

FCC PART 15 SUBPART C TEST REPORT				
FCC PART 15.247				
Report Reference No BSL24070201P01-R01				
FCC ID :	2BGOU-EW329			
Compiled by (position+printed name+signature):	Engineer/ Cindy Zheng	Cindy theng		
Supervised by (position+printed name+signature):	Manager/Haley Wen	Haley wen		
Approved by (position+printed name+signature):	RF Manager/ Vivian Jiang	Cindy zheng Haley wen Vivan Jian		
Date of issue:	August 9, 2024			
Testing Laboratory Name	BSL Testing Co., Ltd.			
Address:	1/F, Building B, Xinshidai GR Park,Shiyan Street, Bao'an District, Shenzhen,Guangdong, 518052, People's Republic of China			
Applicant's name	Guangzhou Huishuo Electronic Technology Co Ltd.			
Address:	Room 203, Building 16, No. 590 Tianhe Road, Tianhe District, Guangzhou			
Test specification:				
Standard:	FCC Part 15.247: 85 FR 18149, ANSI C63.10-2013 KDB558074 D01 V05r02: April 2			
BSL Testing Co., Ltd. All rights rese	•			
This publication may be reproduced in Testing Co., Ltd. is acknowledged as c takes no responsibility for and will not a of the reproduced material due to its pl	whole or in part for non-commerci copyright owner and source of the assume liability for damages result	material. BSL Testing Co., Ltd.		
Test item description:	wireless bluetooth headphone	s		
Trade Mark	来酷			
Manufacturer	Laiku Technology Co., Ltd.			
Model/Type reference:	EW329			
Listed Models:	EW330, EW322, EW337, EW334, EW339, EW336, EW335, EW338, EW333			
Modulation:	GFSK, Π/4DQPSK, 8DPSK			
Frequency	From 2402MHz to 2480MHz			
Rating:	DC 3.7V From Battery			
Result				

TEST REPORT

Equipment under Test	:	wireless bluetooth headphones			
Model /Type	:	EW329			
Listed Models	:	EW330, EW322, EW337, EW334, EW339, EW336, EW335, EW338 EW333			
Model Declaration	:	All the models are electrical identical including the same software parameter and hardware design, same mechanical structure and design, the only difference is the model named different.			
Applicant	:	Guangzhou Huishuo Electronic Technology Co., Ltd.			
Address	:	Room 203, Building 16, No. 590 Tianhe Road, Tianhe District, Guangzhou			
Manufacturer	:	Laiku Technology Co., Ltd.			
Address	:	No. 1, Second Street, Airport International Logistics Zone, Tianjin Pilot Free Trade Zone (Airport Economic Zone)			

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1	TEST STANDARDS	4
2	SUMMARY	5
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	General Remarks Product Description Equipment Under Test Short description of the Equipment under Test (EUT) EUT operation mode Block Diagram of Test Setup Related Submittal(s) / Grant (s) Modifications	5 5 5 5 6 6 6 6
3	TEST ENVIRONMENT	7
3.1 3.2 3.3 3.4 3.5 3.6	Address of the test laboratory Test Facility Environmental conditions Summary of measurement results Statement of the measurement uncertainty Equipments Used during the Test	7 7 8 8 9
4	TEST CONDITIONS AND RESULTS	11
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	AC Power Conducted Emission Radiated Emission Maximum Peak Output Power 20dB Bandwidth Frequency Separation Number of hopping frequency Time of Occupancy (Dwell Time) Out-of-band Emissions Pseudorandom Frequency Hopping Sequence Antenna Requirement	11 14 20 23 26 28 30 33 39 40
5	TEST SETUP PHOTOS OF THE EUT	4 1
6	PHOTOS OF THE EUT	42

1 <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices

KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission

Systems (DTS) Operating Under §15.247

2 <u>SUMMARY</u>

2.1 General Remarks

Date of receipt of test sample	:	August 1, 2024
Testing commenced on	:	August 1, 2024
Testing concluded on	:	August 9, 2024

2.2 **Product Description**

Product Name:	wireless bluetooth headphones	
Model/Type reference:	EW329	
Power supply:	DC 3.7V from battery	
Adapter information (Auxiliary test supplied by testing Lab)	Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A Firmware Version: EPTA5.14.2 Manufacture: Huizhou Dongyang Yienbi Electronics Co., Ltd	
Hardware version:	1	
Software version:	1	
Testing sample ID:	BSL24070201P01-R01-1# (Engineer sample) BSL24070201P01-R01-2# (Normal sample)	
Bluetooth :		
Supported Type:	Bluetooth BR/EDR	
Modulation:	GFSK, π/4DQPSK, 8DPSK	
Operation frequency:	2402MHz~2480MHz	
Channel number:	79	
Channel separation:	1MHz	
Antenna type:	Chip Antenna	
Antenna gain:	2.7dBi	

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
 Other (specified in blank below) 					
DC 3.7V From Battery					

2.4 Short description of the Equipment under Test (EUT)

This is a wireless bluetooth headphones.

There is 1 pair of headphones in the earphone charging case. All tests were performed on the right ear. For more details, refer to the user's manual of the EUT.

2.5 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

Operation Frequency:

Channel	Frequency (MHz)
00	2402
01	2403
:	:
38	2440
39	2441
40	2442
:	÷
77	2479
78	2480

2.6 Block Diagram of Test Setup

EUT

DC 5V from Adapter

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

3 <u>TEST ENVIRONMENT</u>

3.1 Address of the test laboratory

BSL Testing Co., Ltd.

1/F, Building B, Xinshidai GR Park, Shiyan Street, Bao'an District, Shenzhen, Guangdong, 518052, People's Republic of China

3.2 Test Facility

FCC-Registration No.: 562200 Designation Number: CN1338

BSL Testing Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Industry Canada Registration Number. Is: 11093A CAB identifier: CN0019

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

A2LA-Lab Cert. No.: 4707.01

BSL Testing Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Radiated	Emission:

Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

Temperature:	25 ° C
Humidity:	46 %
Atmospheric pressure:	950-1050mbar

Conducted testing:

Temperature:	25 ° C
Humidity:	44 %
Atmospheric pressure:	950-1050mbar

3.4 Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel		orded eport	Test result
§15.247(a)(1)	Carrier Frequency separation	GFSK Π/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Middle	Compliant
§15.247(a)(1)	Number of Hopping channels	GFSK Π/4DQPSK 8DPSK	🛛 Full	GFSK	🛛 Full	Compliant
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK Π/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Middle	Compliant
§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK ∏/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
§15.247(b)(1)	Maximum output peak power	GFSK Π/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK Π/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(d)	Band edgecompliance conducted	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	Compliant
§15.205	Band edgecompliance radiated	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	Compliant
§15.247(d)	TX spuriousemissions conducted	GFSK Π/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK Π/4DQPSK 8DPSK	 ☑ Lowest ☑ Middle ☑ Highest 	Compliant
§15.247(d)	TX spuriousemissions radiated	GFSK Π/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Middle	Compliant
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	Charging	/	Charging	1	Compliant

Remark:

1. The measurement uncertainty is not included in the test result.

2. We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement characteristics; Part 2 " and is documented in the BSL Testing Co., Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for BSL Testing Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.82 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Transmitter power conducted	1~40GHz	0.57 dB	(1)
Conducted spurious emission	1~40GHz	1.60 dB	(1)
OBW	1~40GHz	25 Hz	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

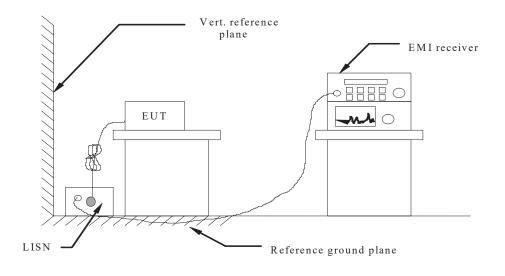
3.6 Equipments Used during the Test

Conducted Emission						
Test Equipment	Manufacturer	Model	Serial No.	Date of Cal.	Due Date	
Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	BSL252	2023-10-28	2024-10-27	
EMI Test Receiver	R&S	ESCI 7	BSL552	2023-10-28	2024-10-27	
Coaxial Switch	ANRITSU CORP	MP59B	BSL225	2023-10-28	2024-10-27	
ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	BSL226	2023-10-28	2024-10-27	
Coaxial Cable	BSL	N/A	BSL227	N/A	N/A	
EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
Thermo meter	KTJ	TA328	BSL233	2023-10-28	2024-10-27	
Absorbing clamp	Elektronik- Feinmechanik	MDS21	BSL229	2023-10-28	2024-10-27	
LISN	R&S	ENV216	308	2023-10-28	2024-10-27	
LISN	R&S	ENV216	314	2023-10-28	2024-10-27	

Radiation Test equip	oment				
Test Equipment	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	BSL250	2023-10-28	2024-10-27
Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	BSL251	N/A	N/A
EMI Test Receiver	Rohde & Schwarz	ESU26	BSL203	2023-10-28	2024-10-27
BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	BSL214	2023-10-28	2024-10-27
Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	BSL208	2023-10-28	2024-10-27
Horn Antenna	ETS-LINDGREN	3160	BSL217	2023-10-28	2024-10-27
EMI Test Software	AUDIX	E3	N/A	N/A	N/A
Coaxial Cable	BSL	N/A	BSL213	2023-10-28	2024-10-27
Coaxial Cable	BSL	N/A	BSL211	2023-10-28	2024-10-27
Coaxial cable	BSL	N/A	BSL210	2023-10-28	2024-10-27
Coaxial Cable	BSL	N/A	BSL212	2023-10-28	2024-10-27
Amplifier(100kHz- 3GHz)	HP	8347A	BSL204	2023-10-28	2024-10-27
Amplifier(2GHz- 20GHz)	HP	84722A	BSL206	2023-10-28	2024-10-27
Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	BSL218	2023-10-28	2024-10-27
Band filter	Amindeon	82346	BSL219	2023-10-28	2024-10-27
Power Meter	Anritsu	ML2495A	BSL540	2023-10-28	2024-10-27
Power Sensor	Anritsu	MA2411B	BSL541	2023-10-28	2024-10-27
Wideband Radio Communication	Rohde & Schwarz	CMW500	BSL575	2023-10-28	2024-10-27

Report No.: BSL24070201P01-R01

Tester					
Splitter	Agilent	11636B	BSL237	2023-10-28	2024-10-27
Loop Antenna	ZHINAN	ZN30900A	BSL534	2023-10-28	2024-10-27
Breitband				2022 40 20	2024 40 27
hornantenne	SCHWARZBECK	BBHA 9170	BSL579	2023-10-28	2024-10-27
Amplifier	TDK	PA-02-02	BSL574	2023-10-28	2024-10-27
Amplifier	TDK	PA-02-03	BSL576	2023-10-28	2024-10-27
PSA Series Spectrum	Dabda & Caburan	FOD		2022 40 20	2024 40 27
Analyzer	Rohde & Schwarz	FSP	BSL578	2023-10-28	2024-10-27


RF Conducted Test:					
Test Equipment	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
MXA Signal Analyzer	Agilent	N9020A	BSL566	2023-10-28	2024-10-27
EMI Test Receiver	R&S	ESCI 7	BSL552	2023-10-28	2024-10-27
Spectrum Analyzer	Agilent	E4440A	BSL533	2023-10-28	2024-10-27
MXG vector Signal Generator	Agilent	N5182A	BSL567	2023-10-28	2024-10-27
ESG Analog Signal Generator	Agilent	E4428C	BSL568	2023-10-28	2024-10-27
USB RF Power Sensor	DARE	RPR3006W	BSL569	2023-10-28	2024-10-27
RF Switch Box	Shongyi	RFSW3003328	BSL571	2023-10-28	2024-10-27
Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	BSL572	2023-10-28	2024-10-27

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

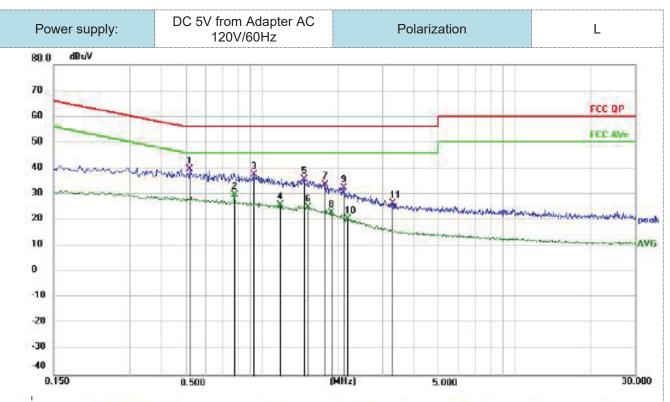
7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		
* Decreases with the logarithm of the frequency.				

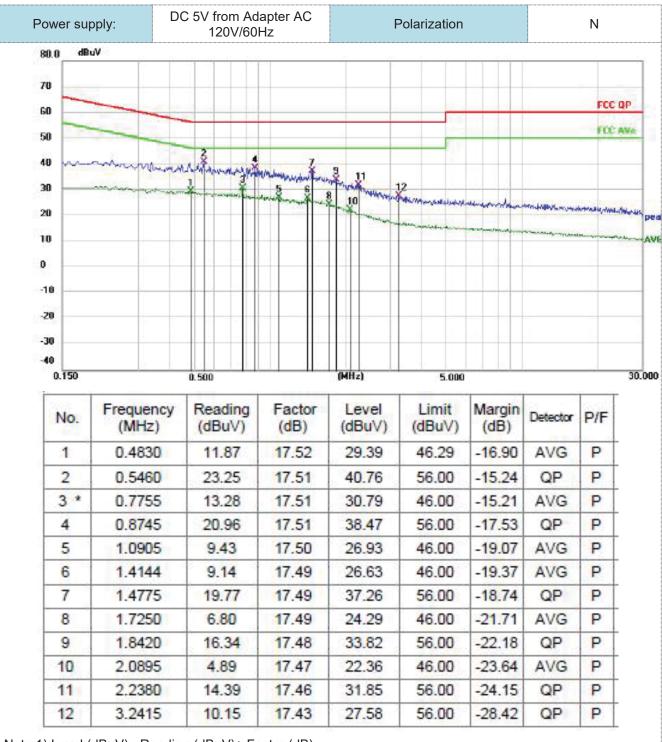

TEST RESULTS

Remark:

This mode is for testing data in the charging state.

Report No.: BSL24070201P01-R01

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1 *	0.5190	23.09	16.68	39.77	56.00	-16.23	QP	P
2	0.7755	13.04	16.65	29.69	46.00	-16.31	AVG	P
3	0.9330	21.03	16.63	37.66	56.00	-18.34	QP	P
4	1.1849	9.29	16.59	25.88	46.00	-20.12	AVG	P
5	1.4685	19.18	16.55	35.73	56.00	-20.27	QP	P
6	1.5225	8.32	16.55	24.87	46.00	-2 <mark>1</mark> .13	AVG	P
7	1.7790	17.17	16.52	33.69	56.00	-22.31	QP	P
8	1.8780	6.41	16.50	22.9 <mark>1</mark>	46.00	-23.09	AVG	P
9	2.1120	16.03	16.47	32.50	56.00	-23.50	QP	P
10	2.1885	4.09	16.46	20.55	46.00	-25.45	AVG	P
11	3.2775	10.02	16.31	26.33	56.00	-29.67	QP	P


Note:1).Level (dBµV)= Reading (dBµV)+ Factor (dB)

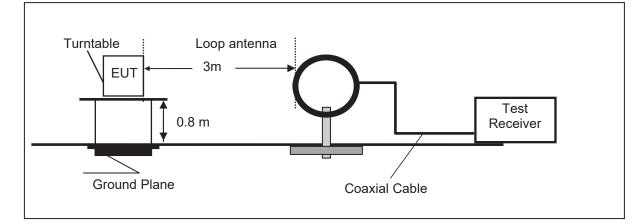
2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)

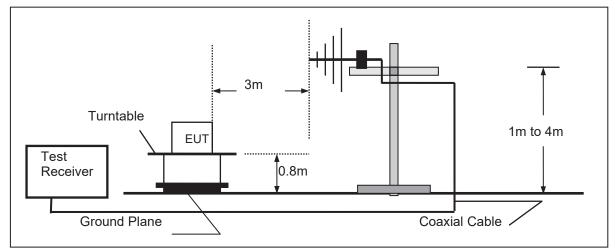
3). Margin(dB) = Limit (dB μ V) - Level (dB μ V)

Report No.: BSL24070201P01-R01

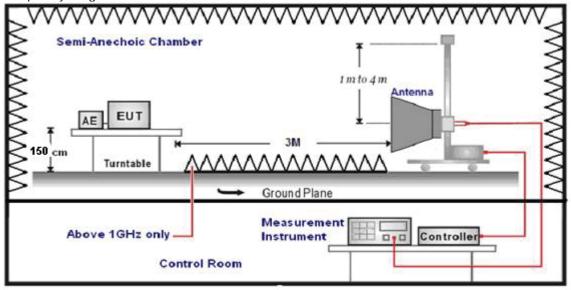
Note:1).Level (dB μ V)= Reading (dB μ V)+ Factor (dB)

2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)


3). Margin(dB) = Limit (dB μ V) - Level (dB μ V)


4.2 Radiated Emission

TEST CONFIGURATION


Frequency range 9KHz - 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Setting test receiver/spectrum as following table states.					
Test Frequency range	Test Receiver/Spectrum Setting	Detector			
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP			
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP			
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP			
	Peak Value: RBW=1MHz/VBW=3MHz,				
1GHz-40GHz	Sweep time=Auto	Peak			
10112-400112	Average Value: RBW=1MHz/VBW=10Hz,	Feak			
	Sweep time=Auto				

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

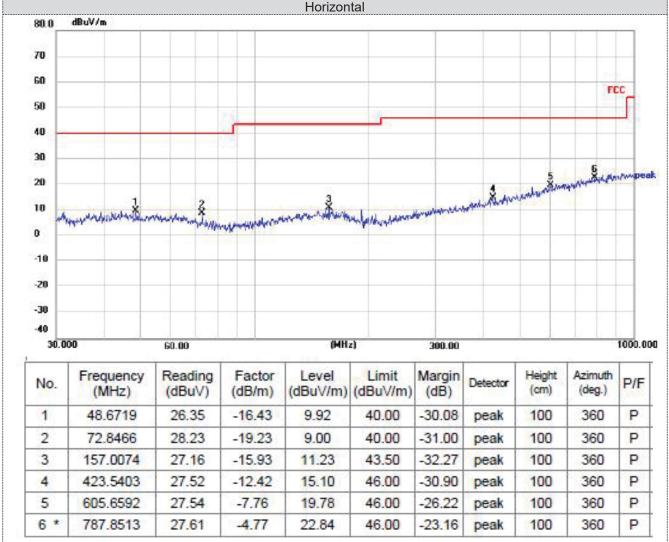
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

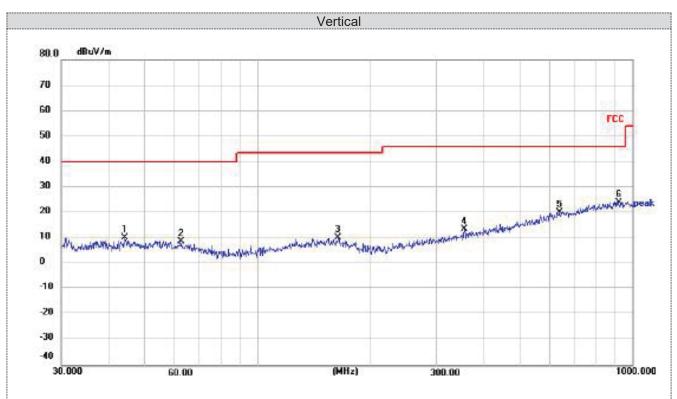


TEST RESULTS

Remark:

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- We measured Radiated Emission at GFSK, π/4 DQPSK and 8-DPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- 3. For below 1GHz testing recorded worst at GFSK DH5 middle channel.
- 4. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz


Note:1).Level (dBµV/m)= Reading (dBµV/m)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F
1	44.2752	26.60	-16.49	10.11	40.00	-29.89	peak	100	360	P
2	62.4314	26.04	-17.43	8.61	40.00	-31.39	peak	100	360	P
3	164.3301	26.21	-16.05	10.16	43.50	-33.34	peak	100	360	P
4	356.6758	27.77	-14.18	13.59	46.00	-32.41	peak	100	360	P
5	638.3686	27.42	-7.23	20.19	46.00	-25.81	peak	100	360	P
6 *	916.0687	27.70	-3.53	24.17	46.00	-21.83	peak	100	360	P

Note:1).Level (dBµV/m)= Reading (dBµV/m)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

For 1GHz to 25GHz

Note: GFSK, $\pi/4$ DQPSK and 8-DPSK all have been tested, only worse case GFSK is reported. GFSK (above 1GHz)

Freque	Frequency(MHz):		2402		Polarity:		HORIZONTAL							
Frequency (MHz)	Emis Le ^v (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)					
4804.00	57.22	PK	74	16.78	61.58	32.40	5.11	41.87	-4.36					
4804.00	47.49	AV	54	6.51	51.85	32.40	5.11	41.87	-4.36					
7206.00	55.01	PK	74	18.99	55.64	36.58	6.43	43.64	-0.63					
7206.00	45.15	AV	54	8.85	45.78	36.58	6.43	43.64	-0.63					

Freque	Frequency(MHz):			2402		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	56.29	PK	74	17.71	60.65	32.40	5.11	41.87	-4.36	
4804.00	46.09	AV	54	7.91	50.45	32.40	5.11	41.87	-4.36	
7206.00	54.99	PK	74	19.01	55.62	36.58	6.43	43.64	-0.63	
7206.00	44.83	AV	54	9.17	45.46	36.58	6.43	43.64	-0.63	

Freque	Frequency(MHz):			2441		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4882.00	56.50	PK	74	17.50	60.45	32.56	5.34	41.85	-3.95	
4882.00	46.29	AV	54	7.71	50.24	32.56	5.34	41.85	-3.95	
7323.00	55.39	PK	74	18.61	55.75	36.54	6.81	43.71	-0.36	
7323.00	45.26 AV		54	8.74	45.62	36.54	6.81	43.71	-0.36	

Freque	Frequency(MHz):			2441		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4882.00	57.13	PK	74	16.87	61.08	32.56	5.34	41.85	-3.95	
4882.00	47.29	AV	54	6.71	51.24	32.56	5.34	41.85	-3.95	
7323.00	55.32 PK		74	18.68	55.68	36.54	6.81	43.71	-0.36	
7323.00	45.43 AV		54	8.57	45.79	36.54	6.81	43.71	-0.36	

Freque	Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4960.00	57.89	PK	74	16.11	61.35	32.73	5.64	41.83	-3.46	
4960.00	48.17	AV	54	5.83	51.63	32.73	5.64	41.83	-3.46	
7440.00	55.42	PK	74	18.58	55.48	36.50	7.23	43.79	-0.06	
7440.00	45.62 PK		54	8.38	45.68	36.50	7.23	43.79	-0.06	

Freque	Frequency(MHz):			2480		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4960.00	57.62	PK	74	16.38	61.08	32.73	5.64	41.83	-3.46	
4960.00	47.88	AV	54	6.12	51.34	32.73	5.64	41.83	-3.46	
7440.00	55.69	PK	74	18.31	55.75	36.50	7.23	43.79	-0.06	
7440.00	45.62	PK	54	8.38	45.68	36.50	7.23	43.79	-0.06	

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK, Pi/4 DQPSK and 8-DPSK all have been tested, only worse case GFSK is reported.

	GFSN													
Test Freq	Test Frequency(MHz):			Lowest channel		Polarity:		HORIZONTAL						
Frequency (MHz)	(MHz) (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)					
2310.00	50.54	PK	74	23.46	60.96	27.42	4.31	42.15	-10.42					
2310.00	40.36	AV	54	13.64	50.78	27.42	4.31	42.15	-10.42					
2390.00	47.40	PK	74	26.60	57.69	27.55	4.35	42.19	-10.29					
2390.00	37.56	AV	54	16.44	47.85	27.55	4.35	42.19	-10.29					
2400.00	45.46	PK	74	28.54	55.65	27.70	4.39	42.28	-10.19					
2400.00	35.44	AV	54	18.56	45.63	27.70	4.39	42.28	-10.19					

Test Freq	Test Frequency(MHz):		Lowest channel		Polarity:		VERTICAL			
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2310.00	48.21	PK	74	25.79	58.63	27.42	4.31	42.15	-10.42	
2310.00	38.16	AV	54	15.84	48.58	27.42	4.31	42.15	-10.42	
2390.00	45.36	PK	74	28.64	55.65	27.55	4.35	42.19	-10.29	
2390.00	35.60	AV	54	18.40	45.89	27.55	4.35	42.19	-10.29	
2400.00	43.06	PK	74	30.94	53.25	27.70	4.39	42.28	-10.19	
2400.00	33.43	AV	54	20.57	43.62	27.70	4.39	42.28	-10.19	

Test Freq	Test Frequency(MHz):			Highest channel		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2483.50	46.22	PK	74	27.78	56.85	27.55	4.38	42.56	-10.63	
2483.50	36.26	AV	54	17.74	46.89	27.55	4.38	42.56	-10.63	
2500.00	43.92	PK	74	30.08	54.65	27.69	4.46	42.88	-10.73	
2500.00	33.90	AV	54	20.10	44.63	27.69	4.46	42.88	-10.73	

Test Freq	Test Frequency(MHz):			Highest channel		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2483.50	44.63	PK	74	29.37	55.26	27.55	4.38	42.56	-10.63	
2483.50	34.71	AV	54	19.29	45.34	27.55	4.38	42.56	-10.63	
2500.00	42.53	PK	74	31.47	53.26	27.69	4.46	42.88	-10.73	
2500.00	32.85 AV		54	21.15	43.58	27.69	4.46	42.88	-10.73	

REMARKS:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)

2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier

3. Margin value = Limit value- Emission level.

4. -- Mean the PK detector measured value is below average limit.

5. The other emission levels were very low against the limit.

4.3 Maximum Peak Output Power

<u>Limit</u>

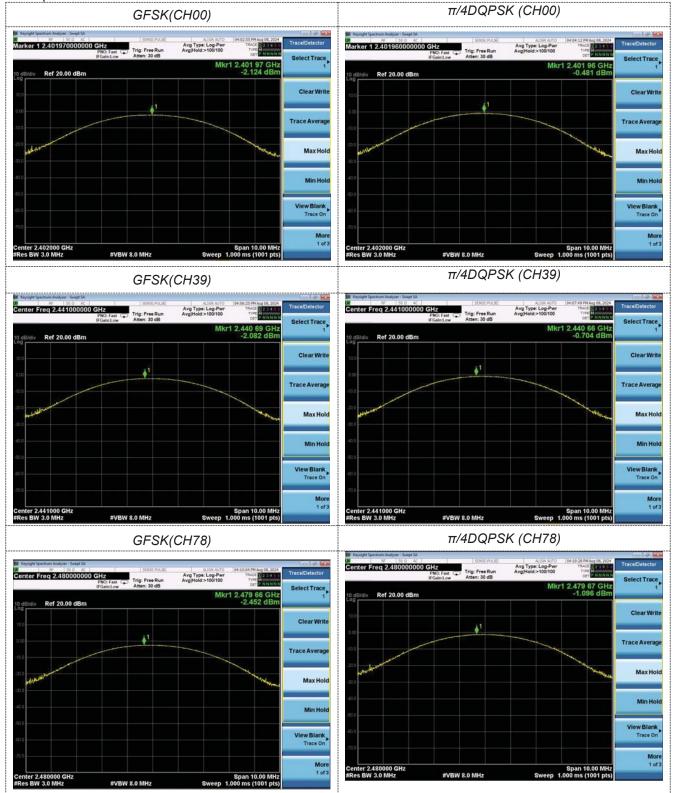
The Maximum Peak Output Power Measurement is 30dBm(for GFSK)/20.97dBm(for EDR)

Test Procedure

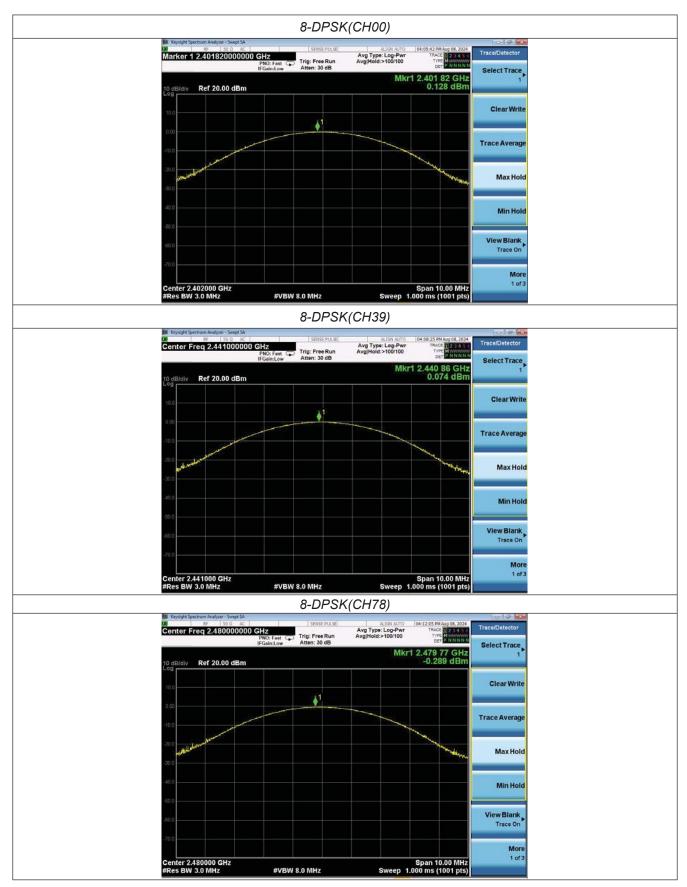
- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3MHz. VBW = 8MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

Test Configuration

EUT SPECTRUM ANALYZER	FUT	CTRUM
-----------------------	-----	-------


Test Results

Туре	Channel	Output power (dBm)	Limit (dBm)	Result	
	00	-2.124			
GFSK	39	-2.082	30.00	Pass	
	78	-2.452			
	00	-0.481			
π/4DQPSK	39	-0.704	20.97	Pass	
	78	-1.096			
	00	0.128			
8-DPSK	39	0.074	20.97	Pass	
	78	-0.289			


Note: 1.The test results including the cable lose.

Test plots

4.4 20dB Bandwidth

<u>Limit</u>

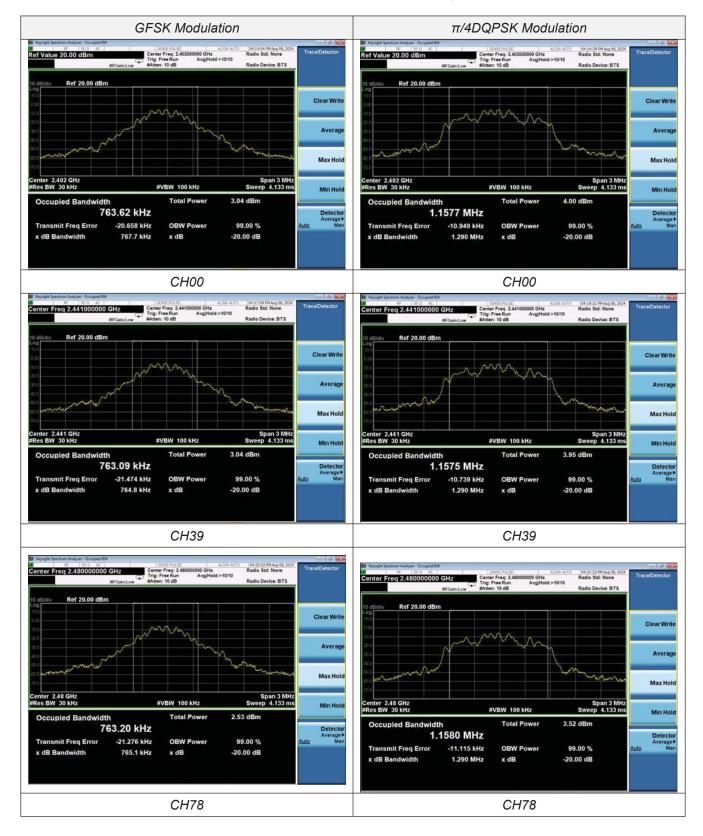
For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration


Test Results

Modulation	Channel	20dB bandwidth (MHz)	Result
	CH00	0.768	
GFSK	CH39	0.765	
	CH78	0.765	
	CH00	1.290	
π/4DQPSK	CH39	1.290	Pass
	CH78	1.290	
	CH00	1.198	
8-DPSK	CH39	1.198	
	CH78	1.199	

Test plot as follows:

Report No.: BSL24070201P01-R01

4.5 Frequency Separation

<u>LIMIT</u>

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS

Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result	
GFSK	CH38	1.000	0.768	Pass	
GFSK	CH39	1.000	0.700	Fass	
	CH38	1 000	0.000	Deee	
π/4DQPSK	CH39	1.002	0.860	Pass	
	CH38	1 002	0.700	Deee	
8-DPSK	CH39	1.002	0.799	Pass	


Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test plot as follows:

Report No.: BSL24070201P01-R01

4.6 Number of hopping frequency

<u>Limit</u>

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration

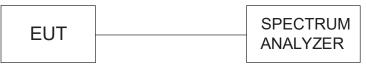
Test Results

Modulation	Number of Hopping Channel	Limit	Result
GFSK	79		
π/4DQPSK	79	≥15	Pass
8-DPSK	79		

Test plot as follows:

In Keylight Spectrum Analyzer - Swept 5 04 PF 50 0 Marker 2 2.479909500	IC SENSE:PULSE	ALIGN MITO 04:46:33 Avg Type: Log-Pwr TR Avg Hold:>100/100 7	Peak Search
10 dB/div Ref 20.00 dB	IFGain:Low Atten: 30 dB	Mkr2 2.479 90	Next Deck
	มภภลลกครองคอกสถาดการ เกิดกลุกครองคอกสถาดการคอาจ	กลุกติกติกลุกกลุกกลุกกลุกกลุกกลุกกลุกกลุกกลุกกลุ	2 Next Pk Right
		AAN IYYYYYYYYYYYYYYYYYY	Next Pk Left
			Marker Delta
Start 2.40000 GHz #Res BW 100 kHz	#VBW 300 kHz	Stop 2.4 Sweep 8.000 ms	
MAR MODE TRC SCL 1 N 1 F 2. 2 N 1 F 2. 3 A F 2. 4 F 2. 4 F 2. 4 F 2. 4 F 2. 5	X Y FU 402 087 6 GHz -3.562 dBm 479 909 5 GHz -3.946 dBm	NCTION FUNCTION WIDTH FUNCT	Mkr-+RefLvi
6 7 8 9 9 10			More 1 of 2
11 ≮[GFSK Ma	odulation	*
Keynight Spectrum Analyzer - Swept Sec →	A AC SENSE-PULSE 000 GHz	ALIGN AUTO 04:49:04 Avg Type: Log-Pwr TR	Mages,2024 CED2145 Peak Search
10 dB/div Ref 20.00 dB	IFGain:Low Atten: 30 dB	Mkr2 2.480 07	New Deck
	บบบบานหน่างจากจากจากจากจากจากจากจากจากจากจากจากจากจ	น่นงานการการการการการการการการการการการการการก	Next Pk Right
-20.0 -30.0 -40.0			Next Pk Left
500 500 500			Marker Delta
Start 2.40000 GHz #Res BW 100 kHz	#VBW 300 kHz	Sweep 8.000 ms	8350 GHz (1001 pts) Mkr→CF
	401 837 0 GHz -3.132 dBm 480 076 5 GHz -3.470 dBm	CHOR PORCHORYNOLS FORCE	Mkr→RefLvl
6 7 8 9 9			More 1 of 2
	π/4DQPSK	Modulation	
🗱 Keysight Spectrum Analyzes - Swept S	A		
00 8F 1500 A Marker 2 2.4799930000	DOO GHZ PRO: Fast PRO: Fast Atten: 30 dB		Next Beak
10 dB/div Ref 20.00 dBi	m	Mkr2 2.479 99 -3.4	3 0 GHz 76 dBm
	turnaharanaharanaharanaha	walanwananinanan	2 Next Pk Right
-40 0			Next Pk Left
40.0 -70.0			Marker Delta
Start 2.40000 GHz #Res BW 100 kHz	#VBW 300 kHz	Stop 2.4 Sweep 8.000 ms	8350 GHz (1001 pts) Mkr→CF
MKR MODE TRC SCL	X Y FUN	CTION FUNCTION WDTH FUNCT	ION VALUE
	X Y FUN 101 837 0 GHz -2.941 dBm 179 993 0 GHz -3.476 dBm	NCTION (FUNCTION (MDTH) FUNCT	DN VALUE → Mkr→Ref L vi
	X Y FUN 101 837 0 GHz -2 941 dBm 73 993 0 GHz -3.476 dBm	CETION FUNCTION WADTH FUNCT	

4.7 Time of Occupancy (Dwell Time)

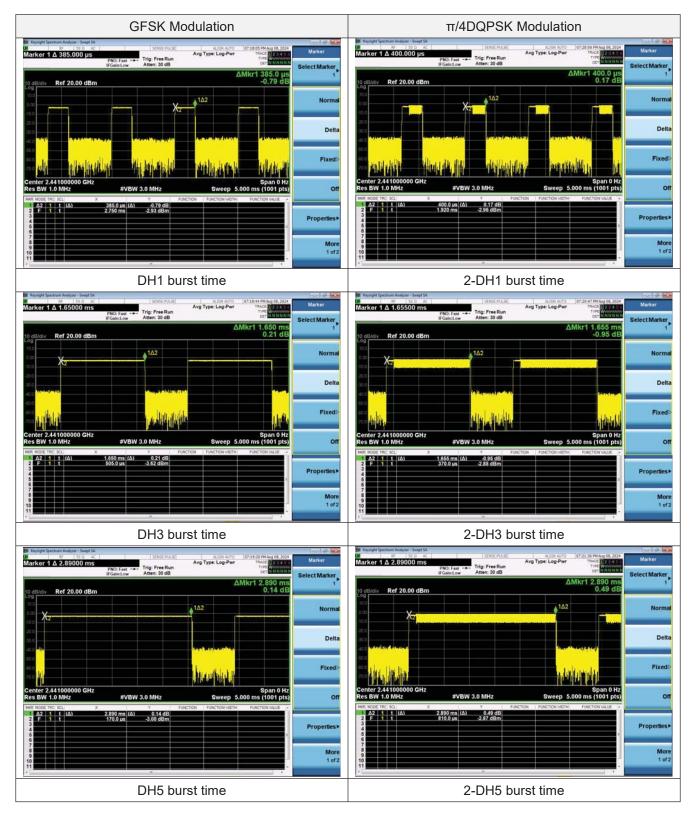

<u>Limit</u>

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

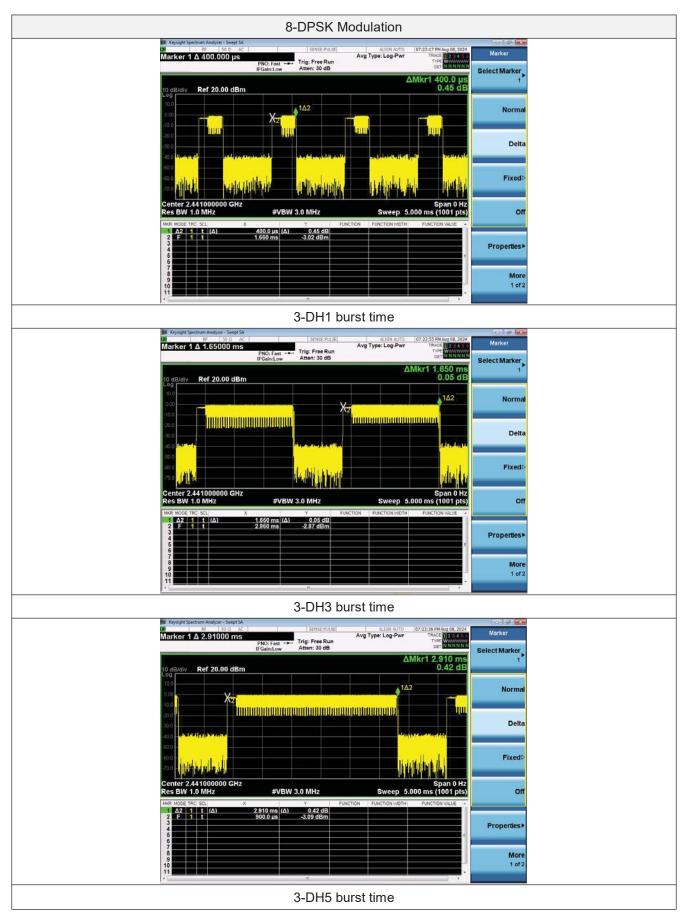
Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 3MHz VBW, Span 0Hz.

Test Configuration


Test Results

Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result
	DH1	0.385	0.123		
GFSK	DH3	1.650	0.264	0.40	Pass
	DH5	2.890	0.308		
	2-DH1	0.400	0.128		
π/4DQPSK	2-DH3	1.655	0.265	0.40	Pass
	2-DH5	2.890	0.308		
	3-DH1	0.400	0.128		
8-DPSK	3-DH3	1.650	0.264	0.40	Pass
	3-DH5	2.910	0.310		


Note:We have tested all mode at high,middle and low channel,and recoreded worst case at middle channel. Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1, 3-DH1 Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH2 Dwell time=Pulse time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second for DH5, 2-DH5, 3-DH3

Test plot as follows:

4.8 Out-of-band Emissions

<u>Limit</u>

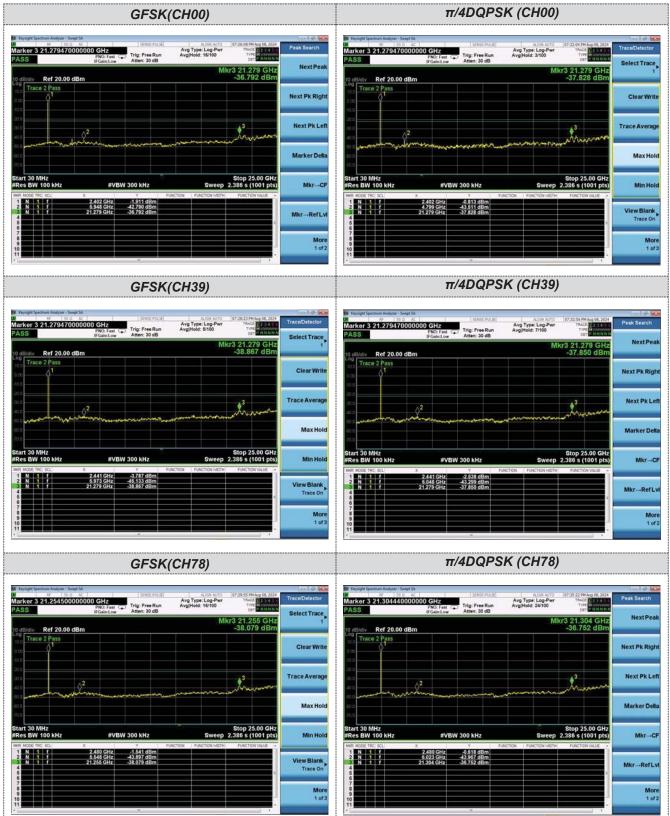
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

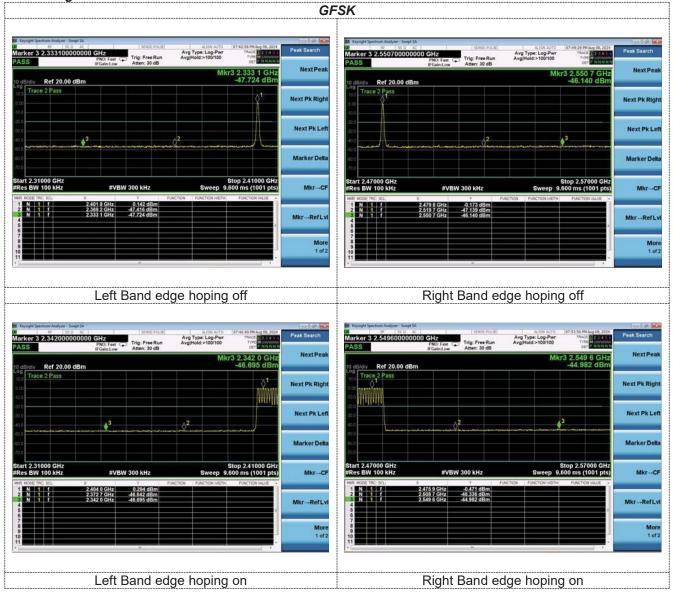
Test Results


Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5


Test plot as follows:

30MHz-25G



Band-edge Measurements for RF Conducted Emissions:

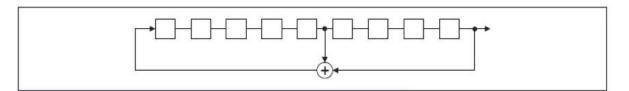
			π/ 4D	QPSK			
Farvight Spectrum Analyze - Swept So 85 38 B 40 Marker 3 2,3338000000 PASS	PN0: Fest Trig: Free Run IFGsin:Low Atten: 30 dB	Alian Auto (sedit-ki Pinang (s. 302 Avg Type: Log-Pwr Avg Hold:>100100 The pinang Cet Avg Hold:>10000 The pinang Cet Avg Hold:>100000 The pinang Cet Avg Hold:>10000 The pinang Cet Avg Hold:>1000	Next Peak	Marker 3 2.553000000 PASS	PN0: Fast Trop Free Run IFGsittLow Atten: 30 dB	Augn Auto [97:52:35 PM Aug 08, 2004 Avg Type: Log-Part TMCC [97:54:35 PM Aug 08, 2004 Avg[Hold:>1001100 MKr3 2,5553 0 GHz -45.414 dBm	Peak Search Next Pea
10 dB/div. Ref 20.00 dBn Log 100 Trace 2 Pass 0.00	n	-46.695 dBn	Next Pk Right	10 dB/div Ref 20.00 dB		-45.414 dBm	Next Pk Rig
-10 0 -20 0 -30 0 -40 0	¢ ³	0 ²	Next Pk Left	-10 0 -30 0 -30 0 -40 0			Next Pk L
80.0			Marker Delta	60.0 -60.0 -70.0			Marker De
Start 2.31000 GHz #Res BW 100 kHz MRI MODE TRC SCLI	#VBW 300 kHz	Stop 2.41000 GH Sweep 9.600 ms (1001 pts unction Function worth Function value	Z) Mkr→CF	Start 2.47000 GHz #Res BW 100 kHz		Stop 2.57000 GHz Sweep 9.600 ms (1001 pts)	Mkr⊶G
	2.402 0 GHz 0.365 dBm 2.372 6 GHz -48.216 dBm 2.333 8 GHz -46.695 dBm		Mkr→RefLvl	1 N 1 T N 1 T N 1 T 4 5	2.479 8 GHz -0.097 dBm 2.517 2 GHz -46.313 dBm 2.553 0 GHz -45.414 dBm		Mkr→RefL
6 7 8 9 10			More 1 of 2	6 7 8 9 10 11			Mc 1 c
	Left Band ed	ge hoping off			Right Band ed	ge hoping off	
Keysight Spectrum Analyse - Swegt SA ISS SS A Narker 3 2,3399000000 ASS	A C DOD CH2 PND: Feet IFGein:Low Trig: Free Run Atten: 30 dB	ALIGN ALITO (80-04-30 PM Aug 68, 2020) Avg Type: Log-Pwr Avg Hold>1001000 Trace 2.3 4 Trace 3.3 4 Trac	Peak Search	Keydat Spectrum Analyses - Seeget D F 30.0 / Marker 3 2.544600000 PASS	A SENSE PULSE 000 GHZ PNO: Fest Trig: Free Run IF Gain:Low Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg[Hold:>100100 MKr3 2,544 6 GHz	Peak Search Next Pe
0 dB/div Ref 20.00 dBn	n	-46.926 dBm	Next Pk Right	10 dB/div Ref 20.00 dB	m	-45.511 dBm	Next Pk Rig
10.0 20.0 30.0	3	0 ²	Next Pk Left	-10.0 -20.0 -20.6 -40.0	0 ²		Next Pk L
60.0 60.0 71.0			Marker Delta	60.0 -70.0			Marker De
Start 2.31000 GHz #Res BW 100 kHz	#VBW 300 kHz	Stop 2.41000 GHz Sweep 9.600 ms (1001 pts	MkrCF	Start 2.47000 GHz #Res BW 100 kHz	#VBW 300 kHz	Stop 2.57000 GHz Sweep 9.600 ms (1001 pts)	Mkr-+
	2,404 0 GHz 0,319 dBm 2,376 6 GHz 46,354 dBm 2,339 9 GHz 46,926 dBm	Construction Construction (Construction)	Mkr→RefLvi	1 N 1 f 2 N 1 f 3 N 1 f 6 6	2.478 8 GHz -0.641 dBm 2.511 2 GHz -45.874 dBm 2.544 6 GHz -45.511 dBm		Mkr→Refi
8 9 10 11			More 1 of 2	7 9 10 11			Mo
	Left Band ed	ge hoping on			Right Band ed	ge hoping on	

Report No.: BSL24070201P01-R01

		8-DP	SK			
If Spright Stathurs Analyses Swagt 33. Internet State Place Internet State Place Marker 3 2.336900000000 GHz PROS Fract Trig: Free Run PASS Internet State Place Attent: 30 dB 10 dB/dry Ref 20.00 dBm Internet Place Attent: 30 dB	E 6100 A010 (98.6021 PM Acr 68.2024 Avg Type Log-Par Avg/Hold >100100 000 001 Mkr3 2,336 9 GHz -47,860 GBm		Kapidi Spectrum Analyzer - Swept Marker 3 2,551300000 PASS 10 dB/div Ref 20.00 dB	AC STREE POUST POOL Fast POOL Fast IFGein:Low Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr Avg Type: Log-Pwr Avg Type: Log-Pwr AvgHold>100100 Mkr3 2.551 3 GHz -46.690 dBr	Peak Search Next Peak
Lee 2 Pass 5:00 	Å.	Next Pk Right Next Pk Left	Cog 10.0 10.0 10.0 20.0 20.0			Next Pk Right Next Pk Left
410 410 410 410 5tart 2.31000 GHz	5top 2.41000 GHz	Marker Delta	400 400 700 Start 2,47000 GHz	\$ ²	\$3 Stop 2.57000 GH2	Marker Delta
Impression Impress	Stop 2.41000 GHz Sweep 9.600 ms (1001 pts) FINCTON FUNCTION WIDTH FUNCTION WILLE	Mkr→CF Mkr→RefLvi More	#Res BW 100 kHz 100 kHz 1 n 2 n 1 f 3 n 4 5 6 7	#VBW 300 kHz 2479 8 GHz 2479 8 GHz 2478 CHz 4678 dBm 2518 2 GHz 46,690 dBm	Stop 2.57000 CHL Sweep 9.600 ms (1001 pt) Inction PUNCTION WORK FUNCTION WILLS	Mkr→CF Mkr→RefLvl More
Left Band e	dge hoping off	1 of 2	9 10 11 * 12	Right Band ec	lae hoping off	1 of 2
Konget Spectrum Androne - Sneg SA M Konget Spectrum Androne - Sneg SA Marker 3 2.33345000000000 GHZ PRO Fact P	AJON AUTO (00:15:54 PM Aug 08, 2024 Avg Type: Log-Pwr Truce DEPut	Peak Search	Kayaght Spectrum Analyser - Swept B RF 58.9 Marker 3 2.542600000 PASS	SA AC SENSE PULSE	ALION AUTO [06:86:77 PM Aug 06:302 Avg Type: Log-Pav Avg[Hold>100/100	Peak Search
10 gB/div Ref 20.00 dBm 10 g Trace 2 Pass 50 s	Mkr3 2.334 5 GHz -45.932 dBm	Next Peak	10 dB/div Ref 20.00 dB		Mkr3 2.542 6 GHz -46.194 dBm	Next Peak
		Next Pk Left Marker Delta	-00.0 -000 -000 -000 -000 -000	Q ²	4 ³	Next Pk Left Marker Delta
Start 2.31000 GHz #VBW 300 kHz #Res BW 100 kHz #VBW 300 kHz The box Hc 201 X Y I I 3.34 GHz I 3.35 GHz	Stop 2.41000 GHz Sweep 9.600 ms (1001 pts) PUNCTION FUNCTION HIGH	Mkr⊸CF	Start 2.47000 GHz #Res BW 100 kHz MRR MODE TRC SCL 1 N 2 N 1 f	2.474 0 GHz -0.109 dBm 2.504 0 GHz -46.600 dBm	Stop 2.57000 GHz Sweep 9.600 ms (1001 pts) Inctoin Ponction Woth Ponction Value	Mkr→CF
N 1 f 23346 GHz 45.932 dBm 6 7 7 8 9 9 10		Mkr→RefLvi More 1 of 2	3 N 1 f 4 5 - 6 5 - - 7 8 - 9 - 10 - - 11	2.542 6 GHz 46.194 dBm		Mkr→RefLvi More 1 of 2
Left Band e	dge hoping on			Right Band ec	lge hoping on	

4.9 **Pseudorandom Frequency Hopping Sequence**

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a) (1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:

0	2	4	6		64	78	1	73	75 7
Т				 		 1		 	
						i l			
								1	
				 	LJ.			 L	

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

4.10 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The maximum gain of antenna was 2.7dBi.

Remark:The antenna gain is provided by the customer , if the data provided by the customer is not accurate, BSL Testing Co., Ltd. does not assume any responsibility.

5 Test Setup Photos of the EUT

6 Photos of the EUT

Reference to the report ANNEX A of external photos and ANNEX B of internal photos.

******************************* End of Report **********************************