

TEST REPORT

Client Information:

Applicant: Shenzhen Dianye Technology Co., Ltd.

Applicant add.: 506, Building 1, Yibaolai Industrial City, Qiaotou Community, Fuhai Street,

Bao'an District, Shenzhen, China

Manufacturer: Shenzhen Dianye Technology Co., Ltd.

506, Building 1, Yibaolai Industrial City, Qiaotou Community, Fuhai Street,

Report No.: AITSZ24052701FW2

Manufacturer add.:

Bao'an District, Shenzhen, China

Product Information:

Product Name: Notebook computer

Model No.: N16U2-AN

Serial Model: N16U2*********

Brand Name: N/A

Test samples.: AITSZ24052701-1

FCC ID: 2BGOP-N16U2-AN

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Prepared By:

Guangdong Asia Hongke Test Technology Limited

B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District,

Shenzhen, Guangdong, China

Tel.: +86 0755-230967639 Fax.: +86 0755-230967639

Date of Receipt: May 27, 2024 Date of Test: May 27, 2024 ~ Jun. 13, 2024

Date of Issue: Jun. 14, 2024 Test Result: Pass

This device described above has been tested by Guangdong Asia Hongke Test Technology Limited and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

Note: This report shall not be reproduced except in full, without the written approval of Guangdong Asia Hongke Test Technology Limited, this document may be altered or revised by Guangdong Asia Hongke Test Technology Limited, personal only, and shall be noted in the revision of the document. This test report must not be used by the client to claim product endorsement.

Reviewed by:

Leon.yi

Approved by:

Sean She

Guangdong Asia Hongke Test Technology Limited B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.

1 Contents

СО	VER PA	GE		Page
1			S	2
2			MARY	
_				
	2.1 2.2		atement of the Measurement Uncertaintyeasurement Uncertainty	
3			ILITY	
J				
	3.1		eviation from standard	
	3.2		onormalities from standard conditions	
	3.3	Ie	st Location	6
4	GEN	ERAL	INFORMATION	7
	4.1	Te	st frequencies	8
	4.2	Εl	JT Peripheral List	8
	4.3	Te	st Peripheral List	9
	4.4	TE	ST METHODOLOGY	10
	4.5	De	escription of Test Modes	11
5	EQUI	PMEN	NT USED DURING TEST	12
6	TEST	RES	ULTS AND MEASUREMENT DATA	13
	6.1	An	ntenna requirement	13
	6	3.1.1	Standard requirement:	13
	6	6.1.2	EUT Antenna:	13
	6.2	Or	n Time and Duty Cycle	14
	6	5.2.1	Standard requirement:	14
	6	5.2.2	Measuring Instruments and Setting:	14
	6	5.2.3	Test Procedures	14
	6	6.2.4	Test Setup Layout	14
	6	6.2.5	EUT Operation during Test	14
	6	5.2.6	Test result	14
	6.3	Ma	aximum Conducted Output Peak Power Measurement	15
	6	5.3.1	Standard requirement:	15
	6	5.3.2	Measuring Instruments:	15
	6	5.3.3	Test Procedures:	15
	6	5.3.4	Test Setup Layout	15
		5.3.5	EUT Operation during Test	
		6.3.6	Test result	
	6.4	6 0	dB Spectrum Bandwidth Measurement	17
	6	6.4.1	Standard requirement:	17
	6	5.4.2	Measuring Instruments:	17
	F	3.4.3	Test Procedures	

		. s.g	<u> </u>
	6.4.4	Test Setup Layout	 17
	6.4.5	EUT Operation during Test	17
	6.4.6	Test result	17
	6.5 Pov	ver Spectral Density	18
	6.5.1	Standard requirement:	18
	6.5.2	Measuring Instruments and Setting:	18
	6.5.3	Test Procedures	18
	6.5.4	Test Setup Layout	18
	6.5.5	EUT Operation during Test	18
	6.5.6	Test result	19
	6.6 Coi	nducted Spurious Emissions and Band Edges Test	20
	6.6.1	Standard requirement:	20
	6.6.2	Measuring Instruments and Setting:	20
	6.6.3	Test Procedures	20
	6.6.4	Test Setup Layout	20
	6.6.5	EUT Operation during Test	20
	6.6.6	Test result	21
	6.7 Rad	diated Emissions and Radiation Restricted band Measurement	22
	6.7.1	Standard requirement:	22
	6.7.2	Measuring Instruments and Setting:	23
	6.7.3	Test Procedures	23
	6.7.4	Test Setup Layout	26
	6.7.5	EUT Operation during Test	27
	6.7.6	Test result	27
	6.8 Coi	nducted Emissions	34
	6.8.1	Standard requirement:	34
	6.8.2	Test Setup Layout	34
	6.8.3	Test Procedures	34
	6.8.4	EUT Operation during Test	34
	6.8.5	Test result	34
7	TEST SETU	P PHOTOGRAPHS OF EUT	37
8	EXTERNAL	PHOTOGRAPHS OF EUT	37
9	INTERNAL	PHOTOGRAPHS OF EUT	37

Page 4 of 37

Report No.: AITSZ24052701FW2

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Jun. 14, 2024	Valid	Initial release

2 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	§15.203	Pass
On Time and Duty Cycle	1	/
Maximum Conducted Peak Output Power	§15.247 (b)(3)	Pass
Power Spectral Density	§15.247 (e)	Pass
6dB Bandwidth	§15.247 (a)(2)	Pass
Radiated and Conducted Spurious Emissions	§15.205/15.209	PASS
Emissions at Restricted Band	§15.205/15.209	Pass
Conducted Emissions	§15.207(a)	Pass
RF Exposure	§15.247(i)§2.1091	Pass

Page 5 of

Note

- 1. Test according to ANSI C63.10:2013.
- 2. The measurement uncertainty is not included in the test result.
- 3. Test results in other test report (RF Exposure Evaluation Report)

2.1 Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16-4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the AiT quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

2.2 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	0.009MHz-30MHz	3.10dB	(1)
Radiated Emission	30MHz-1GHz	3.75dB	(1)
Radiated Emission	1GHz-18GHz	3.88dB	(1)
Radiated Emission	18GHz-40GHz	3.88dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	1.20dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

Report No.: AITSZ24052701FW2

3 Test Facility

The test facility is recognized, certified or accredited by the following organizations: FCC-Registration No.: 251906 Designation Number: CN1376

Guangdong Asia Hongke Test Technology Limited has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC —Registration No.: 31737 CAB identifier: CN0165

The 3m Semi-anechoic chamber of Guangdong Asia Hongke Test Technology Limited has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 31737

A2LA-Lab Cert. No.: 7133.01

Guangdong Asia Hongke Test Technology Limited has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

3.1 Deviation from standard

None

3.2 Abnormalities from standard conditions

None

3.3 Test Location

Guangdong Asia Hongke Test Technology Limited

Address: B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Tel.: +86 0755-230967639 Fax.: +86 0755-230967639

General Information

EUT Name:	Notebook computer
Model No:	N16U2-AN
Brand Name:	N/A
Serial Model:	N16U2*******
Sample(s) Status:	Engineer sample
Operation frequency:	802.11b/802.11g /802.11n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz
Channel Number:	802.11b/802.11g /802.11n(HT20): 11 802.11n(HT40): 7
Channel separation:	5MHz
Modulation Technology:	802.11b(DSSS):CCK,DQPSK,DBPSK 802.11g(OFDM):BPSK,QPSK,16-QAM,64-QAM 802.11n(OFDM):BPSK,QPSK,16-QAM,64-QAM
Antenna Type:	FPC antenna
Antenna gain:	1.26 dBi
H/W No.:	N/A
S/W No.:	N/A
Adapter:	1.Model: M120300-A010US Input:100-240V~50/60Hz 0.8A Output:12.0V=3.0A 36.0W 2.Model: KA3601A-1203000US Input:100-240V~50/60Hz 1.0A Output:12.0V=3000mA 3.Model: AS3603A-1203000US Input:100-240V~50/60Hz 1.0A Output:12.0V=3.0A
Model different:	Different model names.
Notes	

Page 7 of

37

Note:

For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

37

4.1 Test frequencies

EUT channels and frequencies list:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412MHz	5	2432MHz	9	2452MHz
2	2417MHz	6	2437MHz	10	2457MHz
3	2422MHz	7	2442MHz	11	2462MHz
4	2427MHz	8	2447MHz	-	-

Page 8 of

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Transmitting mode	Keep the EUT in continuously transmitting mode.			
Test software:		Rf_Tool v1.0		
Frequency	2412 MHz	2437 MHz	2462 MHz	
Parameters(802.11b)	Default	Default	Default	
Parameters(802.11g)	Default	Default	Default	
Parameters(802.11n20)	Default	Default	Default	
Frequency	2422MHz	2437MHz	2452MHz	
Parameters(802.11n40)	Default	Default	Default	

4.2 EUT Peripheral List

No.	Equipment	Manufacturer	EMC Compliance	Model No.	Serial No.	Power cord	Signal cord
		Zhongshan MLS Electrical Appliance Co., Ltd.	N/A	M120300-A 010US	N/A	N/A	N/A
1	Adapter	Shenzhen Keyu PowerSupply Technology Co., Ltd.	N/A	KA3601A-12 03000US	N/A	N/A	N/A
		SHENZHEN FUSHIGANG TECHNOLOGY CO., LTD	N/A	AS3603A-12 03000US	N/A	N/A	N/A

Guangdong Asia Hongke Test Technology Limited B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.

4.3 Test Peripheral List

No.	Equipment	Manufacturer	EMC Compliance	Model No.	Serial No.	Power cord	Signal cord
1	N/A	N/A	N/A	N/A	N/A	N/A	N/A

37

Page 9 of

4.4 TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

Report No.: AITSZ24052701FW2

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Guangdong Asia Hongke Test Technology Limited

4.4.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

4.4.2 EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209, 15.247 under the FCC Rules Part 15 Subpart C, ANSI C63.10-2013.

4.4.3 General Test Procedures

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013.

4.5 Description of Test Modes

The EUT has been tested under operating condition.

AC main conducted emission pre-test voltage at both AC 120V/60Hz and AC 240V/50Hz, recorded worst case;

AC main conducted emission pre-test at charge from power adapter modes, recorded worst case;

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position.

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be IEEE 802.11b mode (LCH).

Verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	IEEE 802.11b	IEEE 802.11g	IEEE 802.11n(HT20)	IEEE 802.11n(HT40)
Data rate	1Mbps	6Mbps	MCS0	MCS0

Antenna & Bandwidth

Antenna	Chain 1	(ANT1) Chain 2		2 (ANT2)	Simultaneously
Bandwidth Mode	20MHz	40MHz	20MHz	40MHz	/
IEEE 802.11b					
IEEE 802.11g	abla				
IEEE 802.11n	$\overline{\checkmark}$	$\overline{\mathbf{A}}$			
IEEE 802.11ax					

5 Equipment Used during Test

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date
1	Spectrum Analyzer	R&S	FSV40	101470	2023.09.08	2024.09.07
2	Spectrum Analyzer	Keysight	N9020A	MY51280643	2023.09.08	2024.09.07
3	EMI Measuring Receiver	R&S	ESR	101660	2023.09.08	2024.09.07
4	Low Noise Pre-Amplifier	HP	HP8447E	1937A01855	2023.09.08	2024.09.07
5	Low Noise Pre-Amplifier	Tsj	MLA-0120-A02- 34	2648A04738	2023.09.08	2024.09.07
6	Passive Loop	ETS	6512	00165355	2022.09.04	2024.09.03
7	TRILOG Super Broadband test Antenna	SCHWARZBECK	VULB9160	9160-3206	2021.08.29	2024.08.28
8	Broadband Horn Antenna	SCHWARZBECK	BBHA9120D	452	2021.08.29	2024.08.28
9	SHF-EHF Horn Antenna 15-40GHz	SCHWARZBECK	BBHA9170	BBHA9170367d	2021.08.29	2024.08.28
10	EMI Measuring Receiver	R&S	ESR	101160	2023.09.13	2024.09.12
11	LISN	SCHWARZBECK	NNLK 8129	8130179	2023.10.29	2024.10.28
12	Pulse Limiter	R&S	ESH3-Z2	102789	2023.09.13	2024.09.12
13	Pro.Temp&Humi.chamber	MENTEK	MHP-150-1C	MAA08112501	2023.09.08	2024.09.07
14	RF Automatic Test system	MW	MW100-RFCB	21033016	2023.09.08	2024.09.07
15	Signal Generator	Agilent	N5182A	MY50143009	2023.09.08	2024.09.07
16	Wideband Radio communication tester	R&S	CMW500	1201.0002K50	2023.09.08	2024.09.07
17	RF Automatic Test system	MW	MW100-RFCB	21033016	2023.09.08	2024.09.07
18	DC power supply	ZHAOXIN	RXN-305D-2	28070002559	N/A	N/A
19	RE Software	EZ	EZ-EMC_RE	Ver.AIT-03A	N/A	N/A
20	CE Software	EZ	EZ-EMC_CE	Ver.AIT-03A	N/A	N/A
21	RF Software	MW	MTS 8310	2.0.0.0	N/A	N/A
22	temporary antenna connector(Note)	NTS	R001	N/A	N/A	N/A

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

6 Test results and Measurement Data

6.1 Antenna requirement

6.1.1 Standard requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded. And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

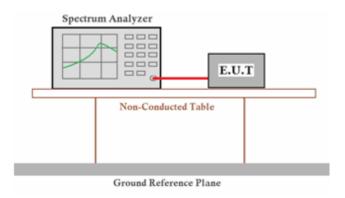
6.1.2 EUT Antenna:

The antenna is FPC Antenna, the best case gain of the antenna is 1.26 dBi reference to the Internal photos for details

6.2 On Time and Duty Cycle

6.2.1 Standard requirement:

None; for reporting purpose only


6.2.2 Measuring Instruments and Setting:

Please refer to equipments list in this report. The following table is the setting of the spectrum analyser.

6.2.3 Test Procedures

- 1. Set the centre frequency of the spectrum analyser to the transmitting frequency;
- 2. Set the span=0MHz, RBW=8MHz, VBW=50MHz, Sweep time=20.27ms;
- 3. Detector = peak;
- 4. Trace mode = Single hold

6.2.4 Test Setup Layout

6.2.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.2.6 Test result

For reporting purpose only.

Please refer to Appendix B

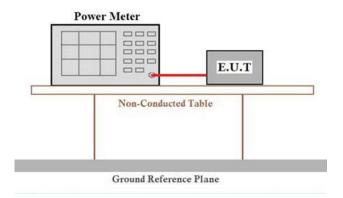
6.3 Maximum Conducted Output Peak Power Measurement

6.3.1 Standard requirement:

According to §15.247(b): For systems using digital modulation in the 2400-2483.5 MHz and 5725-5850 MHz band, the limit for maximum peak conducted output power is 30dBm. The limited has to be reduced by the amount in dB that the gain of the antenna exceeds 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi without any corresponding reduction in transmitter peak output power.RSS-247 section 5.4 d): For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.


6.3.2 Measuring Instruments:

Please refer to equipment's list in this report.

6.3.3 Test Procedures:

According to KDB558074 D01 15.247 Meas Guidance v05r02 Section 9.1 Maximum peak conducted output power, 9.1.2 The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

6.3.4 Test Setup Layout

6.3.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.3.6 Test result

PASS

Please refer to Appendix B

Remark:

- 1). Measured output power at difference data rate for each mode and recorded worst case for each mode.
 - 2). Test results including cable loss;
- 3). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; MCS0 at IEEE 802.11n HT20; MCS0 at IEEE 802.11n HT40.

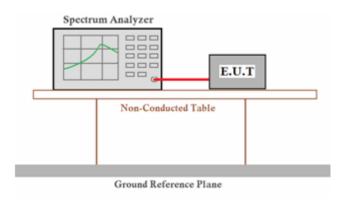
6.4 6 dB Spectrum Bandwidth Measurement

6.4.1 Standard requirement:

According to §15.247(a) (2): For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

6.4.2 Measuring Instruments:

Please refer to equipment's list in this report.


Please refer to equipment list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Span Frequency	30MHz
Detector	Peak

6.4.3 Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The resolution bandwidth and the video bandwidth were set according to KDB558074.
- 3. Measured the spectrum width with power higher than 6dB below carrier.

6.4.4 Test Setup Layout

6.4.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.4.6 Test result

PASS

Please refer to Appendix B

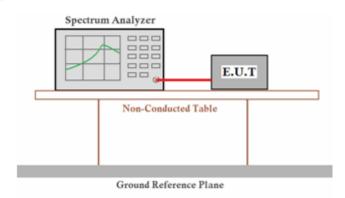
Remark:

- 1). Measured 6dB Bandwidth at difference data rate for each mode and recorded worst case for each mode.
- 2). Test results including cable loss;
- 3). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; MCS0 at IEEE 802.11n HT20; MCS0 at IEEE 802.11n HT40.

6.5 Power Spectral Density

6.5.1 Standard requirement:

According to §15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


6.5.2 Measuring Instruments and Setting:

Please refer to equipment list in this report. The following table is the setting of Spectrum Analyzer.

6.5.3 Test Procedures

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.
- 3. Set the RBW = 3 kHz.
- 4. Set the VBW ≥ 3*RBW
- 5. Set the span to 1.5 times the DTS channel bandwidth.
- 6. Detector = peak.
- 7. Sweep time = auto couple.
- 8. Trace mode = max hold.
- 9. Allow trace to fully stabilize.
- 10. Use the peak marker function to determine the maximum power level.
- 11. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 12. The resulting peak PSD level must shall not be greater than 8dBm in any 3 kHz..

6.5.4 Test Setup Layout

6.5.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.5.6 Test result

PASS

Please refer to Appendix B

Remark:

- 1). Measured peak power spectrum density at difference data rate for each mode and recorded worst case for each mode;
 - 2). Test results including cable loss;
- 3). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; MCS0 at IEEE 802.11n HT20; MCS0 at IEEE 802.11n HT40.

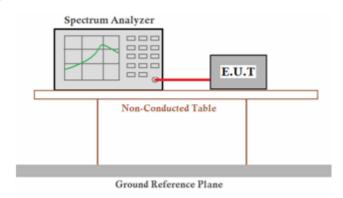
6.6 Conducted Spurious Emissions and Band Edges Test

6.6.1 Standard requirement:

According to §15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

6.6.2 Measuring Instruments and Setting:

Please refer to equipment list in this report. The following table is the setting of the spectrum analyzer.


Spectrum Parameter	Setting
Detector	Peak
Attenuation	Auto
RB / VB (Emission in restricted band)	100KHz/300KHz
RB / VB (Emission in non-restricted band)	100KHz/300KHz

6.6.3 Test Procedures

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz

The spectrum from 9 kHz to 26.5GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

6.6.4 Test Setup Layout

6.6.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.6.6 Test result

PASS

Please refer to Appendix B for conducted band edge emission.

Please refer to Appendix B for conducted spurious emissions;

Remark:

- 1). Measured at difference data rate for each mode and recorded worst case for each mode.
- 2). Test results including cable loss;
- 3). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; MCS0 at IEEE 802.11n HT20; MCS0 at IEEE 802.11n HT40.
- 4). Not recorded test plots from 9 KHz to 30 MHz as emission levels 20dB lower than emission limit.

6.7 Radiated Emissions and Radiation Restricted band Measurement

6.7.1 Standard requirement:

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			

^{\1\} Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

^{\2\} Above 38.6

6.7.2 Measuring Instruments and Setting:

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

6.7.3 Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 1.0 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor,

margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

Report No.: AITSZ24052701FW2

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

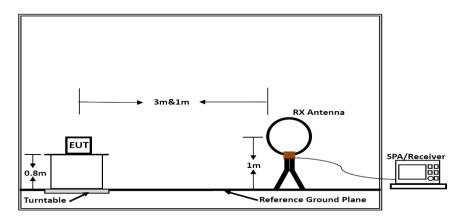
- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

Page 26 of

4) Sequence of testing above 18 GHz

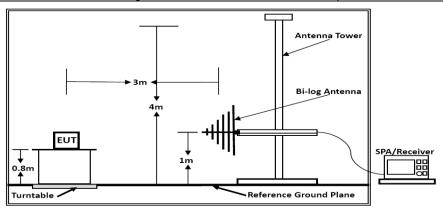
Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

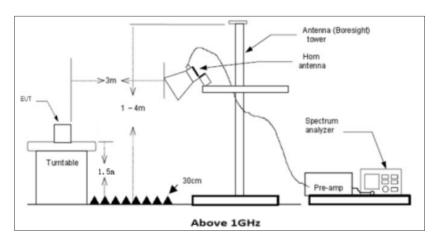

Premeasurement:

--- The antenna is moved spherical over the EUT in different polarisations of the antenna.

Final measurement:


- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

6.7.4 Test Setup Layout


Below 30MHz

Report No.: AITSZ24052701FW2

Below 1GHz

Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

6.7.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.7.6 Test result

Temperature	26 ℃	Humidity	54%
Configurations	IEEE 802.11b/g/n		

Remarks:

- 1. Only the worst case Main Antenna test data.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Report No.: AITSZ24052701FW2

Freq.	Level	Over Limit	Over Limit	Remark		
(MHz)	(dBuV)	(dB)	(dBuV)			
-	-	-	-	See Note		

Note:

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor.

■ Results of Radiated Emissions (30MHz~1GHz)

Pre-scan all test modes, found worst case at IEEE 802.11n HT40 (middle Channel), recorded the worst case results in this report (IEEE 802.11n HT40 (middle Channel)).

odel name:	N16U2-AN		Test Date :	2024-06-11
olarization :	Vertical		Test Result:	Pass Fail
80.0 dBuV/m				
70				
60				
50				
40				
30 2	3 4 5	6		peak
20	man l		and the same of th	peak
10	V	V		
0				
-10				
-20				
-30				
-40				
30.000	60.00	(MHz)	300.00	1000.000

Remark:

Emission Level = Reading + Factor;

Factor = Antenna Factor + Cable Loss - Pre-amplifier;

Margin= Emission Level - Limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.
1	30.0000	52.30	-17.57	34.73	40.00	-5.27	QP
2	31.9881	50.54	-17.43	33.11	40.00	-6.89	QP
3	52.7600	50.93	-16.85	34.08	40.00	-5.92	QP
4	64.2526	52.97	-17.98	34.99	40.00	-5.01	QP
5	71.9075	52.81	-19.30	33.51	40.00	-6.49	QP
6 *	93.2764	49.22	-20.77	28.45	43.50	-15.05	QP

Guangdong Asia Hongke Test Technology Limited B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.

el name:		N16l	J2-A	N								Test Date	e :	202	4-06-	11			
rization:		Horiz	zonta	al								Test Res	ult:		Pass		Fai		
80.0 dBu	√/m						_				_							 _	
70																		╝	
60																		_	
50																		┫	
40		_											s X					4	
30					2				э Х	4	5	. whi					No. Barbara	 p disease	eak
20 July Jan	White Mr.	1 	and and	اد بداران	2	May Land	www.	What was a few of the contract	\bigvee	Mary House		Ward Mary	,/M	مستعلب بالمالي	M. Maryall	My cons		\dashv	
10				- 14				W ₀ C ·										\dashv	
0											Н							\dashv	
-10																		\dashv	
-20																		\dashv	
-30		\dashv																\dashv	
-40 30.000				.00						(MHz))0.00					 00.0	00

Remark:

Emission Level = Reading + Factor;

Factor = Antenna Factor + Cable Loss - Pre-amplifier;

Margin= Emission Level - Limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.
1	51.2466	38.23	-16.70	21.53	40.00	-18.47	QP
2 *	73.3336	42.53	-19.59	22.94	40.00	-17.06	QP
3	130.5162	45.07	-17.69	27.38	43.50	-16.12	QP
4	148.2330	41.56	-16.65	24.91	43.50	-18.59	QP
5	215.7969	45.90	-20.29	25.61	43.50	-17.89	QP
6	304.1830	54.50	-16.82	37.68	46.00	-8.32	QP

Results for Radiated Emissions (1- 26 GHz)

Note: All modes have been tested, the worst mode is 802.11n(HT40), and this report only shows the worst case.

Page 31 of

T	est mode:		802.	.11n(HT40) Test		Test cha	annel:	Lowest		
Н										
	Frequency	equency Meter Reading		Factor	Factor Emission Level		Limits	Margin	Detector Type	
	(MHz)	(dBµV)		(dB/m)	(dBµV/m)		(dBµV/m)	(dB)	_ :::::::::::::::::::::::::::::::::::::	
	4844	46.62		5.11	5	1.73	74	-22.27	PEAK	
	4844	34.4	1	5.11	3	9.52	54	-14.48	AVG	
	7266	43.88	3	7.58	5	1.46	74	-22.54	PEAK	
	7266	31.28	3	7.58	3	8.86	54	-15.14	AVG	

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
(MHz)	(MHz) (dBµV)		(dB/m) (dBμV/m) (dBμV/		(dB)	20.00.0.	
4844	47.21 5.11		52.32	74	-21.68	PEAK	
4844	35.54	5.11	40.65	54	-13.35	AVG	
7266	44.45	7.58	52.03	74	-21.97	PEAK	
7266	29.50	7.58	37.08	54	-16.92	AVG	

Test mode:	802.11n(HT40)	Test channel:	Middle
------------	---------------	---------------	--------

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
(MHz)	(MHz) (dBµV)		(dBµV/m)	(dBµV/m)	(dB)	20.00.0. 1,00	
4874	47.16	5.13	52.29	74	-21.71	PEAK	
4874	35.66	5.13	40.79	54	-13.21	AVG	
7311	45.00	7.49	52.49	74	-21.51	PEAK	
7311	30.12	7.49	37.61	54	-16.39	AVG	

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(MHz) (dBµV)		(dBµV/m)	(dBµV/m)	(dB)	20.00.0
4874	46.94	5.13	52.07	74	-21.93	PEAK
4874	35.30	5.13	40.43	54	-13.57	AVG
7311	46.20	7.49	53.69	74	-20.31	PEAK
7311	32.01	7.49	39.50	54	-14.50	AVG

Guangdong Asia Hongke Test Technology Limited B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.

	lest mode	e:		802.11n(H140)		lest channel:		Highest		
Н		_								
	Frequency	Meter Re	ading	Factor	_	ission evel	Limits		Margin	Detector Type
	(MHz)	(dBµ\	/)	(dB/m)	(dB	μV/m)	(dBµV/m	1)	(dB)	20100101 1)po
	4904	1904 46.07		5.16	5	1.23	74		-22.77	PEAK
	4904	37.12	2	5.16	4	2.28	54		-11.72	AVG
	7356	45.65	5	7.69	5	3.34	74		-20.66	PEAK
	7356	29.82	2	7.69	3	7.51	54		-16.49	AVG

٧

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
(MHz)	(MHz) (dBµV)		(dB/m) (dBµV/m)		(dB)	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
4904	46.61	5.16	51.77	74	-22.23	PEAK	
4904	36.70	5.16	41.86	54	-12.14	AVG	
7356	44.49	7.69	52.18	74	-21.82	PEAK	
7356	31.14	7.69	38.83	54	-15.17	AVG	

Notes:

- 1). Measuring frequencies from 9 KHz 10th harmonic or 26.5GHz (which is less), No emission found between lowest internal used/generated frequency to 30MHz.
- 2). Radiated emissions measured in frequency range from 9 KHz~10th harmonic or 26.5GHz (which is less) were made with an instrument using Peak detector mode.
- 3). Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4). Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; MCS0 at IEEE 802.11n HT20; MCS0 at IEEE 802.11n HT40.
- 5). Margin= Emission Level Limit
- 6). Emission Level = Reading + Factor
- 7). Factor = Antenna Factor + Cable Loss Pre-amplifier

Radiation Restricted band

Horizontal-L

Report No.: AITSZ24052701FW2

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Det.
1	2386.12	40.2	-5.74	34.46	74	-39.54	peak
2	2390	39.44	-5.72	33.72	74	-40.28	peak
3	2400	39.04	-5.61	33.43	74	-40.57	peak

Vertical-L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.
1	2385.03	40.14	-5.77	34.37	74	-39.63	peak
2	2390	39.64	-5.94	33.7	74	-40.3	peak
3	2400	40.51	-5.65	34.86	74	-39.14	peak

Horizontal-H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.
1	2483.5	37.39	-5.29	31.7	74	-42.3	peak
2	2485.7	37.61	-4.86	33.07	74	-40.93	peak

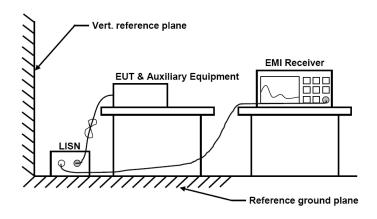
Vertical-H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.
1	2483.5	36.86	-5.29	31.7	74	-42.3	peak
2	2483.45	38.88	-5.09	33.07	74	-40.93	peak

Remarks:

- 1). Margin= Emission Level Limit
- 2). Emission Level = Reading + Factor
- 3). Factor = Antenna Factor + Cable Loss Pre-amplifie
- 4). All the modes have been tested and the only shows the worst case 802.11n(HT40) mode.
- 5). The PEAK value is less than the AVG limit, the AVG result no need be show in this report.

6.8 Conducted Emissions


6.8.1 Standard requirement:

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Limits (dBμV)					
(MHz)	Quasi-peak	Average				
0.15 to 0.50	66 to 56	56 to 46				
0.50 to 5	56	46				
5 to 30	60	50				

^{*} Decreasing linearly with the logarithm of the frequency

6.8.2 Test Setup Layout

6.8.3 Test Procedures

The transmitter output is connected to EMI receiver. The resolution bandwidth is set to 9 kHz. The video bandwidth is set to 30 kHz, Sweep time=Auto

The spectrum from 150 kHz to 30MHz is investigated with the transmitter set to the lowest, middle, and highest channels.

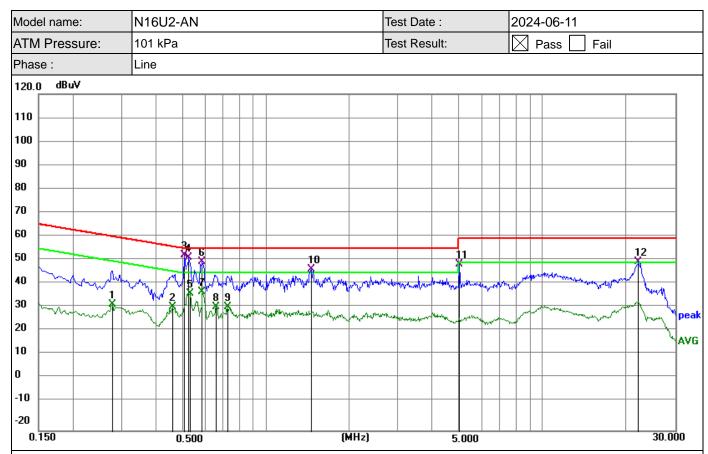
6.8.4 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.8.5 Test result

PASS

The test data please refer to following page.


Temperature	26 ℃	Humidity	54%
Configurations	IEEE 802.11b/g/n		

Guangdong Asia Hongke Test Technology Limited B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.

Measurement data:

AC Conducted Emission of charge from Adapter mode @ AC 120V/60Hz @ IEEE 802.11g (worst case)

37

Remark: Correct Factor = Insertion loss of LISN + Cable loss + Insertion loss of Pulse Limiter;
Measurement Result = Reading Level +Correct Factor;
Margin = Measurement Result- Limit;

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.2760	21.76	10.70	32.46	50.94	-18.48	QP
2	0.4560	20.78	10.69	31.47	46.77	-15.30	AVG
3	0.5055	42.31	10.69	53.00	56.00	-3.00	AVG
4	0.5235	41.26	10.69	51.95	56.00	-4.05	QP
5	0.5280	26.38	10.69	37.07	46.00	-8.93	QP
6	0.5865	39.70	10.69	50.39	56.00	-5.61	AVG
7	0.5865	27.25	10.69	37.94	46.00	-8.06	AVG
8	0.6585	21.03	10.68	31.71	46.00	-14.29	QP
9	0.7260	21.05	10.67	31.72	46.00	-14.28	AVG
10	1.4505	36.42	10.70	47.12	56.00	-8.88	QP
11	5.0010	38.13	11.02	49.15	60.00	-10.85	AVG
12	22.0740	38.49	11.74	50.23	60.00	-9.77	QP

Guangdong Asia Hongke Test Technology Limited B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.

Mod	Model name: N16U2-AN						Test Date :					2024-06-11										
ATM	Pres	sure:	101	kPa								-	Test Res	sult:			\triangleright] F	Pass [Fail		
Phas	se:		Neu	tral																		
120.0) dBu	ı۷																				
110																						
100																						
90																						
80																						_
70																						_
60 .	-					_																
50	5			_	2	5															12	
40	•	Mary	100	A 0	À	4.0			at .us	i 	Ū		11 X						Markey	منعملين بالدرمات	₩.	_
30	M	mmm	,	'ሦ \	X		1/1/1/1	P MANA	n.An.	12 Y	_{Mar} ∆uq ^h	rd har man	May	- Landard	Lalparay	MAN	hun	Market Ba	Juna			peal
20		*****	/many	wh_A		MAN	4	p/***	Vingglan.		-24/V-4	A MANAGEMENT	and the same of th	Janes, Santa	4,11	May .	-	4	1	~~~~~~		AVG
10					\parallel	Ш											_					AVG
0					\parallel	Ш												+				_
-10																		-				-
-20					Ш	Ш																
0.	150			Π	500	1					(N	Hz)			nnn						3	0.000

Remark: Correct Factor = Insertion loss of LISN + Cable loss + Insertion loss of Pulse Limiter; Measurement Result = Reading Level +Correct Factor; Margin = Measurement Result- Limit;

	No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
		(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
	1	0.1500	43.70	11.84	55.54	66.00	-10.46	AVG
	2	0.5190	34.05	10.69	44.74	56.00	-11.26	QP
	3	0.5280	23.97	10.69	34.66	46.00	-11.34	AVG
	4	0.5639	24.62	10.68	35.30	46.00	-10.70	QP
Ī	5	0.5865	35.32	10.68	46.00	56.00	-10.00	AVG
	6	0.5865	24.31	10.68	34.99	46.00	-11.01	QP
	7	0.6270	20.83	10.67	31.50	46.00	-14.50	QP
	8	0.6585	19.32	10.67	29.99	46.00	-16.01	AVG
	9	1.1535	18.39	10.66	29.05	46.00	-16.95	QP
	10	1.5540	30.12	10.72	40.84	56.00	-15.16	AVG
	11	2.9985	32.83	10.78	43.61	56.00	-12.39	QP
	12	22.2720	36.10	11.68	47.78	60.00	-12.22	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Guangdong Asia Hongke Test Technology Limited B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.

7 Test Setup Photographs of EUT

Please refer to separated files for Test Setup Photos of the EUT.

8 External Photographs of EUT

Please refer to separated files for External Photos of the EUT.

9 Internal Photographs of EUT

Please refer to separated files for Internal Photos of the EUT.

-----End-----