FCC TEST REPORT					
FCC ID:2BGTZ-AQ					
Poport No.	. 55024050107.25				
Report No.	: <u>SSP24050187-2E</u>				
Applicant	: Huainan Chongqu Electronic Technology Co., LTD				
Product Name	: Bluetooth Thermal Printer				
Model Name	: <u>AQ</u>				
Test Standard	: FCC Part 15.247				
Date of Issue	: 2024-06-06				
Shenzhen CCUT Quality Technology Co., Ltd. 1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China; (Tel.:+86-755-23406590) website: www.ccuttest.com) This test report is limited to the above client company and the product model only. It may not be duplicated					
without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.					

Г

Test Report Basic Information

	1					
Applicant	Huainan Chongqu Electronic Technology Co., LTD					
Address of Applicant	402, Building 2, Yunjing Huacheng Commercial Building, Tianjia'an District, Huainan City, Anhui Province, China					
	naaman erty, minar i rovince, ennia					
Manufachunan	Insing Changes Electronic Technology Co. ITD					
Manufacturer	Huainan Chongqu Electronic Technology Co., LTD 402, Building 2, Yunjing Huacheng Commercial Building, Tianjia'an District,					
Address of Manufacturer:	Huainan City, Anhui Province, China					
Product Name:	Bluetooth Thermal Printer					
Brand Name	PUQU					
Main Model	AQ					
Series Models	AQ20, AQ00					
	FCC Part 15 Subpart C					
	KDB 558074 D01 15.247 Meas Guidance v05r02					
	ANSI C63.4-2014					
Test Standard	ANSI C63.10-2013					
Date of Test	2024-05-23 to 2024-06-06					
Test Result	PASS					
Tested By	Coke Huang (Coke Huang) (Lieber Ourang)					
	ST PH					
Reviewed By	Lieber Ouyang (Lieber Ouyang)					
Reviewed by						
	Lahm Peng (Lahm Peng)					
Authorized Signatory	(Lahm Peng)					
Noto . This tast report is limited	to the above glight company and the product model only. It may not be					
Note : This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd All test data presented in						
this test report is only applicable to presented test sample.						

CONTENTS

1. General Information	
1.1 Product Information	5
1.2 Test Setup Information	
1.3 Compliance Standards	7
1.4 Test Facilities	
1.5 List of Measurement Instruments	
1.6 Measurement Uncertainty	
2. Summary of Test Results	
3. Antenna Requirement	10
3.1 Standard and Limit	10
3.2 Test Result	10
4. Conducted Emissions	11
4.1 Standard and Limit	11
4.2 Test Procedure	
4.3 Test Data and Results	12
5. Radiated Emissions	15
5.1 Standard and Limit	15
5.2 Test Procedure	15
5.3 Test Data and Results	
6. Band-edge Emissions(Radiated)	21
6.1 Standard and Limit	
6.2 Test Procedure	
6.3 Test Data and Results	21
7. Maximum Peak Conducted Output Power	23
7.1 Standard and Limit	23
7.2 Test Procedure	23
7.3 Test Data and Results	23
8. Occupied Bandwidth(-6dB)	25
8.1 Standard and Limit	
8.2 Test Procedure	25
8.3 Test Data and Results	25
9. Maximum Power Spectral Density	27
9.1 Standard and Limit	27
9.2 Test Procedure	
9.3 Test Data and Results	
10. Band-edge Emission(Conducted)	
10.1 Standard and Limit	
10.2 Test Procedure	
10.3 Test Data and Results	
11. Conducted RF Spurious Emissions	
11.1 Standard and Limit	
11.2 Test Procedure	
11.3 Test Data and Results	31

Revision History

Revision	Issue Date	Description	Revised By
V1.0	2024-06-06	Initial Release	Lahm Peng

1. General Information

1.1 Product Information

Product Name:	Bluetooth Thermal Printer			
Trade Name:	PUQU			
Main Model:	AQ			
Series Models:	AQ20, AQ00			
Rated Voltage:	DC 7.4V by battery, USB 5V charging			
Battery:	DC 7.4V, 1800mAh			
Hardware Version:	V1.0			
Software Version:	V1.0			
Note 1: The test data is gathered from a production sample, provided by the manufacturer.				
Note 2: The color of appearance and model name of series models listed are different from the main model,				
but the circuit and the electronic construction are the same, declared by the manufacturer.				

Wireless Specification			
Wireless Standard:	Bluetooth BLE		
Operating Frequency:	2402MHz ~ 2480MHz		
RF Output Power:	0.45dBm		
Number of Channel:	40		
Channel Separation:	2MHz		
Modulation:	GFSK		
Antenna Gain:	0dBi		
Type of Antenna:	PCB Antenna		
Type of Device:	Portable Device Device Mobile Device		
Note 1: This product only supports BLE_2M			

1.2 Test Setup Information

List of Test Modes							
Test Mode	De	escription		Remark			
TM1	BL	E_2Mbps		2402/2440/24	480MHz		
TM2	C	Charging		AC120V/6	0Hz		
List and Detail	ls of Auxiliary	/ Cable					
Descrip	Description Length (cm)			Shielded/Unshielded	With/Without Ferrite		
-		-		-	-		
-		-					
List and Detail	List and Details of Auxiliary Equipment						
Descrip	otion	Manufacturer		on Manufacturer Model		Serial Number	
adap	ter	UGREEN		CD289	90324		
-					-		

List of Channels							
No. of	Frequency	No. of	Frequency	No. of	Frequency	No. of	Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
01	2402	11	2422	21	2442	31	2462
02	2404	12	2424	22	2444	32	2464
03	2406	13	2426	23	2446	33	2466
04	2408	14	2428	24	2448	34	2468
05	2410	15	2430	25	2450	35	2470
06	2412	16	2432	26	2452	36	2472
07	2414	17	2434	27	2454	37	2474
08	2416	18	2436	28	2456	38	2476
09	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

1.3 Compliance Standards

Compliance Standards			
ECC Dort 15 Submort C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
FCC Part 15 Subpart C	Intentional Radiators		
All measurements contained in this	report were conducted with all above standards		
According to standards for test	nethodology		
ECC Dout 15 Submost C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
FCC Part 15 Subpart C	Intentional Radiators		
	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON		
KDB 558074 D01 15.247 Meas	DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREA		
Guidance v05r02	SPECTRUMSYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER		
SECTION 15.247 OF THE FCC RULES			
	American National Standard for Methods of Measurement of Radio-Noise Emissions		
ANSI C63.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40		
	GHz.		
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed		
ANSI C03.10-2013	Wireless Devices		
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which			
result is lowering the emission, should be checked to ensure compliance has been maintained.			

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.			
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,			
	Guangming District, Shenzhen, Guangdong, China			
CNAS Laboratory No.:	L18863			
A2LA Certificate No.:	6893.01			
FCC Registration No:	583813			
ISED Registration No.:	CN0164			
All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing				
Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.				

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date		
Conducted Emissions							
AMN	ROHDE&SCHWARZ	ENV216	101097	2023-10-21	2024-10-20		
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2023-07-31	2024-07-30		
		Radiated Emissio	ons				
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2023-07-31	2024-07-30		
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2023-07-31	2024-07-30		
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2023-07-31	2024-07-30		
Amplifier	SCHWARZBECK	BBV 9743B	00251	2023-07-31	2024-07-30		
Amplifier	HUABO	YXL0518-2.5-45		2023-07-31	2024-07-30		
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2023-07-31	2024-07-30		
Loop Antenna	DAZE	ZN30900C	21104	2023-08-07	2024-08-06		
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2023-08-07	2024-08-06		
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2023-08-07	2024-08-06		
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2023-08-07	2024-08-06		
Conducted RF Testing							
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2023-07-31	2024-07-30		
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2023-07-31	2024-07-30		

1.5 List of Measurement Instruments

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty	
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB	
	9kHz ~ 30MHz	±2.88 dB	
Radiated Emissions	30MHz ~ 1GHz	±3.32 dB	
Radiated Emissions	$1 \mathrm{GHz} \sim 18 \mathrm{GHz}$	±3.50 dB	
	18GHz ~ 40GHz	±3.66 dB	
Conducted Output Power	9kHz ~ 26GHz	±0.50 dB	
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %	
Conducted Spurious Emission	9kHz ~ 26GHz	±1.32 dB	
Power Spectrum Density	9kHz ~ 26GHz	±0.62 dB	

2. Summary of Test Results

FCC Rule	Description of Test Item	Result
FCC Part 15.203	Antenna Requirement	Passed
FCC Part 15.247(i)	RF Exposure(see the RF exposure report)	Passed
FCC Part 15.207	Conducted Emissions	Passed
FCC Part 15.209, 15.247(d)	Radiated Emissions	Passed
FCC Part 15.247(d)	Band-edge Emissions(Radiated)	Passed
FCC Part 15.247(b)(3)	Maximum Peak Conducted Output Power	Passed
FCC Part 15.247(a)(2)	Occupied Bandwidth(-6dB)	Passed
FCC Part 15.247(e)	Maximum Power Spectral Density	Passed
FCC Part 15.247(d)	Band-edge Emissions(Conducted)	Passed
FCC Part 15.247(d)	Conducted RF Spurious Emissions	Passed
Passed: The EUT complies with the ess	sential requirements in the standard	
Failed: The EUT does not comply with	the essential requirements in the standard	
N/A: Not applicable		

3. Antenna Requirement

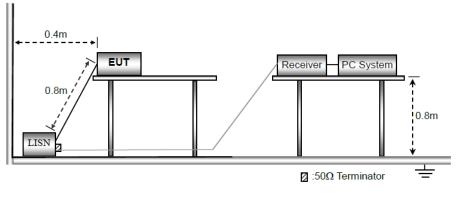
3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Test Result

This product has an PCB antenna, fulfill the requirement of this section.

4. Conducted Emissions


4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emis	ssions (dBuV)					
(MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56	56 to 46					
0.5-5	56	46					
5-30	60	50					
Note 1: Decreases with the log	Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz						
Note 2: The lower limit applies	Note 2: The lower limit applies at the band edges						

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

b) The following is the setting of the receiver
Attenuation: 10dB
Start Frequency: 0.15MHz
Stop Frequency: 30MHz
IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

f) LISN is at least 80 cm from nearest part of EUT chassis.

g) For the actual test configuration, please refer to the related Item - photographs of the test setup.

4.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

Test I	Plots and Data of	Conduct	ed Emissi	ons						
Teste	d Mode:	TM2								
Test \	/oltage:	AC 1	20V/60Hz	Z						
Test I	Power Line:	Neut	ral							
Rema	rk:									
90.0	dBuV	I								
00.0										
80										
70										
60									FCC Patt15 CE-Class B_QP	
									FCC Part15 CE-Class B AVe	
50		7	5	3						
40	MMAN	Mahak .	9 1					_	11	
30		Υ 	10	MINNAU M	Antonitation	Andreastern		. Augustas		Mulatur
20	WWWww	Murhada	Mary Marker Mark	The work of the	Like a straight the second	th fin laten			What we wanted the second s	n n n
10				ר	VALAN WWWWWWW	munders	narthallow	141	มารายาามาการการการการการการการการการการการการการ	peak
								ani kanadidi	a water and a second	AVG
0										ATU
-10 0.	150	0.5	00		(MHz)		5.0	00		30.000
i		0.0								
No.		Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark	
1	0.2174	37.50	9.62	47.12	62.92	-15.80	QP	Р		
2	0.2174	21.21	9.62	30.83	52.92	-22.09	AVG	P		
3 *		36.41	9.61	46.02	56.00	-9.98	QP	P		
4	0.9375	16.88	9.61	26.49	46.00	-19.51	AVG	P		
5	0.8430	35.67	9.62	45.29	56.00	-10.71	QP	P		
6	0.8430	15.99	9.62	25.61	46.00	-20.39	AVG	P		
7	0.3660	32.41	9.54	41.95	58.59	-16.64	QP	P		
8	0.3660	18.85	9.54	28.39	48.59	-20.20	AVG	P		
9	0.5550	28.04	9.81	37.85	56.00	-18.15	QP	P		
10	0.5550	15.30	9.81	25.11	46.00	-20.89	AVG	P		
11	18.2310	22.92	10.26	33.18	60.00	-26.82	QP	P		
12	18.2310	3.71	10.26	13.97	50.00	-36.03	AVG	Р		

Test I	Plot	s ar	nd I	Data	a o	of Co	ono	du	cte	d E	m	iss	io	ns	5																							
Teste	d M	ode	e:				Γ	ſΜ	2																													
Test V	Volta	age	:				A	AC	12	0V	/6	0H	[z																									
Test I	Pow	er l	Lin	e:			L	liv	е																													
Rema	ark:																																					
90.0	d	Bu¥	,																																			
80																																						
70										_																			_								_	
60		-+-			-		•			-				+														FC	<u>C</u> P	ar	15 (CE-I	Clas	s B_	<u>Q</u> P		_	
50		-	 1.		-			_					5															FC	C P	ar	15 (CE-	Clas	s B_	AV		_	
40	¥	۲ř	M	A		י על	h A	٨	.M	M	Ma	Å	Ŵ		hanha					7	,					_			_		solly he	A	¥	The state			_	
30	Ų	Ŷ		M		2 (1)	יעי ג מ	կա 	sqr	v Mi	Kutal		6 1 /4		phak/ang	ĩγ				Ŵ	YhA	*	(M)	AN ^M AAA	WA	WN	W	'WY	(IV)	r	William		10		-	MW dui		
20	l"				W.	W.	- Mi	տվե	r fra	w 'W	ע יווי	- -	$\left \right $	1		hm	why the	.t.	Ynahi	, LIS	Aab	111 Ma	н.	JUJ	d	Lata				lu	di M	W	ht ar	My	hanyw	₩		peak
10	<u> </u>	_								-	-	╀	╞	+						· 11 P	Y WIJH	™/iµ	addill V	an chi	¥.	(pmm	ψu	tvill	W/MT	1 Marine		<u> </u>	_		_		4	AVG
0												⊥							_																			
-10																																						
0.	150				_			0.	.500)								(МНz	2)				5	i. OC)0										30	D. OO	0
No.	F		que /IHz	ncy z)		Re (d	adi Bu\				icto IB)				_eve dBu\			Lir (dB	nit uV)		Maı (d	rgin B)	De	etecto	or	P/	F	F	Rer	na	ark							
1			213				5.5				10				4.6			63.		\rightarrow	-18			QP		Ρ	-											
2			213				3.3				10		\downarrow		32.4		_	53.		-	-20		<u> </u>	AVG	;	P	\rightarrow											
3	_		802 802		+		2.9		_		92 02		+		12.9		_	56. 46.				.09 .23				P P	\rightarrow											
4	,		802 888		+		4.8 6.0		+		92 71		+		24.7 15.7		+	46. 56.		-		.23 .25	<u> </u>	AVG QP	'	P P	\rightarrow											
6	-		888		+		8.4		+		71		┢		28.1		+	46.		\rightarrow		.23	-		;	P	\rightarrow											
7			521		+		3.2		+		.08		┢		33.2		+	56.		-	-22		<u> </u>	QP		P	\rightarrow											
8			521		+		1.98			10	.08	3	t		5.0		+	46.		_		.94		٩VG	;	Ρ	,											
9		14	.25	30	1	3	1.8	2		10	.22	2	T	4	12.0	4	1	60.	00	1	-17	.96		QP		Ρ	,											
10		14	.25	30		12	2.3	4		10	.22	2		2	22.5	6		50.	00		-27	.44	1	٩VG	;	Ρ	'											
11			325				1.2				79				11.0			59.		_		.52		QP		Ρ	'											
12		0.	325	55		1	5.7	6		9.	79			2	25.5	5		49.	57		-24	.02	1	٩VG	;	Ρ												

5. Radiated Emissions

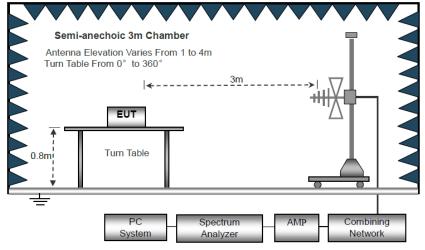
5.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

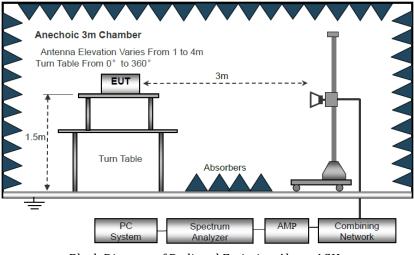
Frequency of Emission	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3
Note: The more stringent limit applies	at transition frequencies.	

According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.


Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

5.2 Test Procedure


Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

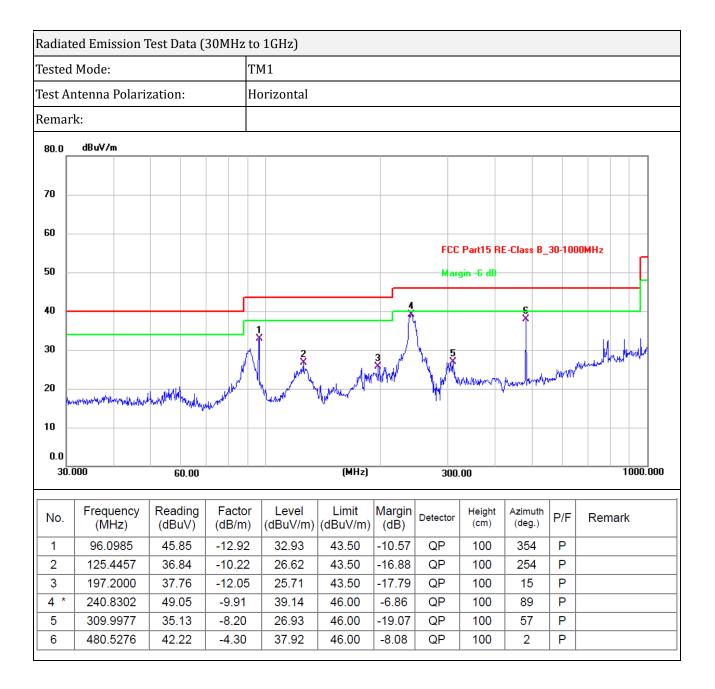
Block Diagram of Radiated Emission Above 1GHz

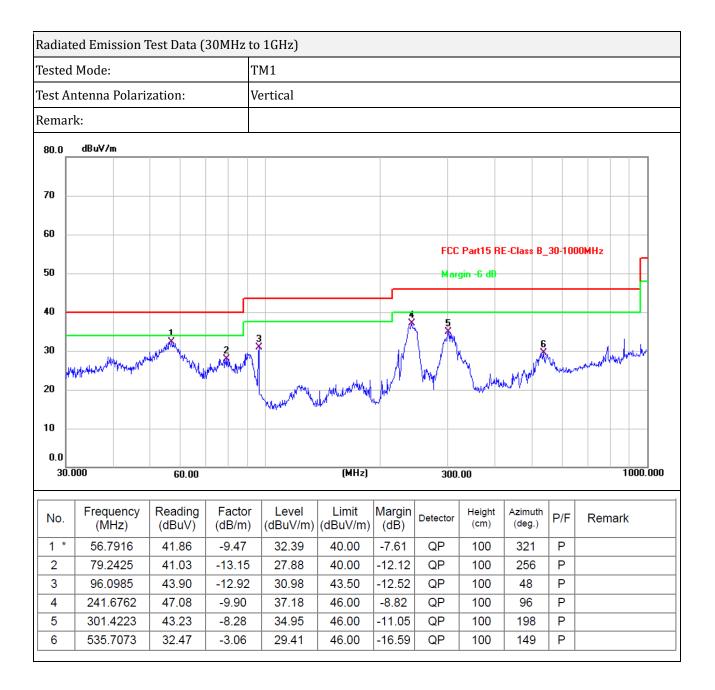
a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.

b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.

c) Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz VBW \ge RBW, Sweep = auto Detector function = peak Trace = max hold

d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.


e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.


f) For the actual test configuration, please refer to the related item - EUT test photos.

5.3 Test Data and Results

All of the GFSK modes have been tested, the EUT complied with the FCC Part 15.247 standard limit for a wireless device, and with the worst case GFSK_2402MHz as below:

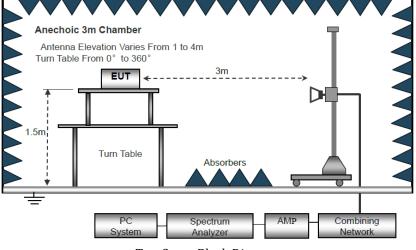
Remark: Level = Reading + Factor, Margin = Level - Limit

Frequency	ission Test Dat Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV
11112	abavym			el (2402MHz)		11/ V	111/111
4804	78.56	-14.72	63.84	74	-10.16	Н	РК
4804	62.19	-14.72	47.47	54	-6.53	Н	AV
7206	62.12	-8.41	53.71	74	-20.29	Н	РК
7206	46.8	-8.41	38.39	54	-15.61	Н	AV
4804	74.88	-14.72	60.16	74	-13.84	V	РК
4804	57.38	-14.72	42.66	54	-11.34	V	AV
7206	65.26	-8.41	56.85	74	-17.15	V	РК
7206	49.49	-8.41	41.08	54	-12.92	V	AV
			Middle Chann	el (2440MHz)	·		·
4880	76.59	-14.64	61.95	74	-12.05	Н	РК
4880	61.72	-14.64	47.08	54	-6.92	Н	AV
7320	62.17	-8.28	53.89	74	-20.11	Н	РК
7320	47.5	-8.28	39.22	54	-14.78	Н	AV
4880	76.74	-14.64	62.1	74	-11.9	V	РК
4880	60.62	-14.64	45.98	54	-8.02	V	AV
7320	63.64	-8.28	55.36	74	-18.64	V	РК
7320	46.25	-8.28	37.97	54	-16.03	V	AV
			Highest Chanr	nel (2480MHz)			
4960	78.64	-14.53	64.11	74	-9.89	Н	РК
4960	61.15	-14.53	46.62	54	-7.38	Н	AV
7440	64.63	-8.13	56.5	74	-17.5	Н	РК
7440	45.53	-8.13	37.4	54	-16.6	Н	AV
4960	78.56	-14.53	64.03	74	-9.97	V	РК
4960	59.77	-14.53	45.24	54	-8.76	V	AV
7440	65.72	-8.13	57.59	74	-16.41	V	РК
7440	49.07	-8.13	40.94	54	-13.06	V	AV

Note 1: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

Note 3: Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded in report.18GHz-26GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.


6. Band-edge Emissions(Radiated)

6.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6 and section 6.10.

Test Setup Block Diagram

As the radiated emissions testing, set the Lowest and Highest Transmitting Channel, observed the outside band of 2310MHz to 2400MHz and 2483.5MHz to 2500MHz, than mark the higher-level emission for comparing with the FCC rules.

6.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.247 standard limit, and with the worst case as below:

Test Mode	Frequency	Limit	Result
Test Mode	MHz	dBuV/dBc	Result
Louroat	2310.00	<54 dBuV	Pass
Lowest	2390.00	<54 dBuV	Pass
Uighost	2483.50	<54 dBuV	Pass
Highest	2500.00	<54 dBuV	Pass

Radiated Em	nission Test Da	ta (Band edge	emissions)				
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV
		Lo	west Channel	GFSK (2402M	Hz)		
2310	67.86	-21.34	46.52	74	-27.48	Н	РК
2310	51.82	-21.34	30.48	54	-23.52	Н	AV
2390	68.67	-20.96	47.71	74	-26.29	Н	РК
2390	49.27	-20.96	28.31	54	-25.69	Н	AV
2400	72.68	-20.91	51.77	74	-22.23	Н	РК
2400	56.78	-20.91	35.87	54	-18.13	Н	AV
2310	69.98	-21.34	48.64	74	-25.36	V	РК
2310	52.64	-21.34	31.3	54	-22.7	V	AV
2390	66.74	-20.96	45.78	74	-28.22	V	РК
2390	51	-20.96	30.04	54	-23.96	V	AV
2400	69.74	-20.91	48.83	74	-25.17	V	РК
2400	55.89	-20.91	34.98	54	-19.02	V	AV
		Hig	ghest Channel	GFSK (2480M	Hz)		
2483.50	67.63	-20.51	47.12	74	-26.88	Н	РК
2483.50	55.98	-20.51	35.47	54	-18.53	Н	AV
2500	67.97	-20.43	47.54	74	-26.46	Н	РК
2500	51.01	-20.43	30.58	54	-23.42	Н	AV
2483.50	71.94	-20.51	51.43	74	-22.57	V	РК
2483.50	53.23	-20.51	32.72	54	-21.28	V	AV
2500	67.51	-20.43	47.08	74	-26.92	V	РК
2500	51.18	-20.43	30.75	54	-23.25	V	AV

Remark: Level = Reading + Factor, Margin = Level - Limit

7. Maximum Peak Conducted Output Power

7.1 Standard and Limit

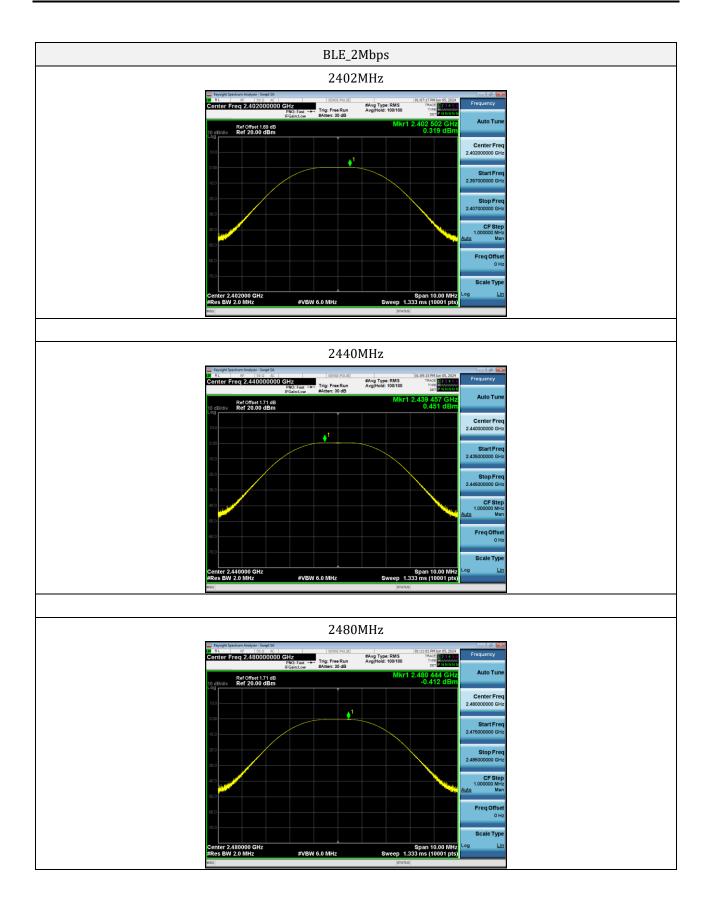
According to 15.247(b)(3). For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

7.2 Test Procedure

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 2MHz, VBW = 6MHz, Sweep = Auto, Detector = RMS.


4) Measure the highest amplitude appearing on spectral display and mark the value.

5) Repeat the above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Test Mode	Test Channel MHz	Conducted Output Power (dBm)	Limit (dBm)	Test Result
	2402	0.32	30	Pass
BLE_2Mbps	2440	0.45	30	Pass
	2480	-0.41	30	Pass

8. Occupied Bandwidth(-6dB)

8.1 Standard and Limit

According to 15.247(a)(2), Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

8.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto.

4) Set a reference level on the measuring instrument equal to the highest peak value.

5) Measure the frequency difference of two frequencies that were attenuated 6dB from the reference level. Record the frequency difference as the emission bandwidth.

6) Repeat the above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Test Mode	Test Channel (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	Limit 6 dB Bandwidth (MHz)	Test Result
	2402	1.446	2.055	0.5	Pass
BLE_2Mbps	2440	1.367	2.057	0.5	Pass
	2480	1.366	2.08	0.5	Pass

9. Maximum Power Spectral Density

9.1 Standard and Limit

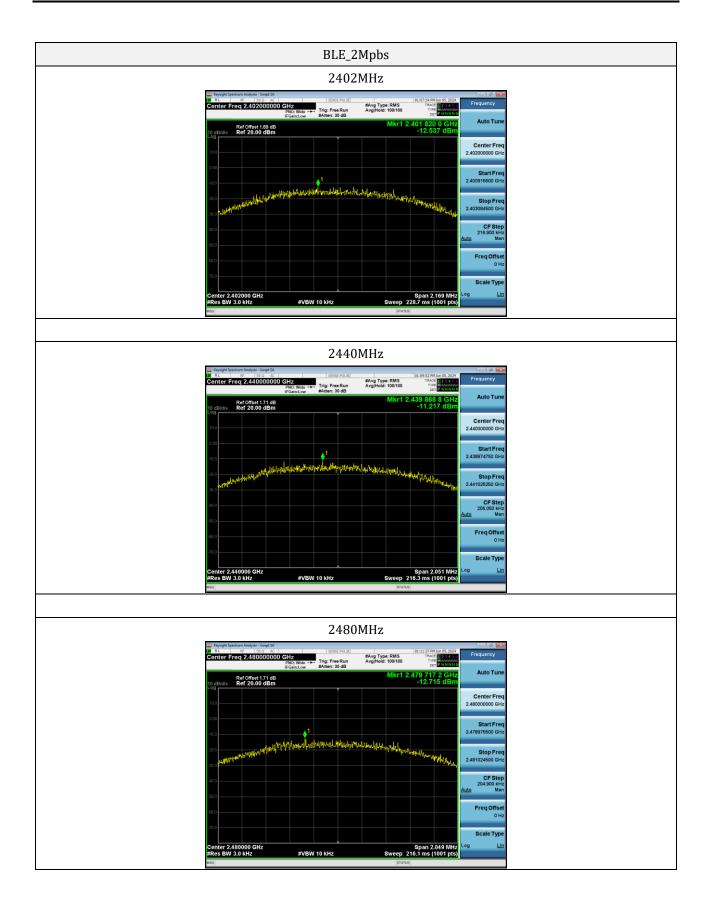
According to FCC 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

9.2 Test Procedure

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 3kHz, VBW = 10kHz, Sweep = Auto, Detector = RMS.


4) Measure the highest amplitude appearing on spectral display and mark the value.

5) Repeat above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Test Mode	Test Channel MHz	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Test Result
	2402	-12.54	8	Pass
BLE_2Mbps	2440	-11.22	8	Pass
	2480	-12.72	8	Pass

10. Band-edge Emission(Conducted)

10.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

10.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.10.

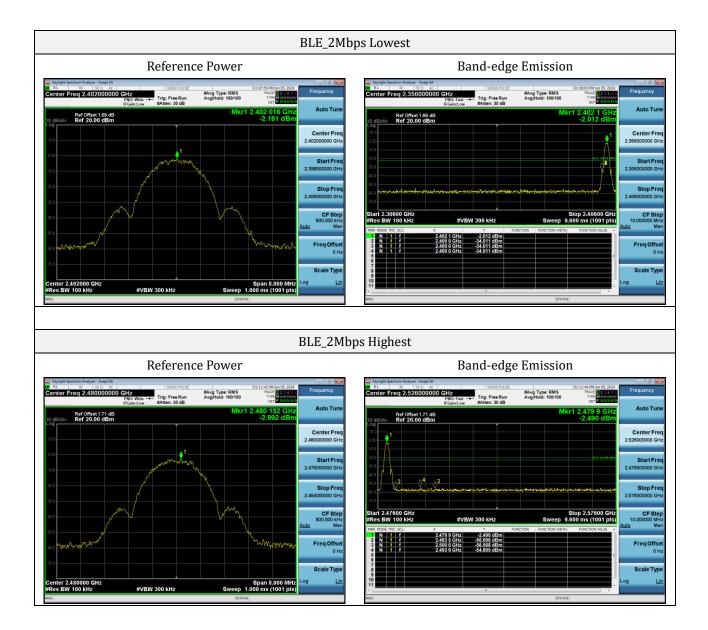
1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = RMS.

4) Measure the highest amplitude appearing on spectral display and set it as a reference level.

5) Set a convenient frequency span including 100 kHz bandwidth from band edge.


6) Measure the emission and marking the edge frequency.

7) Repeat above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Test Mode	Band-edge	Test Channel (MHz)	Max. Value (dBc)	Limit (dBc)	Test Result
DIE 2Mhma	Lowest	2402	-31.85	-20	Pass
BLE_2Mbps	Highest	2480	-51.81	-20	Pass

11. Conducted RF Spurious Emissions

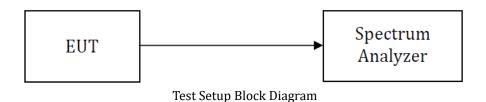
11.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

11.2 Test Procedure

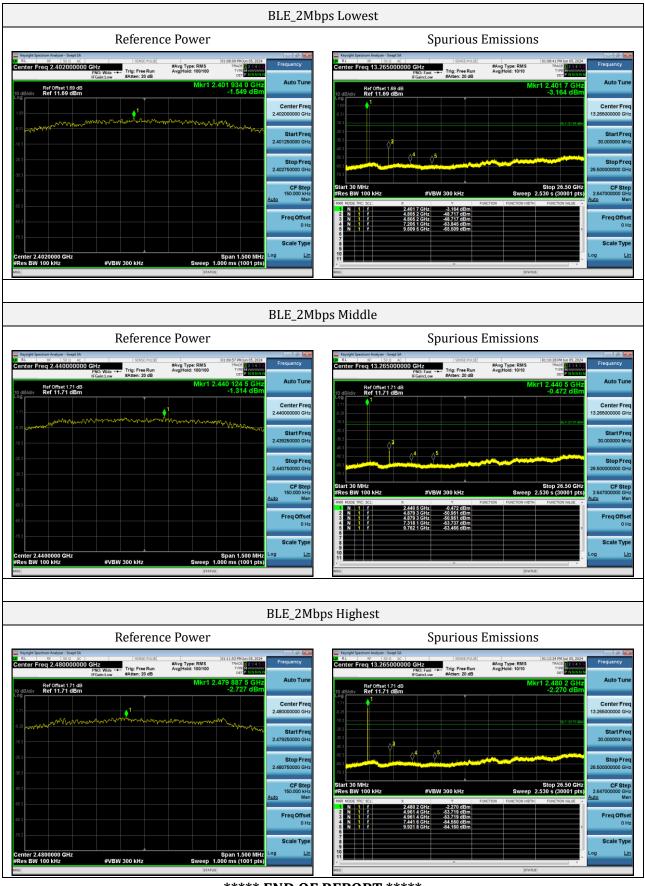
Test is conducting under the description of ANSI C63.10 - 2013 section 6.7.

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.


2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = RMS.

4) Measure the highest amplitude appearing on spectral display and set it as a reference level.


5) Measure the spurious emissions with frequency range from 9kHz to 26.5GHz.

6) Repeat above procedures until all measured frequencies were complete.

11.3 Test Data and Results

Note: The measurement frequency range is from 9kHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions measurement data.

***** END OF REPORT *****