SAS-571	414	1 year	2025.01.16
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA 9170550	1 year	2025.01.16
Amplifier	SONOMA INSTRUMENT	310N	401123	1 year	2025.02.13
PREAMPLIFIER	HP	8449B	3008A00538	1 year	2025.04.30
BROADBAND AMPLIFIER	SCHWARZBECK	BBV9721	PS9721-003	1 year	2025.01.15
DC POWER SUPPLY	AGILENT	6632B	MY43004090	1 year	2025.06.17
EMI Test Receiver	R&S	ESR7	101190	1 year	2025.07.29

Appendix A. Measurement equipment

* Statement of Traceability: KES Co., Ltd. attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Peripheral devices

Device	Manufacturer	Model No.	Serial No.	
Notebook computer	LG Electronics Inc.,	LGS53	306QCZP560949	
Test Jig Board	N/A	N/A	N/A	

The end of test report.