

TEST REPORT

Application No.: DNT240738R1242-3091

Applicant: Shenzhen Baiyi Information Technology Co., Ltd

Address of NO.289, Ainan Road, Nanlian Commuity, Longgang Street, Longgang District,

Applicant: Shenzhen Guangdong Province, China

EUT Description: Wireless Connectivity Keyboard and Mouse Kit

GT900,E75,E76,E77,E78,E79,E80,E81,GT800,GT801,GT802,GT803,GT804,GT Model No.:

805 S201,S202,S203,S204,S205,S206

2BGHM-GT900 FCC ID:

DC 3.7V From Battery; DC 5V From Adapter Input AC 100-240V,50/60Hz **Power Supply**

Trade Mark: Great Wall

47 CFR FCC Part 2, Subpart J

Standards: 47 CFR Part 15, Subpart C

ANSI C63.10: 2013

Date of Receipt: 2024/5/11

Date of Test: 2024/5/12 to 2024/5/23

Date of Issue: 2024/5/23

Test Result: PASS

Wayne Jon Pencils chen (Testing Engineer) **Prepared By:**

(Project Engineer) Reviewed By:

Approved By: (Manager)

Note: If there is any objection to the resul/s in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Date:May 23, 2024

Page: 2 / 31

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V2.0		May.23, 2024	Valid	Original Report

1 Test Summary

Test Item	Standard Section	Test Result
Antenna Requirement	15.203	PASS
20dB Occupied Bandwidth	15.215	PASS
Field Strength	15.249(a)	PASS
Radiated Spurious Emissions And Band Edge	15.205, 15.209, 15.249(a)(c)(d)(e), 15.35(b)	PASS
AC Power Line Conducted Emissions	15.207	PASS

Date:May 23, 2024

Page: 4/31

1 Test Summary		 	 3
2 General Information		 	5
2.1 Test Location		 	 5
2.2 General Description of EUT			
2.3 Power Setting of Test Software		 	7
2.4 Test Environment and Mode		 	 7
2.5 Channel List			
2.6 Description of Support Units			7
2.7 Test Facility		 	 8
2.8 Measurement Uncertainty (95% confidence levels,	k=2)	 	 8
2.9 Equipment List			9
2.10 Assistant equipment used for test		 	 10
3 Test results and Measurement Data			
3.1 Antenna requirements			11
3.2 20dB Occupied Bandwidth		 	 12
3.3 Field Strength of Fundamental		 	 14
3.4 Radiated Spurious Emissions		 	 19
3.5 AC Power Line Conducted Emissions		 	 29

Contents

2 General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China
Test engineer:	Wayne Lin

Date:May 23, 2024

Page: 6 / 31

2.2 General Description of EUT

Manufacturer:	Shenzhen Baiyi Information Technology Co., Ltd				
Address of Manufacturer:	NO.289, Ainan Road, Nanlian Commuity, Longgang Street, Longgang District, Shenzhen Guangdong Province, China				
EUT Description:	Wireless Connectivity Keyboard and Mouse Kit				
Test Model No.:	GT900				
Additional Model(s):	E75,E76,E77,E78,E79,E80,E81,GT800,GT801,GT802,GT803,GT804,GT 805 S201,S202,S203,S204,S205,S206				
Power Supply	DC 3.7V From Battery; DC 5V From Adapter Input AC 100-240V,50/60Hz				
Chip Type:	HFD550FSHS				
Serial number:	PR240738R1242				
Trade Mark:	Great Wall				
Hardware Version:	V1.0				
Software Version:	V1.0				
Operation Frequency:	2402MHz-2480MHz				
Type of Modulation:	GFSK				
Sample Type:	Prototype production				
Antenna Type:	☐ External, ⊠ Integrated				
Antenna Ports					
Antonno Coint	⊠ Provided by applicant				
Antenna Gain*:	3.85dBi				
	⊠ Provided by applicant				
RF Cable*:	0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz); 1.8dB(4.4~6GHz);				

Remark:

*All models are just color differences, motherboard, PCB circuit board, chip, electronic components, appearance is all the same.

*Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information, DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

Date:May 23, 2024

Page: 7 / 31

2.3 Power Setting of Test Software

Software Name	662x_FCC_Rev1.6d				
Frequency(MHz)	2402 2440 2480				
Setting	Default	Default	Default		

2.4 Test Environment and Mode

Operating Environment:	
Temperature:	20~25.0 °C
Humidity:	45~56 % RH
Atmospheric Pressure:	101.0~101.30 KPa
Test mode:	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

2.5 Channel List

	Operation Frequency of each channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz	
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz	
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz	
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz	
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz	
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	

2.6 Description of Support Units

The EUT has been tested independent unit.

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

· FCC, USA

Designation Number: CN1348

• A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD.

• Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

IC#: 31026.

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Total RF power, conducted	±0.41dB
2	RF power density, conducted	±1.96dB

No.	Item	Measurement Uncertainty		
1.	Conduction Emission	± 3.0dB (150kHz to 30MHz)		
		± 4.8dB (Below 1GHz)		
	Dedicted Engineers	± 4.8dB (1GHz to 6GHz)		
2	Radiated Emission	± 4.5dB (6GHz to 18GHz)		
		± 5.02dB (Above 18GHz)		

Report No.: DNT240738R1242-3091 Date:May 23, 2024

Page: 9/31

2.9 Equipment List

For Connect EUT Antenna Terminal Test							
Description	Manufacturer	Model	Serial Number	Cal date	Due date		
Signal Generator	Keysight	N5181A-6G	MY48180415	2023-10-25	2024-10-24		
Signal Generator	Keysight	N5182B	MY57300617	2023-10-25	2024-10-24		
Power supply	Keysight	E3640A	ZB2022656	2023-10-25	2024-10-24		
Spectrum Analyzer	Aglient	N9010A	MY52221458	2023-10-25	2024-10-24		
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA	NA		
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA		
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2023-10-25	2024-10-24		

	Test Equipment for Conducted Emission							
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date			
Receiver	R&S	ESCI3	101152	2023-10-24	2024-10-23			
LISN	R&S	ENV216	102874	2023-10-24	2024-10-23			
ISN	R&S	ENY81-CA6	1309.8590.03	2023-10-24	2024-10-23			

Test E	quipment for I	Radiated Elli	SSIOH(Delow	ΙΟΟΟΙΝΙΠΖ	
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Receiver	R&S	ESR7	102497	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2023-10-24	2024-10-23
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2023-10-24	2024-10-23
Single ring magnetic field ring antenna	ETS-LINDGREN	6502	6502	2023-10-24	2024-10-23

Test E	quipment for F	Radiated Emi	ssion(Above	1000MHz	
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Frequency analyser	Keysight	N9010A	MY52221458	2023-10-24	2024-10-23
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Horn Antenna	ETS-LINDGREN	3117	00252567	2023-10-24	2024-10-23
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2023-10-24	2024-10-23
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2023-10-24	2024-10-23

2.10 Assistant equipment used for test

Code	Equipment	Manufacturer	Model No.	Equipment No.
1	1	Adapter	Chenyang	ICSO1

3 Test results and Measurement Data

3.1 Antenna requirements

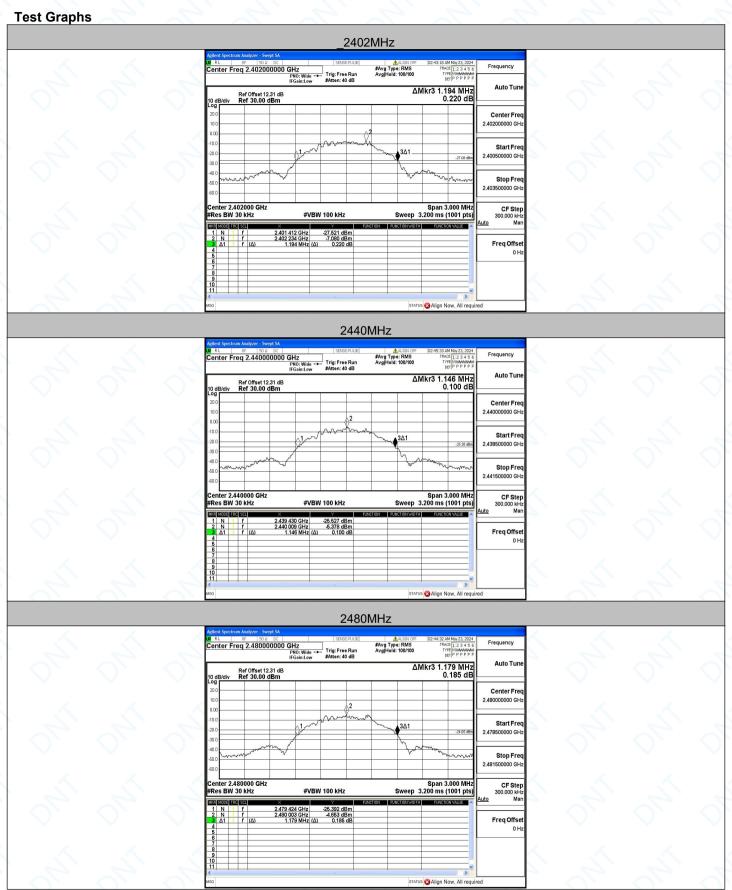
Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

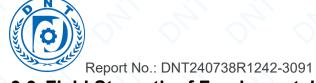
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

The antenna is welded on the main PCB and no consideration of replacement. The best case gain of the antenna is 3.85dBi.

Date:May 23, 2024

Page: 12 / 31


3.2 20dB Occupied Bandwidth


Test Requirement:	47 CFR Part 15C Section 15.215						
Test Method:	ANSI C63.10:2013 Section 7.8.7						
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Instruments Used:	Refer to section 2.9 for details						
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates						
Final Test Mode:	Through Pre-scan, find the worst case						
Limit:	no wider than 0.25% of the center frequency						
Test Results:	Pass						

Test Data:

Test Frequency (MHz)	20dB Bandwidth (MHz)	Result
2402	1.194	Pass
2440	1.146	Pass
2480	1.179	Pass

F F

Date:May 23, 2024

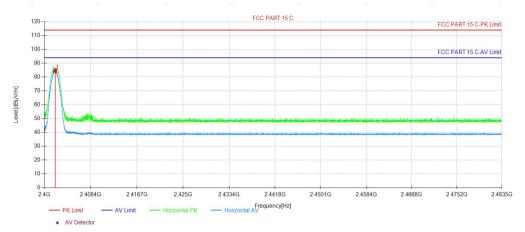
Page: 14 / 31

3.3 Field Strength of Fundamental Test Requirement: 47 CFR Part 15C Section 15.249(a) Test Method: ANSI C63.10 :2020 Section 11.12 Test Setup: Test Instruments: Refer to section 2.9 for details **Exploratory Test Mode:** Transmitting with all kind of modulations, data rates Final Test Mode: Through Pre-scan, find the worst case Limit: Field strength of fundamental@3m **Fundamental frequency** (microvolts/meter) 902-928MHz 50 2400-2483.5MHz 50 5725-5875MHz 50 24.0-24.25 250 The EUT fundamental frequency is in 2400-2483.5MHz,So the Average Limit& Peak Limit is show in below table: **Fundamental** Field strength of fundamental@3m (dBµV/m) frequency **Average Limit Peak Limit** 2400-2483.5MHz 94 114 Note: 1. Average Limit (dBµV/m)=20×log[1000×Field Strength (mV/m)]. 2. Peak Limit (dBµV/m)= Average Limit (dBµV/m)+20dB Test Configuration: RBW: ≥OBW VBW: 3XRBW Start frequency: 2400MHz Stop frequency: 2483.5MHz Sweep Time: Auto Detector: PEAK/AVG Trace Mode: Max Hold Test Procedure: the EUT was placed on the top of a rotating table 1 meters above the ground at

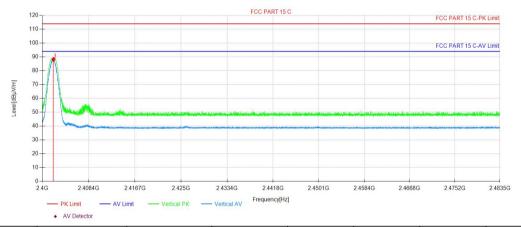
Report No.: DNT240738R1242-3091 Date:May 23, 2024 Page: 15 / 31 a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case. Repeat above procedures until all frequencies measured was complete.

Test Results:

Pass



Date:May 23, 2024


Page: 16 / 31

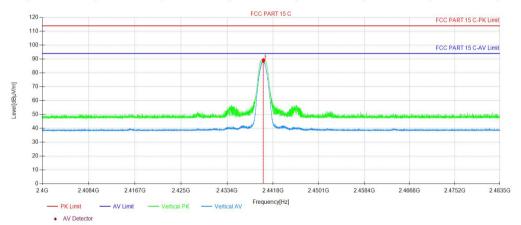
Test Data 2402MHz

Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dB	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2402.00	85.93	-0.72	85.21	114.00	28.79	150	303	PK
2	2402.00	84.62	-0.72	83.90	94.00	10.10	150	258	AV

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dB	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2402.00	89.36	-0.72	88.64	114.00	25.36	150	272	PK
2	2402.00	88.46	-0.72	87.74	94.00	6.26	150	283	AV

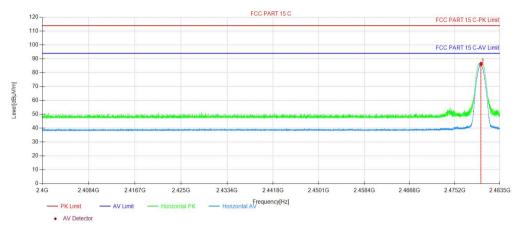
Date:May 23, 2024


Page: 17 / 31

2440MHz

Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dB µ V/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2440.00	85.84	-0.47	85.37	114.00	28.63	150	327	PK
2	2440.00	84.92	-0.47	84.45	94.00	9.55	150	327	AV


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dB	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2440.00	89.89	-0.47	89.42	114.00	24.58	150	273	PK
2	2440.00	88.93	-0.47	88.46	94.00	5.54	150	273	AV

/ Page: 18 / 31

2480MHz

Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dB	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2480.00	86.99	-0.31	86.68	114.00	27.32	150	336	PK
2	2480.00	86.25	-0.31	85.94	94.00	8.06	150	336	AV

Vertical:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dB µ V/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2480.00	88.28	-0.31	87.97	114.00	26.03	150	262	PK
2	2480.00	86.84	-0.31	86.53	94.00	7.47	150	296	AV

Note

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including LISN Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)

2. Average Level=Peak Level + 20log(Duty cycle)

3.4 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Sectio 47 CFR Part 15C Sectio 47 CFR Part 15C Sectio	n 15.209	((√		$\Delta = \Delta$					
Test Method:	ANSI C63.10 :2020 Sect				7					
Test Site:	Measurement Distance:	\rightarrow	Anechoic Ch	amber)	V V					
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark					
·	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak					
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average					
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak					
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak					
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average					
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak					
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak					
	Above 1GHz	Peak	1MHz	3MHz	Peak					
Limit:	15.209 Radiated emission limits									
	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)					
	0.009MHz-0.490MHz	2400/F(kHz)	7.7	V-	300					
	0.490MHz-1.705MHz	24000/F(kHz)	- /	- /	30					
	1.705MHz-30MHz	30		<u>-</u>	30					
	30MHz-88MHz	100	40.0	Quasi-peak	3					
	88MHz-216MHz	150	43.5	Quasi-peak	3					
	216MHz-960MHz	200	46.0	Quasi-peak	3					
	960MHz-1GHz	500	54.0	Quasi-peak	3					
	Above 1GHz	500	54.0	Average	3					
	Remark:Unless otherwise missions is 20dB above applicable to the equipmenission level radiated but The limits on the field strong the fundamental frequent attenuated to the average table or to the general limits strength.	e the maximum per ent under test. This by the device. rength of the spurio uency of the intenti- e (or, alternatively,	mitted avera s peak limit a sus emission onal radiator CISPR qua	age emission ling applies to the to so in the below the Spurious emissi-peak) limits so	able are based ssions shall be shown in this					

Fundamental frequency	Field strength of harmonics@3m (microvolts/meter)
902-928MHz	500
2400-2483.5MHz	500
5725-5875MHz	500
24.0-24.25	2500

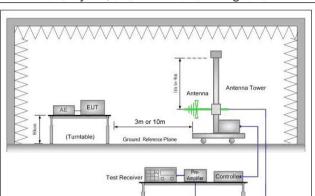
The EUT fundamental frequency is 2400-2483.5MHz,So the Average Limit& Peak Limit is show in below table:

Fundamental frequency	Field strength of spurious emission@3m (dBμV/m)					
(MHz)	Average Limit	Peak Limit				
2400-2483.5	54	74				

Note:

- 1.Average Limit (dBµV/m)=20×log[1000×Field Strength (mV/m)].
- 2.Peak Limit (dBµV/m)= Average Limit (dBµV/m)+20dB

15.205 Restricted frequency band


MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)

Test Setup:

S No.

Report No.: DNT240738R1242-3091

Date:May 23, 2024

Page: 21 / 31

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

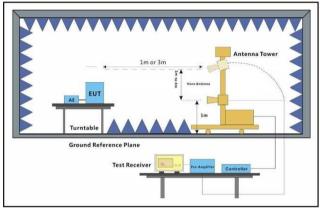


Figure 3. Above 1 GHz

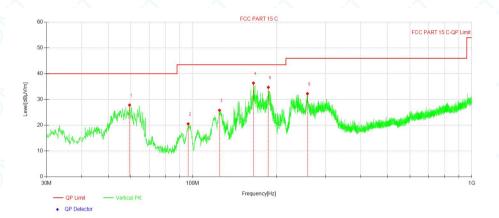
Test Procedure:

- h. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- i. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- j. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- k. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- m. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- n. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- o. Test the EUT in the lowest channel, the middle channel ,the Highest channel.
- p. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- q. Repeat above procedures until all frequencies measured was complete.

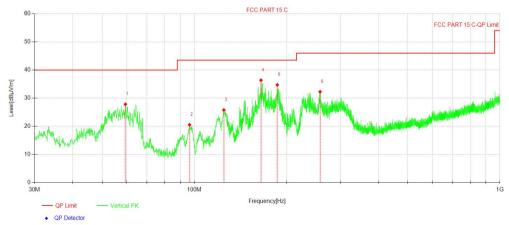
Exploratory Test Mode:

Transmitting with all kind of modulations, data rates. Transmitting mode.

Dongguan DN Testing Co., Ltd.


Report N	lo.: DNT240738R1242-3091 Date:May 23, 2024 Page: 22 / 31								
Final Test Mode:	Pretest the EUT at Transmitting mode.								
	hrough Pre-scan, find the worst case.								
Instruments Used:	Refer to section 2.9 for details								
Test Results:	Pass								

Test data

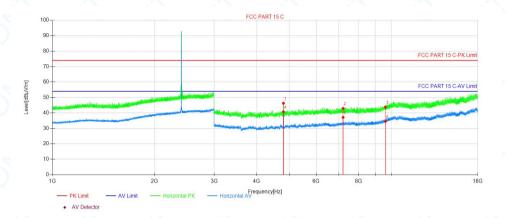

For 30-1000MHz TX

Vertical:

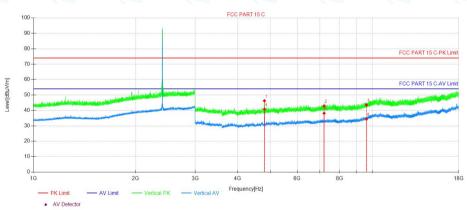
	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
	1	60.46	27.10	-8.81	18.29	40.00	21.71	100	201	QP
	2	146.70	42.11	-8.06	34.05	43.50	9.45	200	11	QP
	3	168.23	43.29	-8.17	35.12	43.50	8.38	200	6	QP
4	4	225.37	49.62	-10.94	38.68	46.00	7.32	200	52	QP
N	5	255.25	50.32	-8.80	41.52	46.00	4.48	100	219	QP
4	6	303.95	49.86	-6.86	43.00	46.00	3.00	100	163	QP

Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	59.49	36.54	-8.71	27.83	40.00	12.17	100	65	QP
2	96.45	33.67	-13.14	20.53	43.50	22.97	100	168	QP
3	124.87	35.69	-9.88	25.81	43.50	17.69	100	341	QP
4	165.23	44.36	-7.99	36.37	43.50	7.13	100	360	QP
5	186.86	44.91	-10.19	34.72	43.50	8.78	100	360	QP
6	257.97	40.96	-8.69	32.27	46.00	13.73	200	98	QP


Date:May 23, 2024

Page: 24 / 31

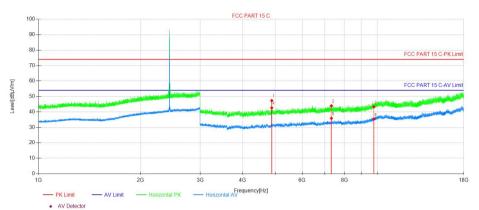

For above 1GHz TX

2402MHz

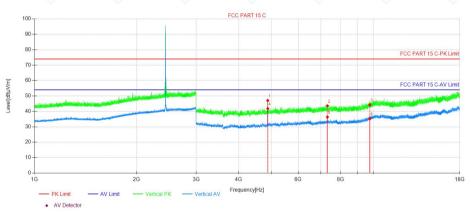
Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4803.09	50.87	-4.61	46.26	74.00	27.74	150	0	Peak
2	7206.21	44.68	-1.76	42.92	74.00	31.08	150	177	Peak
3	9608.58	42.90	0.88	43.78	74.00	30.22	150	126	Peak
4	4804.59	45.31	-4.61	40.70	54.00	13.30	150	16	AV
5	7206.21	38.89	-1.76	37.13	54.00	16.87	150	177	AV
6	9608.58	33.60	0.88	34.48	54.00	19.52	150	16	AV

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4803.09	50.84	-4.61	46.23	74.00	27.77	150	165	Peak
2	7206.21	44.61	-1.76	42.85	74.00	31.15	150	15	Peak
3	9608.58	42.68	0.88	43.56	74.00	30.44	150	0	Peak
4	4804.59	45.41	-4.61	40.80	54.00	13.20	150	177	AV
5	7206.21	39.89	-1.76	38.13	54.00	15.87	150	153	AV
6	9608.58	33.50	0.88	34.38	54.00	19.62	150	55	AV



Date:May 23, 2024

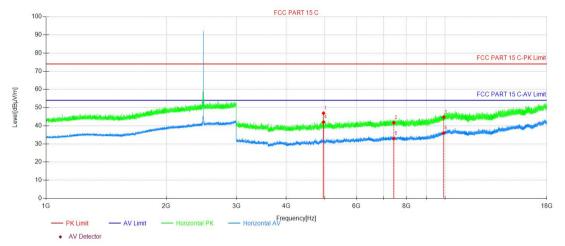

Page: 25 / 31

2440MHz

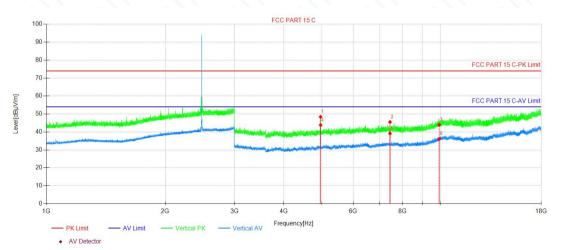
Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4879.59	52.03	-4.70	47.33	74.00	26.67	150	18	Peak
2	7320.21	45.43	-1.49	43.94	74.00	30.06	150	177	Peak
3	9760.08	41.61	1.62	43.23	74.00	30.77	150	140	Peak
4	4880.34	47.35	-4.71	42.64	54.00	11.36	150	18	AV
5	7320.21	37.36	-1.49	35.87	54.00	18.13	150	177	AV
6	9760.08	33.69	1.62	35.31	54.00	18.69	150	99	AV

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4879.59	51.74	-4.70	47.04	74.00	26.96	150	98	Peak
2	7320.21	45.03	-1.49	43.54	74.00	30.46	150	15	Peak
3	9760.08	42.62	1.62	44.24	74.00	29.76	150	111	Peak
4	4880.34	46.50	-4.71	41.79	54.00	12.21	150	83	AV
5	7320.21	37.80	-1.49	36.31	54.00	17.69	150	164	AV
6	9760.08	33.61	1.62	35.23	54.00	18.77	150	98	AV



Date:May 23, 2024

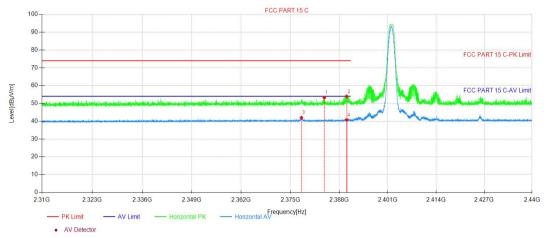

Page: 26 / 31

2480MHz

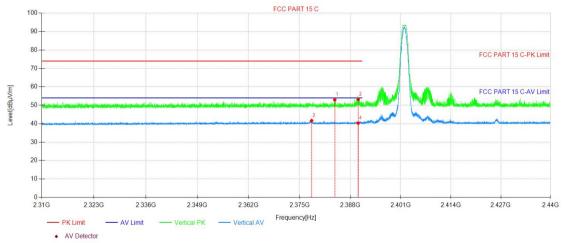
Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]
1	4959.84	51.74	-4.86	46.88	74.00	27.12	150	177
2	7440.22	43.03	-1.34	41.69	74.00	32.31	150	177
3	9920.59	42.44	2.27	44.71	74.00	29.29	150	85
4	4960.59	46.87	-4.86	42.01	54.00	11.99	150	0
5	7440.22	34.31	-1.34	32.97	54.00	21.03	150	177
6	9920.59	33.78	2.27	36.05	54.00	17.95	150	139

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]
1	4959.84	53.26	-4.86	48.40	74.00	25.60	150	79
2	7440.22	46.87	-1.34	45.53	74.00	28.47	150	122
3	9920.59	41.70	2.27	43.97	74.00	30.03	150	135
4	4960.59	48.69	-4.86	43.83	54.00	10.17	150	79
5	7440.22	40.50	-1.34	39.16	54.00	14.84	150	122
6	9920.59	33.94	2.27	36.21	54.00	17.79	150	177



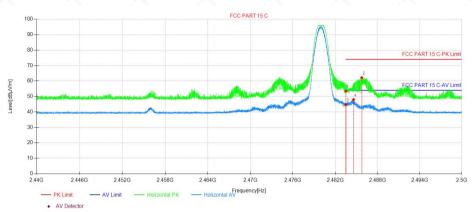
Date:May 23, 2024


Page: 27 / 31

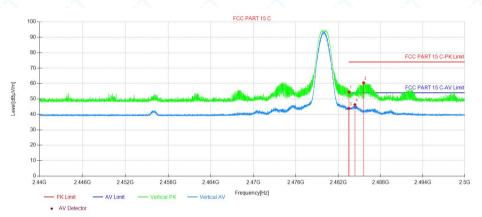
2402MHz

Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector
1	2384.04	54.00	-0.82	53.18	74.00	20.82	150	231	Peak
2	2390.01	54.72	-0.80	53.92	74.00	20.08	150	218	Peak
3	2377.94	42.82	-0.84	41.98	54.00	12.02	150	186	AV
4	2390.01	41.47	-0.80	40.67	54.00	13.33	150	218	AV



NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector
1	2384.00	53.78	-0.82	52.96	74.00	21.04	150	172	Peak
2	2390.01	54.05	-0.80	53.25	74.00	20.75	150	172	Peak
3	2378.08	42.53	-0.84	41.69	54.00	12.31	150	172	AV
4	2390.01	41.09	-0.80	40.29	54.00	13.71	150	54	AV


2480MHz

Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBμV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector
1	2483.50	53.71	-0.29	53.42	74.00	20.58	150	187	Peak
2	2485.76	62.38	-0.27	62.11	74.00	11.89	150	220	Peak
3	2483.50	44.98	-0.29	44.69	54.00	9.31	150	209	AV
4	2484.59	48.23	-0.28	47.95	54.00	6.05	150	220	AV

Vertical:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector
1	2483.51	54.73	-0.29	54.44	74.00	19.56	150	156	Peak
2	2485.59	60.72	-0.27	60.45	74.00	13.55	150	156	Peak
3	2483.51	44.11	-0.29	43.82	54.00	10.18	150	168	AV
4	2484.35	46.57	-0.28	46.29	54.00	7.71	150	168	AV

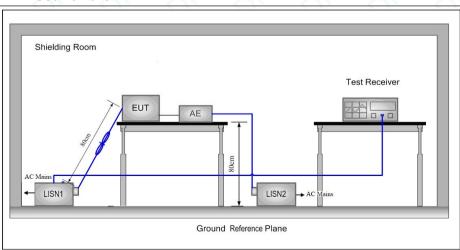
Note

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Measurement Level= Reading Level + Correct Factor(including LISN Factor, Cable Factor etc.)

- 2. Average Level=Peak Level + 20log(Duty cycle)
- 3. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Dongguan DN Testing Co., Ltd.

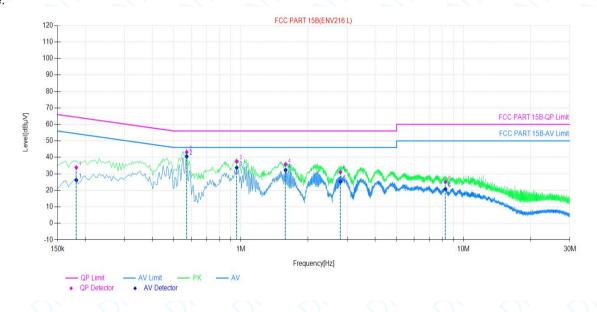

Date:May 23, 2024

Page: 29 / 31

3.5 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 1	15.207	J J J
Test Method:	ANSI C63.10: 2020	0) 0) <	O_{i} O_{i} O_{i}
Test Frequency Range:	150kHz to 30MHz		· · · · · · · · · · · · · · · · · · ·
Limit:	[[] [] [] [] [] [] [] [] [] [Limit (dBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logari	thm of the frequency.). O. O.
Test Procedure:	1) The mains terminal distroom. 2) The EUT was connected Impedance Stabilization Not impedance. The power cast a second LISN 2, which was plane in the same way as the multiple socket outlet stripped single LISN provided the reast of the tabletop EUT was proposed on the horizontal ground reference plane. Are placed on the horizontal ground reference plane. The LISN unit under test and bonded mounted on top of the ground between the closest points the EUT and associated experience of the interpretation of the interpretation.	d to AC power source throetwork) which provides a soles of all other units of the as bonded to the ground reference plane, with a vertical ground reference plane was bonded to the hold of the LISN was not collect upon a non-metallist of for floor-standing arranound reference plane, with a vertical ground reference was bonded to the hold was placed 0.8 m from to a ground reference plane. This of the LISN 1 and the EU quipment was at least 0.8 m emission, the relative paterface cables must be characteristics.	ough a LISN 1 (Line 50Ω/50μH + 5Ω linear e EUT were connected to eference ng measured. A ciple power cables to a exceeded. c table 0.8m above the gement, the EUT was ference plane. The rear eference plane. The orizontal ground the boundary of the ene for LISNs distance was IT. All other units of m from the LISN 2. positions of

Test Setup:

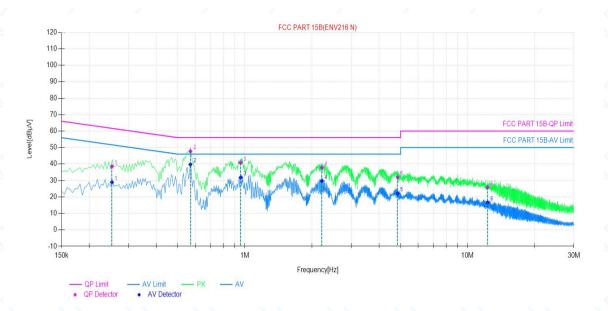

Report No.: DNT240738R1242-3091 Date:May 23, 2024 Page: 30 / 31 Exploratory Test Mode: Transmitting with all kind of modulations, data rates at lowest, middle and highest channel. Charge + Transmitting mode. Final Test Mode: Through Pre-scan, find the 6.5Mbps of rate of 802.11n(HT20) at lowest channel is the worst case. Charge + Transmitting mode. Only the worst case is recorded in the report. Instruments Used: Refer to section 2.9 for details Test Results: **PASS**

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:


NO.	Freq. [MHz]	Correct Factor [dB]	QP Reading Level	QP Result Level	QP Limit [dBµV]	QP Margin [dB]	AV Reading Level	AV Result Level	AV Limit [dBµV]	AV Margin [dB]
1	0.18	9.92	23.95	33.87	64.38	30.51	16.29	26.21	54.38	28.17
2	0.57	9.84	33.28	43.12	56.00	12.88	30.69	40.53	46.00	5.47
3	0.95	9.73	27.79	37.52	56.00	18.48	24.03	33.76	46.00	12.24
4	1.58	9.73	26.01	35.74	56.00	20.26	22.62	32.35	46.00	13.65
5	2.79	9.74	21.27	31.01	56.00	24.99	15.58	25.32	46.00	20.68
6	8.28	9.87	15.22	25.09	60.00	34.91	10.89	20.76	50.00	29.24

Date:May 23, 2024

Page: 31 / 31

Neutral Line:

NO.	Freq. [MHz]	Correct Factor [dB]	QP Reading Level	QP Result Level	QP Limit [dBµV]	QP Margin [dB]	AV Reading Level	AV Result Level	AV Limit [dBµV]	AV Margin [dB]
1	0.2526	9.87	28.67	38.54	61.67	23.13	19.03	28.90	51.67	22.77
2	0.5690	9.76	37.99	47.75	56.00	8.25	30	39.76	46.00	6.24
3	0.9566	9.71	31.07	40.78	56.00	15.22	22.11	31.82	46.00	14.18
4	2.2154	9.80	28.01	37.81	56.00	18.19	19.92	29.72	46.00	16.28
5	4.8468	9.97	21.99	31.96	56.00	24.04	12.21	22.18	46.00	23.82
6	12.2794	9.86	15.92	25.78	60.00	34.22	6.73	16.59	50.00	33.41

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including LISN Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including LISN Factor, Cable Factor etc.)

---END REPORT---