

FCC Test Report

Application No.:	DNT241013R1481-3385
Applicant:	Jinhua Gordon Sports Co., Ltd.
Address of Applicant:	Fenghuang Mountain industrial functional area, Tongqin Town, Wuyi County, Jinhhua City, China
EUT Description:	Music Boxing Machine
Model No.:	MBT,MBT-01,MBT-02,MBT-03,MBT-04,MBT-05,MBT-06,MBT-07,MBT-08, MBT-09
FCC ID:	2BGMC-MBT
Power Supply:	DC 3.7V From Battery
Charging Voltage:	DC 5V
	47 CFR FCC Part 2, Subpart J
Standards:	47 CFR Part 15, Subpart C
	ANSI C63.10: 2013
Date of Receipt:	2024/5/17
Date of Test:	2024/5/18 to 2024/5/25
Date of Issue:	2024/5/28
Test Result:	PASS

Prepared By: Reviewed By: Approved By:

Wayne . Jon	(Testing Engineer)
Pencils chen	(Project Engineer)
Here than	(Manager)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com

 Tel:+86-769-88087383

 E-mail: service@dn-testing.com

Date: May 28, 2024 Page: 2 / 65

Report Revise Record

Report Version	Revise Time	Issued Date Valid Version		Notes
V1.0		May.28, 2024	Valid	Original Report

1

Report No.: DNT241013R1481-3385

Date: May 28, 2024

Page: 3/65

Test Summary

Test Item	Test Requirement	Test Method	Test Result	Result
Antenna Requirement	15.203/247(b)		Clause 3.1	PASS
20dB Emission Bandwidth	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.2	PASS
Conducted Peak Output Power	15.247 (b)(1)	ANSI C63.10 (2013)	Clause 3.3	PASS
Carrier Frequencies Separation	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.4	PASS
Dwell Time	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.5	PASS
Hopping Channel Number	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.6	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10 (2013)	Clause 3.7	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10 (2013)	Clause 3.8	PASS
Radiated Spurious emissions	15.247(d); 15.205/15.209	ANSI C63.10 (2013)	Clause 3.9	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d); 15.205/15.209	ANSI C63.10 (2013)	Clause 3.10	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10 (2013)	Clause 3.11	NA

Note:

1. "N/A" denotes test is not applicable in this test report.

Date: May 28, 2024

Page: 4/65

Contents

1 Test Summary				
2 General Information				5
2.1 Test Location				5
2.2 General Description of EUT				
2.3 Channel List				7
2.4 5Test Environment and Mode				8
2.5 Power Setting of Test Software	\square	\square		
2.6 Description of Support Units				9
2.7 Test Facility				9
2.8 Measurement Uncertainty (95% confidence levels, k=2)	\square			10
2.9 Equipment List				11
2.10 Assistant equipment used for test				12
3 Test results and Measurement Data	\bigcirc			
3.1 Antenna Requirement				13
3.2 20dB Emission Bandwidth				14
3.3 Conducted Output Power	\square	<u> </u>		
3.4 Carrier Frequencies Separationy				16
3.5 Dwell Time				17
3.6 Hopping Channel Number	\square	\square	<u> </u>	
3.7 Band-edge for RF Conducted Emissions				19
3.8 RF Conducted Spurious Emissions				20
3.9 Radiated Spurious Emissions	\square	<u> </u>	<u> </u>	21
3.10 Restricted bands around fundamental frequency				29
3.11 AC Power Line Conducted Emissions				
4 Appendix	<u> </u>	<u> </u>	<u> </u>	
Appendix A: 20dB Emission Bandwidth				35
Appendix B: Maximum conducted output power				39
Appendix C: Carrier frequency separation	<u> </u>			
Appendix D: Dwell Time				45
Appendix F: Number of hopping channels				49
Appendix F: Band edge measurements	\sum	\sim	<u> </u>	
Appendix F: Conducted Spurious Emission		·····		56

2 General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China
Test engineer:	Wayne Lin

Date: May 28, 2024

Page: 6/65

2.2 General Description of EUT

Manufacturer:	Jinhua Gordon Sports Co., Ltd.		
Address of Manufacturer:	Fenghuang Mountain industrial functional area, Tongqin Town, Wuyi County, Jinhhua City, China		
Test EUT Description:	Music Boxing Machine		
Model No.:	MBT		
Additional Model(s):	MBT-01,MBT-02,MBT-03,MBT-04,MBT-05,MBT-06,MBT-07,MBT-08, MBT-09		
Chip Type:	AC6969D		
Serial number:	PR241013R1481		
Power Supply:	DC 3.7V From Battery		
Charging Voltage:	DC 5V		
Trade Mark:	1		
Hardware Version:	V1.0		
Software Version:	V1.0		
Operation Frequency:	2402 MHz to 2480 MHz		
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)		
Type of Modulation:	GFSK,π/4-DQPSK,8DPSK		
Sample Type:	Portable Device, Module, Mobile Device		
Antenna Type:	□ External, ⊠ Integrated		
Antenna Ports:	⊠ Ant 1, □ Ant 2, □ Ant 3		
Antonna Osinti	⊠ Provided by applicant		
Antenna Gain*:	-0.58dBi		
	⊠ Provided by applicant		
RF Cable*:	0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz); 1.8dB(4.4~6GHz);		

Remark:

*All models are just color differences, motherboard, PCB circuit board, chip, electronic components, appearance is all the same.

*Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information, DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

Date: May 28, 2024

Page: 7/65

2.3 Channel List

		Opera	ation Frequenc	y of each cl	nannel		
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
2 3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
_ 12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz)	

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Date: May 28, 2024

Page: 8/65

2.4 5Test Environment and Mode

Operating Environment:		
Temperature:	20~25.0 °C	
Humidity:	45~56 % RH	
Atmospheric Pressure:	101.0~101.30 KPa	
Test mode:		
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.	

Date: May 28, 2024 Page: 9 / 65

2.5 Power Setting of Test Software

Software Name	\bigcirc \bigcirc	FCC_assist_1.0.2.2	O, O , O
Frequency(MHz)	2402	2441	2480
GFSK Setting	10	10	10
π/4-DQPSK Setting	10	10	10
8DPSK	10	10	10

2.6 Description of Support Units

The EUT has been tested independent unit.

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

• FCC, USA

Designation Number: CN1348

A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

IC#: 31026.

Date: May 28, 2024

Page: 10/65

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	20dB Emission Bandwidth	±0.0196%
2	Carrier Frequency Separation	±1.9%
3	Number of Hopping Channel	±1.9%
4	Time of Occupancy	±0.028%
5	Max Peak Conducted Output Power	±0.743 dB
6	Band-edge Spurious Emission	±1.328 dB
7	Conducted RF Spurious Emission	9KHz-1GHz:±0.746dB 1GHz-26GHz:±1.328dB

No.	Item	Measurement Uncertainty
1	Conduction Emission	± 3.0dB (150kHz to 30MHz)
\circ	O, O , O , O , O	± 4.8dB (Below 1GHz)
0	Radiated Emission	± 4.8dB (1GHz to 6GHz)
2		± 4.5dB (6GHz to 18GHz)
		± 5.02dB (Above 18GHz)

2.9 Equipment List

For Connect EUT Antenna Terminal Test					
Description	Manufacturer	Model	Serial Number	Cal date	Due date
Signal Generator	Keysight	N5181A-6G	MY48180415	2023-10-25	2024-10-24
Signal Generator	Keysight	N5182B	MY57300617	2023-10-25	2024-10-24
Power supply	Keysight	E3640A	ZB2022656	2023-10-25	2024-10-24
Radio Communication Tester	R&S	CMW500	105082	2023-10-25	2024-10-24
Spectrum Analyzer	Aglient	N9010A	MY52221458	2023-10-25	2024-10-24
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA	NA
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA
Power Sensor	Anritsu	ML2495A	2129005	2023-10-25	2024-10-24
Pulse Power Sensor	Anritsu	MA2411B	1911397	2023-10-25	2024-10-24
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2023-10-25	2024-10-24

	Test Equipment for Conducted Emission					
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date	
Receiver	R&S	ESCI3	101152	2023-10-24	2024-10-23	
LISN	R&S	ENV216	102874	2023-10-24	2024-10-23	
ISN	R&S	ENY81-CA6	1309.8590.03	2023-10-24	2024-10-23	

Test Ec	quipment for F	Radiated Emis	sion(30MHz	-1000MH	z)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Receiver	R&S	ESR7	102497	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TILE-FULL	NA	NA	NA
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2023-10-24	2024-10-23
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2023-10-24	2024-10-23

Date: May 28, 2024

Page: 12/65

Test E	quipment for I	Radiated Emis	ssion(Above	1000MHz	<u>z)</u>
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Frequency analyser	Keysight	N9010A	MY52221458	2023-10-24	2024-10-23
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Horn Antenna	ETS-LINDGREN	3117	00252567	2023-10-24	2024-10-23
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TILE-FULL	NA	NA	NA
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2023-10-24	2024-10-23
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2023-10-24	2024-10-23

2.10 Assistant equipment used for test

	Code	Equipment	Manufacturer	Model No.	Equipment No.
\langle	_1	Computer	acer	N22C8	EMC notebook01

3 Test results and Measurement Data

3.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

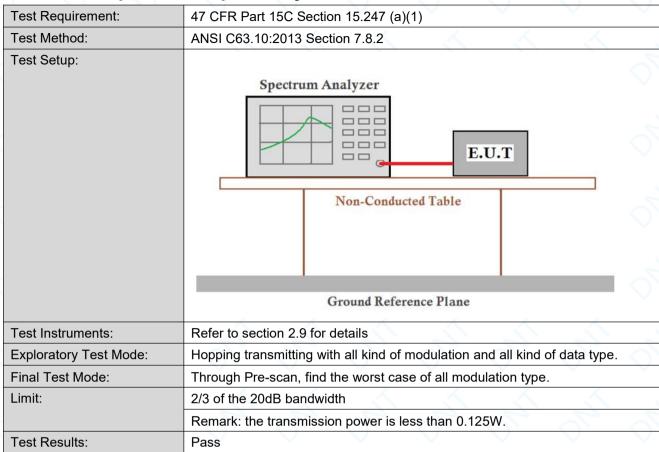
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -0.58dBi.

3.2 20dB Emission Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 Section 7.8.7
Test Setup:	Spectrum Analyzer E.U.T
	Non-Conducted Table
	Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	NA
Test Results:	Pass

The detailed test data see: Appendix A


3.3 Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2013 Section 7.8.5
Test Setup:	Spectrum Analyzer E.U.T
	Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Refer to section 2.9 for details
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	(20.97dBm) 125mW
Test Results:	Pass

The detailed test data see: Appendix B

3.4 Carrier Frequencies Separationy

The detailed test data see: Appendix C

3.5 Dwell Time

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 Section 7.8.4	Κ	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
Instruments Used:	Refer to section 2.9 for details		
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.		
Limit:	0.4 Second		
Test Results:	Pass		

The detailed test data see: Appendix D

3.6 Hopping Channel Number

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 Section 7.8.3		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table	n n n	0, 0, 0,
Instruments Used:	Ground Reference Plane Refer to section 2.9 for details	d'	<
Test Mode:	Hopping transmitting with all kind of modulation	$\mathbf{)}$	$\overline{\mathbf{O}}$
Limit:	At least 15 channels		
Test Results:	Pass	2	~

The detailed test data see: Appendix E

Report No.: DNT241013R1481-3385 Da

3.7 Band-edge for RF Conducted Emissions

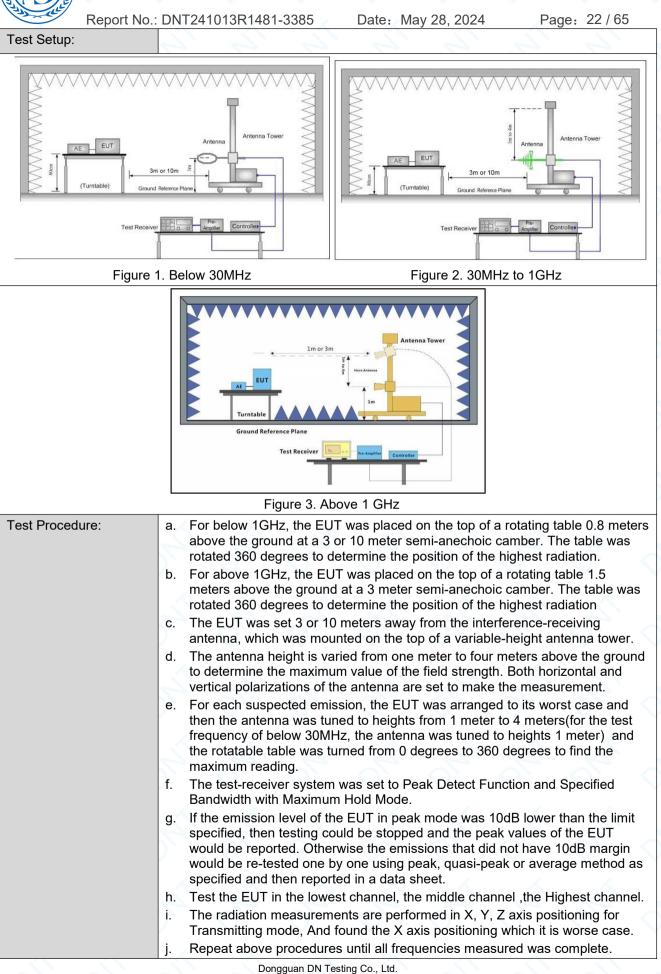
Test Requirement:	47 CFR Part 15C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013 Section 7.8.6		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
Instruments Used:	Refer to section 2.9 for details		
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type.		
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test Results:	Pass		

The detailed test data see: Appendix F

3.8 RF Conducted Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10: 2013 Section 11.11
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Results:	Pass

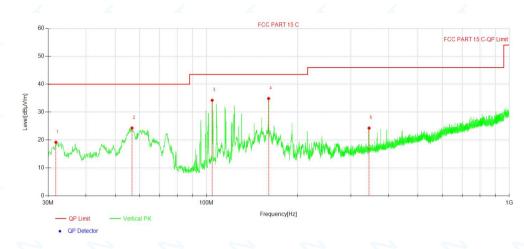
The detailed test data see: Appendix G


Date: May 28, 2024

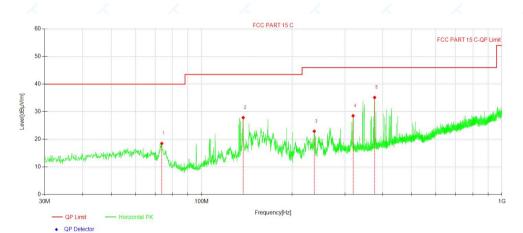
Page: 21/65

3.9 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Section	n 15.209 and 15.20)5		\sim
Test Method:	ANSI C63.10: 2013 Sect	ion 11.12	<u> </u>	<u> </u>	<u> </u>
Test Site:	Measurement Distance:	3m or 10m (Semi-A	Anechoic Ch	amber)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
		Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz (DC≥0.98)	Average
	A &	$\langle \rangle$	\sim	≥1/T (DC<0.98)	
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	- 🔨	-<	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	<->	30
	1.705MHz-30MHz	30	<u> </u>	<u> </u>	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3



Report No.	: DNT241013R1481-3385 Date: May 28	, 2024 Page: 23 / 65
Test Configuration:	Measurements Below 1000MHz • RBW = 120 kHz • VBW = 300 kHz • Detector = Peak • Trace mode = max hold Peak Measurements Above 1000 MHz • RBW = 1 MHz • VBW ≥ 3 MHz • Detector = Peak • Sweep time = auto • Trace mode = max hold Average Measurements Above 1000MHz • RBW = 1 MHz • VBW ≥ 1 MHz • VBW = 10 Hz, when duty cycle is no less than • VBW ≥ 1/T, when duty cycle is less than 98 p transmission duration over which the transmitter maximum power control level for the tested mode	percent where T is the minimum r is on and is transmitting at its
Exploratory Test Mode:	Transmitting with all kind of modulations, data ra Charge+Transmitting mode.	ates.
Final Test Mode:	Pretest the EUT at Transmitting mode. Through Pre-scan, find the DH5 of data type is t type.	the worst case of All modulation
Instruments Used:	Refer to section 2.9 for details	1 1 1
Test Results:	Pass	222


Test data For 30-1000MHz

Vertical:

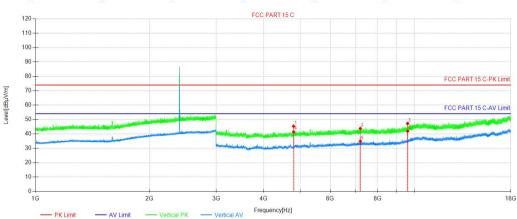
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/ m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	31.8432	28.95	-9.76	19.19	40.00	20.81	100	10	QP
2	56.7747	32.72	-8.43	24.29	40.00	15.71	100	247	QP
3	104.5034	46.13	-11.91	34.22	43.50	9.28	200	0	QP
4	160.478	42.66	-7.80	34.86	43.50	8.64	100	161	QP
5	344.6025	30.13	-5.88	24.25	46.00	21.75	100	172	QP
	1 2 3 4	NO. [MHz] 1 31.8432 2 56.7747 3 104.5034 4 160.478	NO. Freq. [MHz] Level [dBμV] 1 31.8432 28.95 2 56.7747 32.72 3 104.5034 46.13 4 160.478 42.66	NO. Freq. [MHz] Level [dBµV] Factor [dB/m] 1 31.8432 28.95 -9.76 2 56.7747 32.72 -8.43 3 104.5034 46.13 -11.91 4 160.478 42.66 -7.80	NO. Freq. [MHz] Level [dBμV] Factor [dB/m] Level [dBμV/m] 1 31.8432 28.95 -9.76 19.19 2 56.7747 32.72 -8.43 24.29 3 104.5034 46.13 -11.91 34.22 4 160.478 42.66 -7.80 34.86	NO. Freq. [MHz] Level [dBμV] Factor [dB/m] Level [dBμV/m] [dBμV/m] 1 31.8432 28.95 -9.76 19.19 40.00 2 56.7747 32.72 -8.43 24.29 40.00 3 104.5034 46.13 -11.91 34.22 43.50 4 160.478 42.66 -7.80 34.86 43.50	NO. $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NO. Freq. [MHz] Level [dBμV] Factor [dB/m] Level [dBμV/m] [dBμV/m] Margin [dB] Height [dB] 1 31.8432 28.95 -9.76 19.19 40.00 20.81 100 2 56.7747 32.72 -8.43 24.29 40.00 15.71 100 3 104.5034 46.13 -11.91 34.22 43.50 9.28 200 4 160.478 42.66 -7.80 34.86 43.50 8.64 100	NO. $\begin{bmatrix} Freq. [MHz] \\ [MHz] \end{bmatrix}$ $\begin{bmatrix} Level \\ [dB\muV] \\ [dB\muV] \end{bmatrix}$ $\begin{bmatrix} Factor \\ [dB\muV] \\ [dB\muV] \\ [dB\muV] m] \end{bmatrix}$ $\begin{bmatrix} IdB\muV/ \\ m] \\ [dB] \\ m]$ $\begin{bmatrix} Margin \\ [dB] \\ [dB] \\ [dB] \\ [cm] \end{bmatrix}$ $\begin{bmatrix} Angle \\ [cm] \\ [cm] \\ m] \end{bmatrix}$ $\begin{bmatrix} Angle \\ [cm] \\ m] \\ m]$ $\begin{bmatrix} Angle \\ [cm] \\ m] \end{bmatrix}$ $\begin{bmatrix} Angl$

Horizontal :

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	73.6544	29.36	-10.87	18.49	40.00	21.51	200	360	QP
2	137.4867	36.58	-8.73	27.85	43.50	15.65	200	119	QP
3	237.1157	32.41	-9.49	22.92	46.00	23.08	200	360	QP
4	319.3799	34.84	-6.32	28.52	46.00	17.48	100	37	QP
5	376.7127	40.07	-4.92	35.15	46.00	10.85	100	288	QP

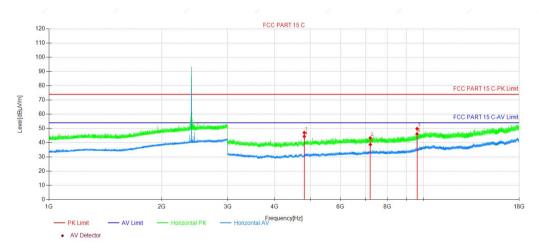
Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China


 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

For above 1GHz DH5 2402MHz

Vertical:

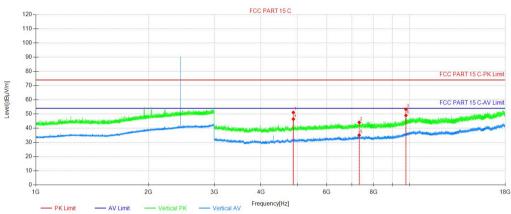

ventical

AV Detector

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Heigh t [cm]	Angle [°]	Remark
	1	4803.84	49.93	-4.61	45.32	74.00	28.68	150	15	Peak
	2	7206.21	45.53	-1.76	43.77	74.00	30.23	150	3	Peak
	3	9607.83	46.37	0.87	47.24	74.00	26.76	150	58	Peak
	4	4804.59	45.99	-4.61	41.38	54.00	12.62	150	15	AV
~	5	7206.21	36.63	-1.76	34.87	54.00	19.13	150	15	AV
	6	9608.58	41.02	0.88	41.90	54.00	12.10	150	58	AV

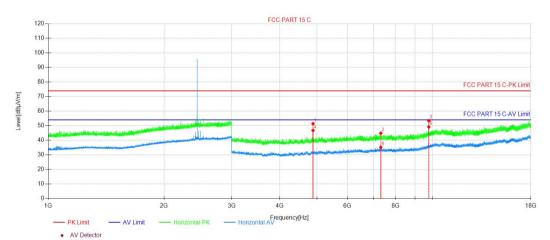
Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4803.84	51.66	-4.61	47.05	74.00	26.95	150	151	Peak
2	7206.21	45.08	-1.76	43.32	74.00	30.68	150	3	Peak
3	9608.58	48.97	0.88	49.85	74.00	24.15	150	27	Peak
4	4804.59	49.01	-4.61	44.40	54.00	9.60	150	151	AV
5	7206.96	40.46	-1.76	38.70	54.00	15.30	150	12	AV
6	9608.58	45.24	0.88	46.12	54.00	7.88	150	27	AV


Dongguan DN Testing Co., Ltd.

Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

DH5 2441MHz


Vertical:

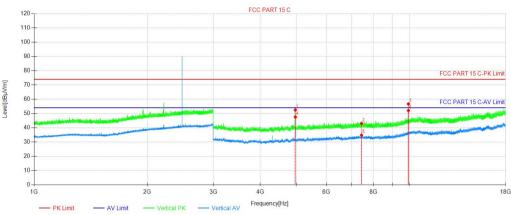
AV Detector

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
	1	4881.84	55.83	-4.72	51.11	74.00	22.89	150	149	Peak
	2	7323.21	45.59	-1.49	44.10	74.00	29.90	150	7	Peak
1	3	9763.83	51.67	1.64	53.31	74.00	20.69	150	0	Peak
	4	4882.59	51.18	-4.72	46.46	54.00	7.54	150	149	AV
	5	7323.21	36.62	-1.49	35.13	54.00	18.87	150	20	AV
	6	9764.58	47.36	1.64	49.00	54.00	5.00	150	1	AV

Horizontal:

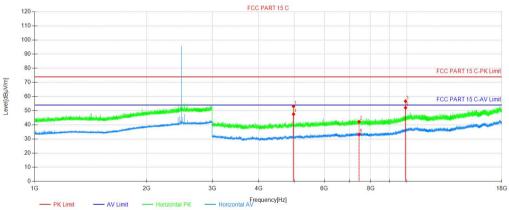
			The second s							
	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
	1	4881.84	56.06	-4.72	51.34	74.00	22.66	150	154	Peak
	2	7323.21	46.31	-1.49	44.82	74.00	29.18	150	59	Peak
	3	9764.58	51.78	1.64	53.42	74.00	20.58	150	31	Peak
	4	4882.59	51.44	-4.72	46.72	54.00	7.28	150	113	AV
	5	7323.21	36.60	-1.49	35.11	54.00	18.89	150	59	AV
_	6	9764.58	47.53	1.64	49.17	54.00	4.83	150	19	AV
. 7										

Dongguan DN Testing Co., Ltd.


 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

DH5 2480MHz


Vertical:

AV Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4959.84	57.39	-4.86	52.53	74.00	21.47	150	16	Peak
2	7440.22	44.38	-1.34	43.04	74.00	30.96	150	16	Peak
3	9919.84	54.46	2.26	56.72	74.00	17.28	150	0	Peak
4	4960.59	52.41	-4.86	47.55	54.00	6.45	150	138	AV
5	7440.22	36.14	-1.34	34.80	54.00	19.20	150	30	AV
6	9920.59	49.85	2.27	52.12	54.00	1.88	150	0	AV

Horizontal:

AV Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4959.84	57.94	-4.86	53.08	74.00	20.92	150	125	Peak
2	7440.22	43.54	-1.34	42.20	74.00	31.80	150	28	Peak
3	9919.84	54.45	2.26	56.71	74.00	17.29	150	28	Peak
4	4960.59	52.39	-4.86	47.53	54.00	6.47	150	125	AV
5	7440.22	34.49	-1.34	33.15	54.00	20.85	150	3	AV
6	9920.59	49.83	2.27	52.10	54.00	1.90	150	28	AV
-	-		-					-	

Note:

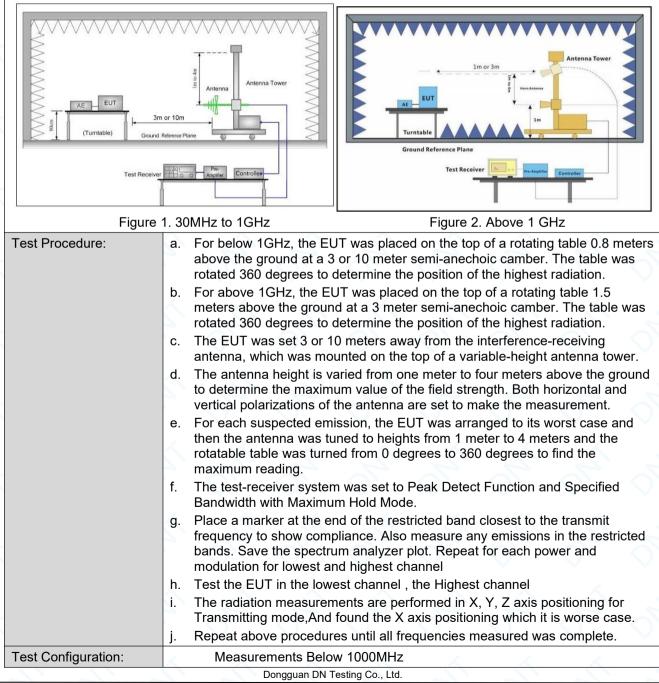
1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)

2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.

4. All channels had been pre-test,DH5 is the worst case. only the worst case was reported.



Report No.: DNT241013R1481-3385 Date: May 28, 2024 Page: 29 / 65

3.10 Restricted bands around fundamental frequency

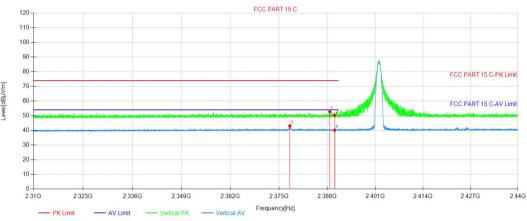
Test Requirement:	47 CFR Part 15C Section 1	5.209 and 15.205	\bigcirc \bigcirc \bigcirc
Test Method:	ANSI C63.10: 2013 Section	11.12	
Test Site:	Measurement Distance: 3m	or 10m (Semi-Anechoic	Chamber)
Limit:	Frequency	Limit (dBuV/m)	Remark
	30MHz-88MHz	40.0	Quasi-peak
	88MHz-216MHz	43.5	Quasi-peak
	216MHz-960MHz	46.0	Quasi-peak
	960MHz-1GHz	54.0	Quasi-peak
		54.0	Average Value
	Above 1GHz	74.0	Peak Value

Test Setup:

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

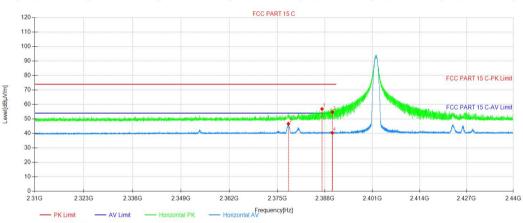
 Web: www.dn-testing.com
 Tel:+86-769-88087383

 E-mail: service@dn-testing.com



Report No.: D	NT241013R1481-3385 Date:	May 28, 2024	Page: 30 / 65
Report No.: D	N1241013R1481-3385Date:• RBW = 120 kHz• VBW = 300 kHz• Detector = Peak• Trace mode = max holdPeak Measurements Above 1• RBW = 1 MHz• VBW \geq 3 MHz• Detector = Peak• Sweep time = auto• Trace mode = max holdAverage Measurements Above• RBW = 1 MHz• VBW \geq 1 MHz• VBW = 10 Hz, when duty cyominimum	1000 MHz ve 1000MHz ycle is no less than §	98 percent.
	transmission duration over which the maximum power control level for the		
Exploratory Test Mode:	Transmitting with all kind of modulati Transmitting mode.	ons, data rates.	
Final Test Mode:	Pretest the EUT Transmitting mode. Through Pre-scan, find the DH5 of d type. Only the worst case is recorded in th	lata type is the worst	case of all modulation
Instruments Used:	Refer to section 2.9 for details	$\langle \cdot \rangle$	
Test Results:	Pass		1 1 1 1

Test Date DH5 2402MHz

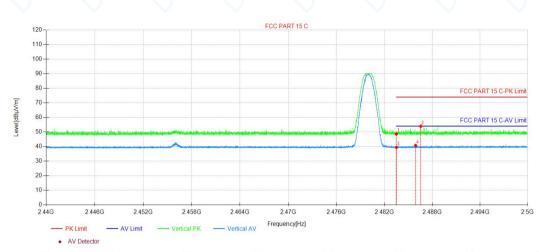

Vertical:

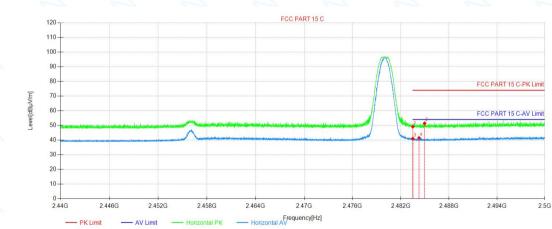
AV Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2388.69	53.49	-0.80	52.69	74.00	21.31	150	51	Peak
2	2390.01	51.05	-0.80	50.25	74.00	23.75	150	244	Peak
3	2377.91	43.91	-0.84	43.07	54.00	10.93	150	103	AV
4	2390.01	40.91	-0.80	40.11	54.00	13.89	150	60	AV

Horizontal:

AV Detector


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2387.20	57.70	-0.80	56.90	74.00	17.10	150	353	Peak
2	2390.01	55.60	-0.80	54.80	74.00	19.20	150	359	Peak
3	2378.02	47.53	-0.84	46.69	54.00	7.31	150	67	AV
4	2390.01	41.17	-0.80	40.37	54.00	13.63	150	67	AV


DH5 2480MHz

Horizontal:

\langle	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
	1	2483.50	48.94	-0.29	48.65	74.00	25.35	150	351	Peak
	2	2486.57	54.18	-0.26	53.92	74.00	20.08	150	159	Peak
	3	2483.50	39.69	-0.29	39.40	54.00	14.60	150	103	AV
	4	2485.92	40.97	-0.27	40.70	54.00	13.30	150	137	AV

AV Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2483.50	49.42	-0.29	49.13	74.00	24.87	150	49	Peak
2	2484.97	51.69	-0.27	51.42	74.00	22.58	150	69	Peak
3	2483.50	41.30	-0.29	41.01	54.00	12.99	150	1	AV
4	2484.28	41.75	-0.28	41.47	54.00	12.53	150	69	AV

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe

including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.

2.All channels had been pre-test,DH5 is the worst case. only the worst case was reported.

3.11 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section	n 15.207						
Test Method:	ANSI C63.10: 2013	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
Test Frequency Range:	150kHz to 30MHz							
Limit:		📈 📈 Limit (dBuV)					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the log	arithm of the frequency.						
Test Procedure:	 room. 2) The EUT was connected Impedance Stabilization impedance. The power of a second LISN 2, which implane in the same way a multiple socket outlet stratistic single LISN provided the 3) The tabletop EUT was ground reference plane. placed on the horizontal 4) The test was perform 	ed with a vertical ground ref	bugh a LISN 1 (Line $50\Omega/50\mu$ H + 5Ω linear the EUT were connected to eference ing measured. A iple power cables to a exceeded. c table 0.8m above the gement, the EUT was					
	vertical ground reference	n from the vertical ground re plane was bonded to the h N 1 was placed 0.8 m from	orizontal ground					
	vertical ground reference reference plane. The LIS unit under test and bond mounted on top of the gr between the closest poin the EUT and associated In order to find the maxin	e plane was bonded to the h N 1 was placed 0.8 m from ed to a ground reference pla ound reference plane. This its of the LISN 1 and the EU equipment was at least 0.8 num emission, the relative p interface cables must be ch	orizontal ground the boundary of the ane for LISNs distance was IT. All other units of m from the LISN 2.					
Test Setup:	vertical ground reference reference plane. The LIS unit under test and bond mounted on top of the gr between the closest poin the EUT and associated In order to find the maxin equipment and all of the	e plane was bonded to the h N 1 was placed 0.8 m from ed to a ground reference pla ound reference plane. This its of the LISN 1 and the EU equipment was at least 0.8 num emission, the relative p interface cables must be ch	orizontal ground the boundary of the ane for LISNs distance was IT. All other units of m from the LISN 2.					
Test Setup:	vertical ground reference reference plane. The LIS unit under test and bond mounted on top of the gr between the closest poin the EUT and associated In order to find the maxin equipment and all of the	e plane was bonded to the h SN 1 was placed 0.8 m from ed to a ground reference plane. This ound reference plane. This its of the LISN 1 and the EU equipment was at least 0.8 num emission, the relative p interface cables must be ch onducted measurement.	orizontal ground the boundary of the ane for LISNs distance was IT. All other units of m from the LISN 2.					

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

 Report No.: DNT241013R1481-3385
 Date: May 28, 2024
 Page: 34 / 65

 Exploratory Test Mode:
 Transmitting with all kind of modulations, data rates at lowest, middle and highest channel. Charge + Transmitting mode.

 Final Test Mode:
 Through Pre-scan, find the the worst case.

 Instruments Used:
 Refer to section 2.9 for details

 Test Results:
 N/A

Note: The wireless function does not work while the prototype is charging.

4 Appendix

Appendix A: 20dB Emission Bandwidth

Test Result	\mathbf{O}	\bigcirc		\circ			
Test Mode	Antenna	Freq(MHz)	20dB EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	1.029	2401.517	2402.546	🔨	<
DH5	Ant1	2441	1.050	2440.502	2441.552		
		2480	1.056	2479.502	2480.558		
	\sim	2402	1.335	2401.361	2402.696		
2DH5	Ant1	2441	1.347	2440.361	2441.708		
		2480	1.332	2479.370	2480.702	🔨	
- A	\sim	2402	1.335	2401.355	2402.690		
3DH5	Ant1	2441	1.305	2440.382	2441.687	<u> </u>	
		2480	1.359	2479.343	2480.702		