

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No...... CTA24051600602

FCC ID.....: 2BGSA-Z2

(position+printed name+signature)... File administrators Jinghua Xiao

Supervised by

(position+printed name+signature)...

Project Engineer Lushan Kong

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue...... May. 21, 2024

Testing Laboratory NameShenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name......Shenzhen Jinlema Electron Technology Co., Ltd.

Room1303, Dahong Hi-tech Park, 6-18xinhe Road, xingiao

Village, Baoan District, Shenzhen, China

Test specification:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Equipment description...... Zaopin Wireless Mouse

Trade Mark: N/A

CTATESTIN' Manufacturer Shenzhen Jinlema Electron Technology Co., Ltd.

Model/Type reference.....Z2

Listed ModelsN/A

Modulation: GFSK

Frequency...... From 2402MHz to 2480MHz

Ratings DC 3.7V From battery and DC 5.0V From external circuit

Result......PASS

Report No.: CTA24051600602 Page 2 of 32

TEST REPORT

Zaopin Wireless Mouse Equipment under Test

Z2 Model /Type

Applicant Shenzhen Jinlema Electron Technology Co., Ltd.

CTATESTING Room1303, Dahong Hi-tech Park, 6-18xinhe Road, xinqiao Village, Address

Baoan District, Shenzhen, China

Manufacturer Shenzhen Jinlema Electron Technology Co., Ltd.

Address Room1303, Dahong Hi-tech Park, 6-18xinhe Road, xinqiao Village,

Baoan District, Shenzhen, China

	To any the second secon
Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test CTATES! laboratory.

Page 3 of 32 Report No.: CTA24051600602

Contents

		TESTING	ontents	
	1	TEST STANDARDS	TING	4
	The state of the s	TATE	a)G	
	2	SUMMARY		5
	<u>Z</u>	30 W W A K 1		
	2.1	General Remarks		5
	2.2	Product Description*		5
	2.3	Equipment Under Test		5
	2.4	Short description of the Equipment under	er Test (EUT)	5
	2.5	EUT operation mode		6
	2.6	Block Diagram of Test Setup		6
CV	2.7	Related Submittal(s) / Grant (s)		6
i	2.8	Modifications	C	6
		CTA		
	<u>3</u>	TEST ENVIRONMENT		7
	<u>~</u>	120 Eller Konmen	- AP.	LIN!
			CTAT	
	3.1	Address of the test laboratory		7
	3.2	Test Facility		7
	3.3	Environmental conditions		7
	3.4	Summary of measurement results		•
	3.5	Statement of the measurement uncertain	nty	8
	3.6	Equipments Used during the Test		9
		-55711		
	1	TEST CONDITIONS AND RESU	11.19	11
	C	TEST CONDITIONS AND RESC		<u> </u>
			CTA TESTING	
	4.1	AC Power Conducted Emission		11
	4.2	Radiated Emissions and Band Edge		14
	4.3	Maximum Peak Output Power	STATE	21
	4.4	Power Spectral Density	G I	22
	4.5	6dB Bandwidth		24
	4.6	Out-of-band Emissions		26
	4.7	Antenna Requirement		30
CTAT	5	TEST SETUD BHOTOS OF THE	E EUT	31
CTA	<u>J</u>	TEST SETOF FILOTOS OF THE	<u>- L01</u>	J I
		ESTIN		
	<u>6</u>	PHOTOS OF THE EUT	<u></u>	32
		C	GTING	
			CIP.	
			CTATESTING	E51"
			CTAT	

Report No.: CTA24051600602 Page 4 of 32

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices CTATE KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 CTATESTING

Report No.: CTA24051600602 Page 5 of 32

SUMMARY

General Remarks

2.1 General Remarks			
Date of receipt of test sample		May. 14, 2024	TESTING
Testing commenced on		May. 14, 2024	CTAIL
Testing concluded on	:	May. 21, 2024	Car

2.2 Product Description*

Testing commenced on	: May. 14, 2024				
Testing concluded on	: May. 21, 2024				
2.2 Product Descri	ption*				
Product Description:	Zaopin Wireless Mouse				
Model/Type reference:	Z2 ZANG				
Power supply:	DC 3.7V From battery and DC 5.0V From external circuit				
PC information (Auxiliary test supplied by testingLab):	Model: E470C Trade Mark: thinkpad				
Hardware version:	V1.0				
Software version:	V1.0				
Testing sample ID:	CTA240516006-1# (Engineer sample) CTA240516006-2# (Normal sample)				
Bluetooth BLE	· · ·				
Supported type:	Bluetooth low Energy				
Modulation:	GFSK				
Operation frequency:	2402MHz to 2480MHz				
Channel number:	40				
Channel separation:	2 MHz				
Antenna type:	PCB antenna				
Antenna gain:	1.25 dBi				

2.3 Equipment Under Test

Power supply system utilised

	TING					
TE	Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
CTA		M	0	12 V DC	0	24 V DC
	TESI		Other (specified in blank below)			
,	A				10	

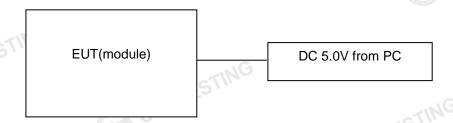
DC 3.7V From battery and DC 5.0V From external circuit

Short description of the Equipment under Test (EUT)

This is a Zaopin Wireless Mouse.

For more details, refer to the user's manual of the EUT.

Page 6 of 32 Report No.: CTA24051600602


2.5 EUT operation mode

The Applicant provides command "*#*#3646633#*#*" access (Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing. There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

Operation Frequency:

2.6 Block Diagram of Test Setup	CTATESTIN
39	2480
38	2478
37	2476
TESTIN	:
19	2440
TING	:
02	2406
01	2404
00	2402
Channel	Frequency (MHz)

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria. CTA TESTING Report No.: CTA24051600602 Page 7 of 32

TEST ENVIRONMENT

Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	23 ° C
VIN	TES
Humidity:	44 %
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing:

Temperature:	24 ° C
NG	
Humidity:	47 %
. (
Atmospheric pressure:	950-1050mbar

	Allilosphenc pressure.	330-103011Ibai	
С	conducted testing:	TES.	TING
	Temperature:	24 ° C	TESI
		110	(A)
	Humidity:	46 %	
	-		
	Atmospheric pressure:	950-1050mbar	

Report No.: CTA24051600602 Page 8 of 32

Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
§15.247(e)	Power spectral density	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	complies
§15.247(b)(3)	Maximum output Peak power	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	complies
§15.247(d)	Band edge compliance conducted	BLE 1Mpbs	☑ Lowest☑ Highest	BLE 1Mpbs	☑ Lowest☑ Highest	complies
§15.205	Band edge compliance radiated	BLE 1Mpbs		BLE 1Mpbs	☑ Lowest☑ Highest	complies
§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs	-/-	BLE 1Mpbs	-/-	complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs	-1NG -/-	BLE 1Mpbs	-/-	complies

Remark:

- The measurement uncertainty is not included in the test result.
- We tested all test mode and recorded worst case in report

Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty Note	
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	-ING/	0.57 dB	(1)
Spectrum bandwidth	-25 /	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

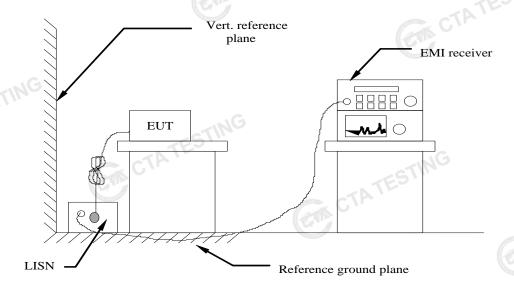
Page 9 of 32 Report No.: CTA24051600602

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

			750			
	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01
	LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01
	EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01
	EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01
•	Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01
	Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01
	Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01
	Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01
•	WIDEBAND RADIO COMMUNICATION TESTER	© CMW500	R&S	CTA-302	2023/08/02	2024/08/01
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
•	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01
•	Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01
•	Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01
	Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01
- Contraction	CAN CAN	GW C	TATESTING		TESTING	

Page 10 of 32 Report No.: CTA24051600602


	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
	STING				•	The state of the s
CTATE	3.	CTATESTING				
1		CTATES				

Report No.: CTA24051600602 Page 11 of 32

TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

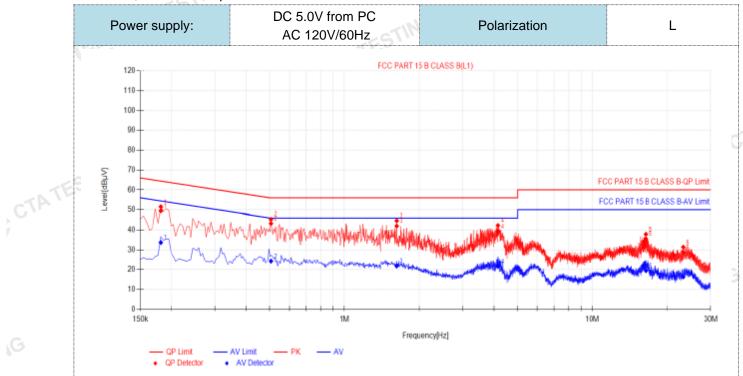
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (dBuV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
* Decreases with the logarithm of the frequen	ncy.					

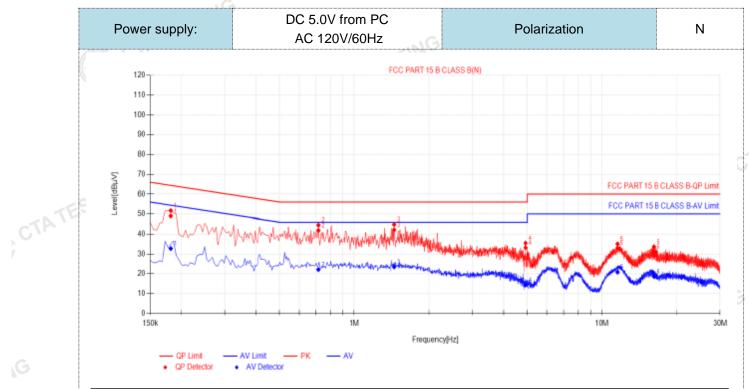

TEST RESULTS

Remark:

1. BLE 1Mpbs was tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs High channel was reported as below:

Report No.: CTA24051600602 Page 12 of 32

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:


Fina	Final Data List											
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
1	0.1815	10.01	39.43	49.44	64.42	14.98	23.67	33.68	54.42	20.74	PASS	
2	0.5055	10.02	33.25	43.27	56.00	12.73	14.27	24.29	46.00	21.71	PASS	
3	1.6215	9.91	32.07	41.98	56.00	14.02	11.93	21.84	46.00	24.16	PASS	
4	4.164	9.93	29.39	39.32	56.00	16.68	11.71	21.64	46.00	24.36	PASS	
5	16.413	10.34	25.14	35.48	60.00	24.52	9.16	19.50	50.00	30.50	PASS	
6	23.2215	10.48	18.17	28.65	60.00	31.35	5.85	16.33	50.00	33.67	PASS	

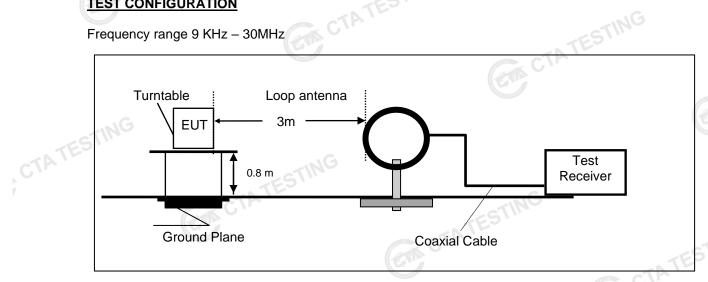
Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
- CTA CTA 4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)

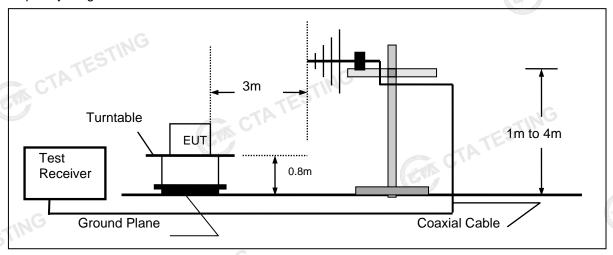
CTA TESTING

Report No.: CTA24051600602 Page 13 of 32

NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.1815	10.03	38.97	49.00	64.42	15.42	22.73	32.76	54.42	21.66	PASS
2	0.717	10.07	31.80	41.87	56.00	14.13	12.08	22.15	46.00	23.85	PASS
3	1.4505	10.14	32.04	42.18	56.00	13.82	13.34	23.48	46.00	22.52	PASS
4	4.9155	10.08	23.13	33.21	56.00	22.79	4.25	14.33	46.00	31.67	PASS
5	11.5395	10.41	22.62	33.03	60.00	26.97	10.43	20.84	50.00	29.16	PASS
6	16.1925	10.45	20.70	31.15	60.00	28.85	8.22	18.67	50.00	31.33	PASS
ote:1)).QP Value	e (dBµV)	= QP Re	adina (d	BuV)+ Fa	actor (dE	3)				GW.

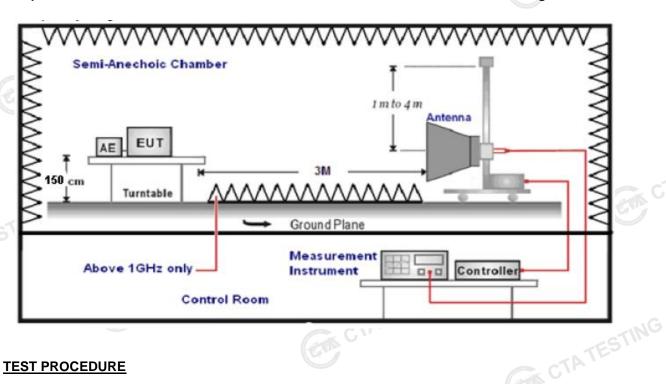

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ CTATESTING

Page 14 of 32 Report No.: CTA24051600602


4.2 Radiated Emissions and Band Edge

TEST CONFIGURATION

Frequency range 9 KHz – 30MHz



Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Page 15 of 32 Report No.: CTA24051600602

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.

The distance between test antenna and EUT as following table states: 6.

Test Frequency range	Test Antenna Type	Test Distance	
9KHz-30MHz	Active Loop Antenna	3	C
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	
18GHz-25GHz	Horn Anternna	1	

7. Setting test receiver/spectrum as following table states:

9 10 11 10 11 11 11		
Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
2 west	Peak Value: RBW=1MHz/VBW=3MHz,	TING
1GHz-40GHz	Sweep time=Auto	Peak
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,	reak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

le calculation is as follows:	
RA + AF + CL - AG	
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	(37)

Report No.: CTA24051600602 Page 16 of 32

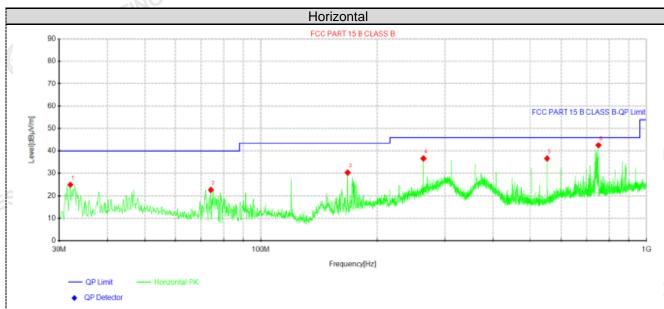
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)	
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)	
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz) 30	
1.705-30	3	20log(30)+ 40log(30/3)		
30-88	3	40.0	100	
88-216	3	43.5	150	
216-960	3	46.0	200	
Above 960	3	54.0	500	


TEST RESULTS

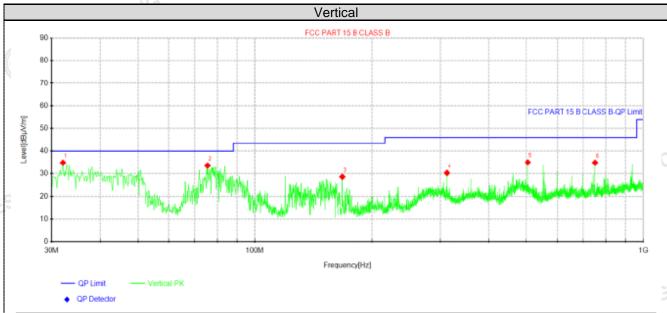
Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- 2. BLE 1Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report. CTA TESTING

For 30MHz-1GHz

Report No.: CTA24051600602 Page 17 of 32

Suspe	ected Data	List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	lolarity
1	32.0612	39.25	24.94	-14.31	40.00	15.06	100	23	Horizontal
2	74.2562	38.72	22.60	-16.12	40.00	17.40	100	360	Horizontal
3	167.982	46.01	30.34	-15.67	43.50	13.16	100	97	Horizontal
4	264.012	49.05	36.71	-12.34	46.00	9.29	100	156	Horizontal
5	551.981	45.25	36.70	-8.55	46.00	9.30	100	72	Horizontal
6	750.103	47.28	42.55	-4.73	46.00	3.45	100	144	Horizontal


CTATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTA TESTING

Report No.: CTA24051600602 Page 18 of 32

Susp	ected Data	List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolosika	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	32.0612	49.17	34.86	-14.31	40.00	5.14	100	242	Vertical	
2	75.59	50.01	33.58	-16.43	40.00	6.42	100	122	Vertical	
3	167.982	44.34	28.67	-15.67	43.50	14.83	100	134	Vertical	
4	311.906	41.69	30.35	-11.34	46.00	15.65	100	110	Vertical	
5	503.966	44.25	35.02	-9.23	46.00	10.98	100	74	Vertical	
6	750.103	39.61	34.88	-4.73	46.00	11.12	100	193	Vertical	

CTATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m) CTATESTIN

Page 19 of 32 Report No.: CTA24051600602

For 1GHz to 25GHz

GFSK (above 1GHz)

Freque	Frequency(MHz):			2402		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	61.82	PK	74	12.18	66.09	32.33	5.12	41.72	-4.27	
4804.00	45.41	AV	54	8.59	49.68	32.33	5.12	41.72	-4.27	
7206.00	53.61	PK	74	20.39	54.13	36.6	6.49	43.61	-0.52	
7206.00	43.39	AV	54	10.61	43.91	36.6	6.49	43.61	-0.52	

	Frequency(MHz):			24	02	Pola	arity:	VERTICAL				
7	Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
	4804.00	60.14	PK	74	13.86	64.41	32.33	5.12	41.72	-4.27		
	4804.00	43.09	AV	54	10.91	47.36	32.33	5.12	41.72	-4.27		
	7206.00	51.87	PK	74	22.13	52.39	36.6	6.49	43.61	-0.52		
	7206.00	41.74	AV	54	12.26	42.26	36.6	6.49	43.61	-0.52		

Frequency(MHz):		2440		Polarity:		HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	61.39	PK	74	12.61	65.27	32.6	5.34	41.82	-3.88
4880.00	44.93	AV	54	9.07	48.81	32.6	5.34	41.82	-3.88
7320.00	54.01	PK	74	19.99	54.12	36.8	6.81	43.72	-0.11
7320.00	42.21	AV	54	11.79	42.32	36.8	6.81	43.72	-0.11

12 (23 (13 H)			1110	P	-ING				
Freque	Frequency(MHz):		2440		Pola	Polarity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	59.59	PK	74	14.41	63.47	32.6	5.34	41.82	-3.88
4880.00	42.08	AV	54	11.92	45.96	32.6	5.34	41.82	-3.88
7320.00	51.70	PK	74	22.30	51.81	36.8	6.81	43.72	-0.11
7320.00	40.59	AV	54	13.41	40.70	36.8	6.81	43.72	-0.11
	•	•	GTIN						

Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.97	PK	74	13.03	64.05	32.73	5.66	41.47	-3.08
4960.00	45.31	AV	54	8.69	48.39	32.73	5.66	41.47	-3.08
7440.00	53.08	PK	74	20.92	52.63	37.04	7.25	43.84	0.45
7440.00	42.16	PK	54	11.84	41.71	37.04	7.25	43.84	0.45

Frequency(MHz):		2480		Polarity:		VERTICAL			
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	58.04	PK	74	15.96	61.12	32.73	5.66	3 41.47	-3.08
4960.00	42.52	AV	54	11.48	45.60	32.73	5.66	41.47	-3.08
7440.00	51.49	PK	74	22.51	51.04	37.04	7.25	43.84	0.45
7440.00	40.28	PK	54	13.72	39.83	37.04	7.25	43.84	0.45

REMARKS:

Page 20 of 32 Report No.: CTA24051600602

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Freque	ncy(MHz)):	24	02	Polarity:		HORIZONTAL		\L	
Frequency (MHz)	Emis Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2390.00	62.27	PK	74	11.73	72.69	27.42	4.31	42.15	-10.42	
2390.00	42.87	AV	54	11.13	53.29	27.42	4.31	42.15	-10.42	
Freque	ncy(MHz)):	24	02	Pola	arity:		VERTICAL		
Frequency (MHz)	AST TAN	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2390.00	60.00	PK	74	14.00	70.42	27.42	4.31	42.15	-10.42	
2390.00	41.38	AV	54	12.62	51.80	27.42	4.31	42.15	-10.42	
Freque	ncy(MHz)):	24	80	Pola	Polarity: HORIZONTAL		\L		
Frequency (MHz)	Emis Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2483.50	61.63	PK	74	12.37	71.74	27.7	4.47	42.28	-10.11	
2483.50	42.01	AV	54	11.99	52.12	27.7	4.47	42.28	-10.11	
Freque	ncy(MHz)):	2480		Pola	arity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2483.50	59.40	PK	74	14.60	69.51	27.7	4.47	42.28	-10.11	
2483.50	40.23	AV	54	13.77	50.34	27.7	4.47	42.28	-10.11	
2483.50 REMARKS 1. Emission 2. Correction	40.23 i: n level (dB on Factor (AV BuV/m) =R (dB/m) = A	Commence of the commence of th	13.77 BuV)+Correct or (dB/m)+Ca	50.34	27.7 dB/m)	4.47			

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Page 21 of 32 Report No.: CTA24051600602

Maximum Peak Output Power

Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

Output power (dBm)	Limit (dBm)	Result
-3.02		
-2.64	30.00	Pass
-2.04		
	-2.04	-2.04

Report No.: CTA24051600602 Page 22 of 32

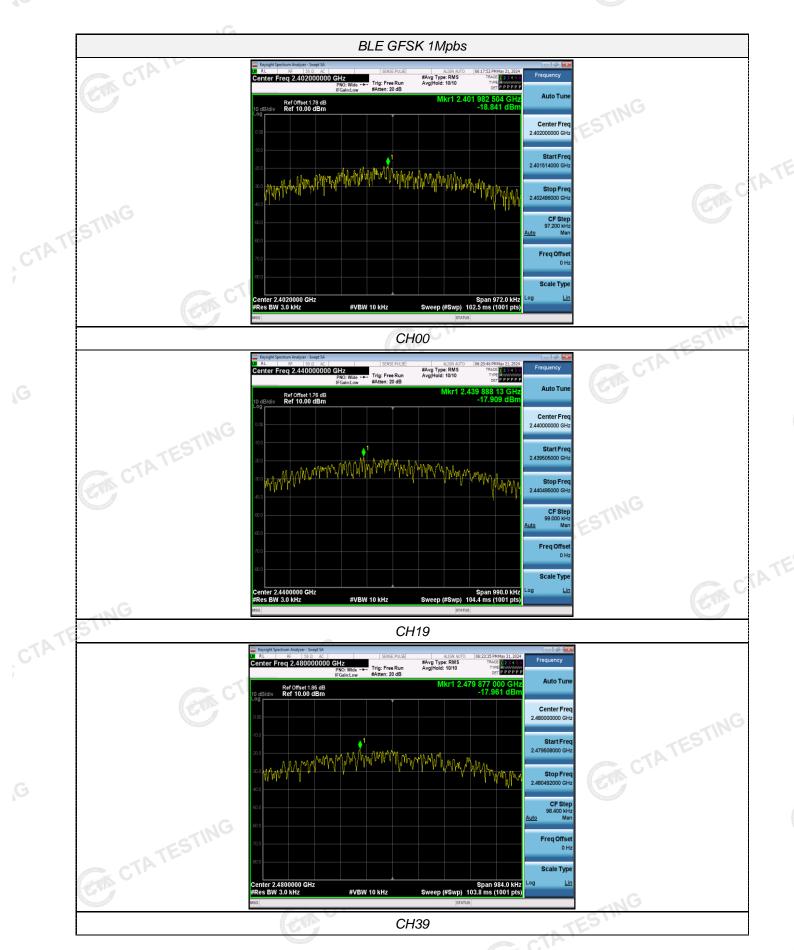
Power Spectral Density

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- Set the VBW ≥ 3× RBW.
- CTA TESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.


Test Configuration

Test Results

Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
	00	-18.84		
GFSK 1Mbps	19	-17.91	8.00	Pass
	39	-17.96	J.G.	

Report No.: CTA24051600602 Page 23 of 32

Report No.: CTA24051600602 Page 24 of 32

4.5 6dB Bandwidth

Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

Test Results		ANALYZI	7 "	CTATESTING
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
CTIME	00	0.648		
GFSK 1Mbps	19	0.660	≥500	Pass
C	39	0.656		
Test plot as follows:	C C	TATES	CTATESTIN	G

Report No.: CTA24051600602 Page 26 of 32

Out-of-band Emissions 4.6

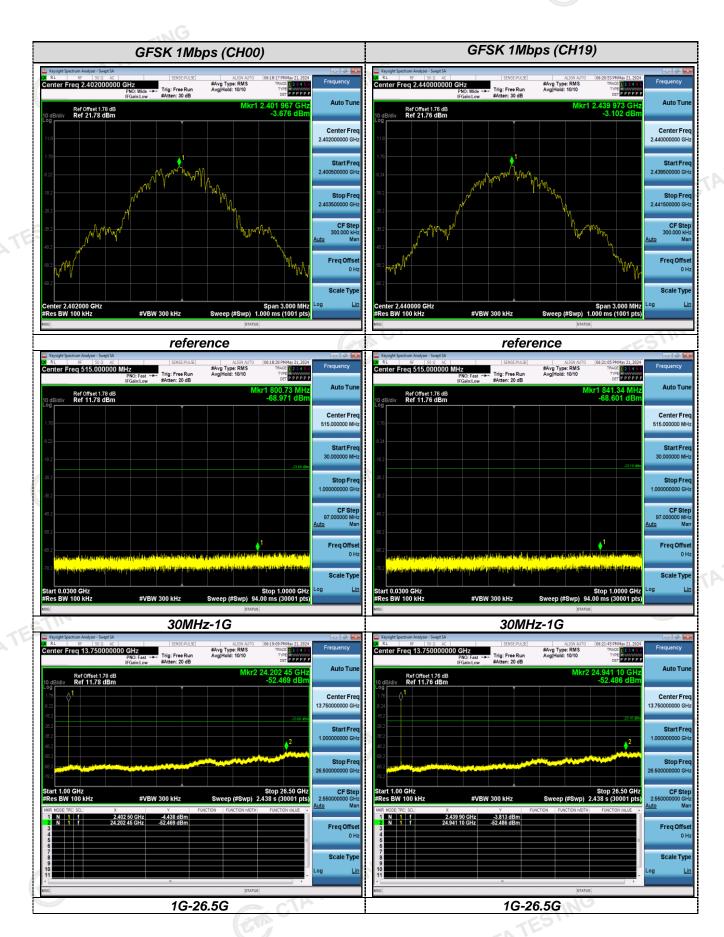
Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

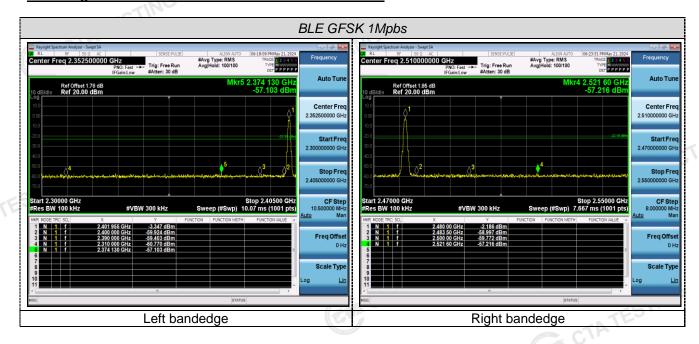


Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage CTATE measurement data.

Test plot as follows:

Report No.: CTA24051600602 Page 27 of 32



Page 28 of 32 Report No.: CTA24051600602

Page 29 of 32 Report No.: CTA24051600602

Band-edge Measurements for RF Conducted Emissions:

Report No.: CTA24051600602 Page 30 of 32

Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The gain of antenna was 1.25 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTATESTING

Page 31 of 32 Report No.: CTA24051600602

Test Setup Photos of the EUT

Report No.: CTA24051600602 Page 32 of 32

Photos of the EUT 6

Reference to the test report No. CTA24051600601. CTATESTINGEnd of Report.....