

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel: +86-755-27521059 Fax: +86-755-27521011 Http://www.sz-ctc.org.cn

TEST REPORT				
Report No:	CTC2024098406			
FCC ID	2BGEC-RPT2024			
Applicant:	Shanghai Yibo Technology Co., I	LTD		
Address:	Room C1047, Building 9, No. 785 Tieli Road, Baoshan District, Shanghai, China			
Manufacturer	Shanghai Yibo Technology Co., LT	D		
Address	Room C1047, Building 9, No. 785 ⁻ Shanghai, China	Tieli Road, Baoshan District,		
Product Name:	Broadcast Module			
Trade Mark:	EabloPilot			
Model/Type reference:	EabloPilot Tag			
Listed Model(s):	/			
Standard	FCC CFR Title 47 Part 15 Subpar	rt C Section 15.247		
Date of receipt of test sample:	May 07, 2024			
Date of testing	May 07, 2024 ~ May 21, 2024			
Date of issue	May 28, 2024			
Result:	PASS			
Compiled by:		Lugar Coron		
(Printed name+signature)	Lucy Lan			
Supervised by:		luey lan Zric Zhang		
(Printed name+signature)	Eric Zhang	2 <u> </u>		
Approved by:		Joemas		
(Printed name+signature)	Totti Zhao	1		
Testing Laboratory Name:	CTC Laboratories, Inc.			
Address:	.: Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China			
This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The Test Result in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will				

not be taken into consideration beyond this limit. The test report merely corresponds to the test sample.

Table of Contents

Page

1.	TES	T SUMMARY	
	1.1.	Test Standards	
	1.2.	Report Version	
	1.3.	Test Description	
	1.4.	Test Facility	
	1.5.	Measurement Uncertainty	5
	1.6.	Environmental Conditions	5
2.	GEN	IERAL INFORMATION	6
	2.1.	CLIENT INFORMATION	6
	2.2.	GENERAL DESCRIPTION OF EUT	6
	2.3.	Accessory Equipment Information	7
	2.4.	OPERATION STATE	
	2.5.	Measurement Instruments List	9
3.	TES	T ITEM AND RESULTS	
	3.1.	Conducted Emission	
	3.2.	RADIATED EMISSION	
	3.3.	BAND EDGE EMISSIONS (RADIATED)	
	3.4.	BAND EDGE AND SPURIOUS EMISSIONS (CONDUCTED)	
	3.5.	DTS BANDWIDTH	
	3.6.	OUTPUT POWER	
	3.7.	POWER SPECTRAL DENSITY	
	3.8.	DUTY CYCLE	
	3.9.	Antenna Requirement	57

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands 902–928MHz, 2400–2483.5MHz, and 5725-5850MHz.

ANSI C63.10-2013: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Report No.	Date of issue	Description
01	CTC2024098406	May 28, 2024	Original

1.3. Test Description

FCC Part 15 Subpart C (15.247)					
Test Item	Standard Section	Result	Test Engineer		
Antenna Requirement	15.203	Pass	Alicia		
Conducted Emission	15.207	Pass	Alicia		
Conducted Band Edge and Spurious Emissions	15.247(d)	Pass	Alicia		
Radiated Band Edge and Spurious Emissions	15.205&15.209& 15.247(d)	Pass	Alicia		
6dB Bandwidth	15.247(a)(2)	Pass	Alicia		
Conducted Max Output Power	15.247(b)(3)	Pass	Alicia		
Power Spectral Density	15.247(e)	Pass	Alicia		
Transmitter Radiated Spurious	15.209&15.247(d)	Pass	Alicia		

Note:

EN

1. The measurement uncertainty is not included in the test result.

N/A: means this test item is not applicable for this device according to the technology characteristic of 2. device.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

1.4. Test Facility

Address of the report laboratory

CTC Laboratories, Inc.

Add: Room 101 Building B,Room 107, 108, 207, 208, 303 Building A, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China (formerly 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, High-Tech Park, Guanlan Sub-District, Longhua New District, Shenzhen, Guangdong, China)

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug 26, 2017.

CTC Laboratories, Inc. Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 下a: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Test Items	Measurement Uncertainty	Notes
DTS Bandwidth	±0.0196%	(1)
Maximum Conducted Output Power	±0.686 dB	(1)
Maximum Power Spectral Density Level	±0.743 dB	(1)
Band-edge Compliance	±1.328 dB	(1)
Unwanted Emissions In Non-restricted Freq Bands	9kHz-1GHz: ±0.746dB 1GHz-26GHz: ±1.328dB	(1)
Conducted Emissions 9kHz~30MHz	±3.08 dB	(1)
Radiated Emissions 30~1000MHz	±4.51 dB	(1)
Radiated Emissions 1~18GHz	±5.84 dB	(1)
Radiated Emissions 18~40GHz	±6.12 dB	(1)

Below is the best measurement capability for CTC Laboratories, Inc.

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15 °C to 35 °C
Relative Humidity:	20 % to 75 %
Air Pressure:	101 kPa

2. GENERAL INFORMATION

2.1. Client Information

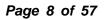
Applicant:	Shanghai Yibo Technology Co., LTD
Address: Room C1047, Building 9, No. 785 Tieli Road, Baoshan District, Shangl China	
Manufacturer:	Shanghai Yibo Technology Co., LTD
Address:	Room C1047, Building 9, No. 785 Tieli Road, Baoshan District, Shanghai, China

2.2. General Description of EUT

Product Name:	Broadcast Module
Trade Mark:	EabloPilot
Model/Type reference:	EabloPilot Tag
Listed Model(s):	/
Model Difference:	/
Power Supply:	DC 5V/0.5A from AC/DC Adapter
Hardware Version:	/
Software Version:	/
Bluetooth 5.0 / BLE	
Modulation:	GFSK
Operation Frequency:	2402MHz~2480MHz
Channel Number:	40
Channel Separation:	2MHz
Data Rate:	1Mbps, 2Mbps
Antenna Type:	Ceramic Chip Antenna
Antenna Gain:	5.05dBi

CTC Laboratories, Inc.

Tel.: (86)755-27521059 中国国家认证认 可监督管理委员会


EN

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

2.3. Accessory Equipment Information

Equipment Information						
Name	Model	S/N	Manufacturer			
Adapter	PS06CA050K1000CU	/	/			
Cable Information	Cable Information					
Name	Shielded Type	Ferrite Core	Length			
USB Cable	Unshielded	NO	150cm			
Test Software Information						
Name	Version	/	/			
EspRFTestTool	V3.6	/	/			

2.4. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BT BLE, 40 channels are provided to the EUT. Channels 00/19/39 were selected for testing.

Operation Frequency List:

Channel	Frequency (MHz)
00	2402
01	2404
÷	:
18	2438
19	2440
20	2442
:	:
38	2478
39	2480

Note: The display in grey were the channel selected for testing.

Test Mode:

For RF test items:

中国国家认

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Langing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 可监督管理委员会

Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

2.5. Measurement Instruments List

RF Test System - SRD						
Item	Item Test Equipment Manufacturer Model No. Serial No. Calibrated Until					
1	MXA Signal Analyzer	Keysight	N9020A	MY52091402	Aug. 22, 2024	
2	RF Control Unit	Tonscend	JS0806-2	/	Aug. 22, 2024	
3	Test Software	Tonscend	JS1120-3	V2.6.88.0346	/	

	Radiated emission					
Item Test Equipment		Manufacturer	Model No.	Serial No.	Calibrated Until	
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024	
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Sep. 25, 2025	
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 12, 2024	
4	Broadband Amplifier	SCHWARZBECK	BBV9743B	259	Dec. 12, 2024	
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 12, 2024	
6	3m chamber 3	YIHENG	EE106	/	Aug. 28, 2026	
7	Test Software	FARA	EZ-EMC	FA-03A2	/	

	Conducted emission								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until				
1	LISN	R&S	ENV216	101112	Dec. 12, 2024				
2	LISN	R&S	ENV216	101113	Dec. 12, 2024				
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 12, 2024				
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 12, 2024				
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 12, 2024				
6	Test Software	R&S	EMC32	6.10.10	/				

Note: 1. The Cal. Interval was one year.

EN

2. The Cal. Interval was three years of the antenna.

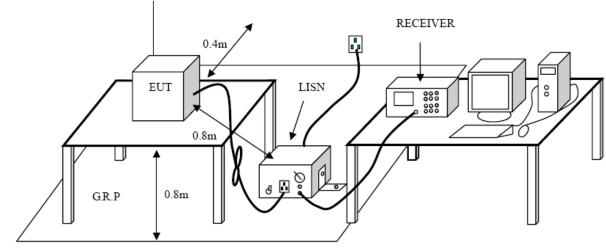
3. The cable loss has been calculated in test result which connection between each test instruments.

CTC Laboratories, Inc.

Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.207

	Conducted Limit (dBµV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 to 56 *	56 to 46 *			
0.5 - 5	56	46			
5 - 30	60	50			

* Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

1. The EUT was setup according to ANSI C63.10:2013 requirements.

The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting 2. ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.

The EUT and simulators are connected to the main power through a line impedance stabilization 3. network (LISN). The LISN provides a 50 ohm / 50 µH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the 4. block diagram of the test setup and photographs)

Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was 5. individually connected through a LISN to the input power source.

The excess length of the power cord between the EUT and the LISN receptacle were folded back and 6. forth at the center of the lead to form a bundle not exceeding 40 cm in length.

Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a 7. receiver bandwidth of 9 kHz.

During the above scans, the emissions were maximized by cable manipulation. 8.

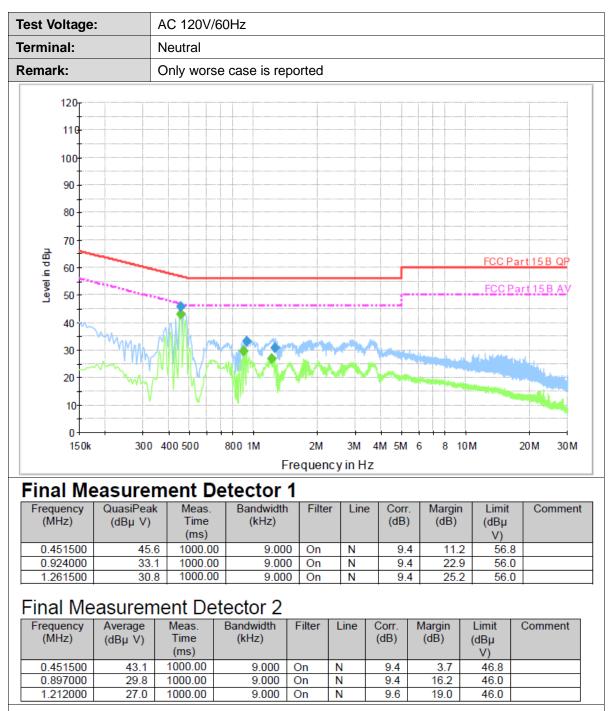
Test Mode

Please refer to the clause 2.4.

CTC Laboratories, Inc.

Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Test Vo	Itage:		AC 120V/6	0Hz						
Fermina	al:		_ine							
Remark			Only worse	e case is rep	oorted					
1	20 1									
	20								 	
	116									
1	100									
	90									
	80									
	70									
Level in dBµ	60						_		FCC Pa	urt15B QP
evel	50								FCC Pa	art 15 B AV
Ē			****							
	40	M	-							
	30	man			و الطلقي إو				and a standard set.	
	20	<u>۸</u>				VI T		n jaan ja mining hii maa ka ginda	a and in the second	
	20	MMA		T I						
	10	- N	IVI Which	My Mar Mark						
	0									
	150k	300	400 500	800 1M	2M	ЗM	4M 5M	6 8 1	M	20M 30M
				F	requend	y in Ha	z			
Fina	l Me	easurer	nent De	etector	1					
Freque (MH		QuasiPeak (dBµ ∀)	Time	Bandwidth (kHz)	Filte	r Line	e Corr (dB)		(dBµ	Comment
0.15	0000	38.4	(ms) 1000.00	9.00	0 On	L1	9.5	5 27.0	V) 6 66.0	
	6000	39.5		9.00		L1	9.5			
3.69	1500	28.2	1000.00	9.00	0 On	L1	9.5	5 27.8	3 56.0	
Final	Me	asurem	ent Det	tector 2						
Freque (MH	ency	Average (dBµ ∨)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ ∨)	Comment
0.45	1500	33.8	1000.00	9.000	On	L1	9.5	13.0	46.8	
3.75	4500	19.2	1000.00	9.000	On	L1	9.5	26.8	46.0	
	2500	14.7	1000.00	9.000	On	L1	9.5	31.3	46.0	


CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

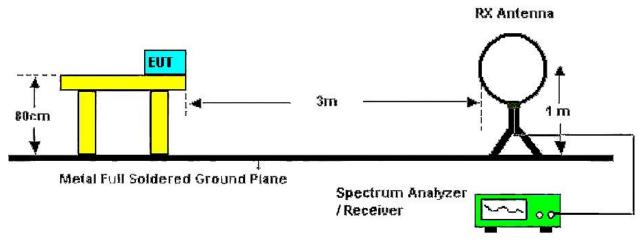
Room 101 Building B, No. 7, Langing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

3.2. Radiated Emission

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F (kHz)	300
0.490~1.705	24000/F (kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

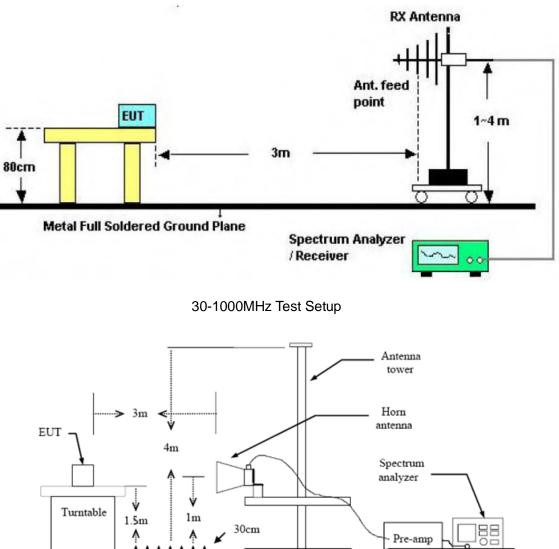

	dBµV/m (at 3 meters)				
Frequency Range (MHz)	Peak	Average			
Above 1000	74	54			

Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level ($dB\mu V/m$)=20log Emission Level ($\mu V/m$).

Test Configuration


Below 30MHz Test Setup

CTC Laboratories, Inc.

Room	The Dunality D, No.	Tel.: (86)755-27521059
the second		
EN	中国国家认证认	可监督管理委员会

Room 101 Building B, No. 7, Langing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Above 1GHz Test Setup

Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013.

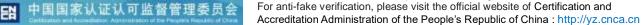
The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for 2. above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable 3. height antenna tower.

For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna 4. tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.

Set to the maximum power setting and enable the EUT transmit continuously. 5.

Use the following spectrum analyzer settings 6.


Span shall wide enough to fully capture the emission being measured; (1)

(2) 9k – 150kHz:

RBW=300 Hz, VBW=1 kHz, Sweep=auto, Detector function=peak, Trace=max hold (3) 0.15M – 30MHz:

RBW=10 kHz, VBW=30 kHz, Sweep=auto, Detector function=peak, Trace=max hold (4) 30M - 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the

peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(5) From 1 GHz to 10th harmonic:

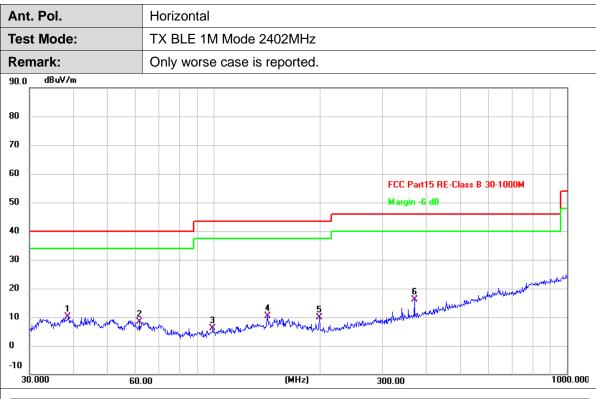
RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.


Test Result

9 kHz~30 MHz

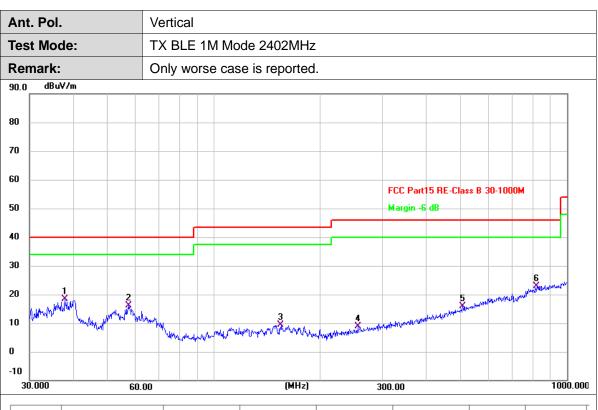
From 9 kHz to 30 MHz: The conclusion is PASS.

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	38.6160	28.55	-18.33	10.22	40.00	-29.78	QP
2	61.5618	27.54	-19.05	8.49	40.00	-31.51	QP
3	99.1797	28.13	-21.91	6.22	43.50	-37.28	QP
4	141.8262	29.14	-18.86	10.28	43.50	-33.22	QP
5	198.5880	30.89	-21.12	9.77	43.50	-33.73	QP
6	369.4047	31.87	-15.79	16.08	46.00	-29.92	QP

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Http://www.sz-ctc.org.cn Fax: (86)755-27521011 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	37.8121	36.76	-18.43	18.33	40.00	-21.67	QP
2	57.3923	34.73	-18.62	16.11	40.00	-23.89	QP
3	154.8204	27.71	-18.31	9.40	43.50	-34.10	QP
4	255.6231	28.05	-19.21	8.84	46.00	-37.16	QP
5	506.4791	27.75	-11.98	15.77	46.00	-30.23	QP
6	821.7103	28.48	-5.68	22.80	46.00	-23.20	QP

中国国家认证认

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 可监督管理委员会

Http://www.sz-ctc.org.cn

Ant. Pol.	Horizontal
Test Mode:	TX BLE 1M Mode 2402MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4803.711	26.73	2.00	28.73	54.00	-25.27	AVG
2	4804.261	42.52	2.00	44.52	74.00	-29.48	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX BLE 1M Mode 2402MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4803.694	49.02	2.00	51.02	74.00	-22.98	peak
2 *	4803.923	32.81	2.00	34.81	54.00	-19.19	AVG

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant. Pol.		Horizontal	Horizontal					
Test Mod	de:	TX BLE 1M N	lode 2440MH	łz				
Remark:		No report for t limit.	the emission	which more t	han 20 dB be	elow the p	rescribed	
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1	4880.215	40.65	2.09	42.74	74.00	-31.26	peak	
2 *	4880.407	25.53	2.09	27.62	54.00	-26.38	AVG	

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

nt. Po	-	Vertical						
est Mo	de:	TX BLE 1M M	lode 2440Mł	Ηz				
Remark	:	No report for the emission which more than 20 dB below the prescribed limit.						
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	4879.262	30.39	2.09	32.48	54.00	-21.52	AVG	
2	4880.982	46.81	2.09	48.90	74.00	-25.10	peak	

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 可监督管理委员会

中国国家认证认

EN

Ant. Pol.		Horizontal	Horizontal					
Test Mod	le:	TX BLE 1M Mode 2480MHz						
Remark:		No report for the emission which more than 20 dB below the prescribed limit.						
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1	4959.741	39.59	2.21	41.80	74.00	-32.20	peak	
2 *	4960.188	25.10	2.21	27.31	54.00	-26.69	AVG	

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

nt. Pol.	-	Vertical					
est Mo	de:	TX BLE 1M M	/lode 2480MH	Ηz			
emark:		No report for limit.	the emission	which more t	han 20 dB be	elow the p	rescribed
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	4960.422	29.97	2.21	32.18	54.00	-21.82	AVG
2	4960.445	46.99	2.21	49.20	74.00	-24.80	peak

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059

EN

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant. Pol.	Horizontal
Test Mode:	TX BLE 2M Mode 2402MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4803.172	40.89	1.99	42.88	74.00	-31.12	peak
2 *	4803.559	26.63	2.00	28.63	54.00	-25.37	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant. Pol.	Vertical
Test Mode:	TX BLE 2M Mode 2402MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4804.078	32.49	2.00	34.49	54.00	-19.51	AVG
2	4804.318	48.87	2.00	50.87	74.00	-23.13	peak

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059

中国国家认证认可监督管理委员会

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Ant. Pol.		Horizontal	Horizontal				
Test Mod	de:	TX BLE 2M M	lode 2440MH	Ηz			
Remark:		No report for limit.	the emission	which more t	han 20 dB be	elow the p	rescribed
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4880.172	42.79	2.09	44.88	74.00	-29.12	peak
2 *	4880.559	28.54	2.09	30.63	54.00	-23.37	AVG
	•	-					

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

nt. Pol		Vertical						
est Mo	de:	TX BLE 2M M	/lode 2440MH	Ηz				
Remark		No report for the emission which more than 20 dB below the prescribed limit.						
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1	4879.567	48.34	2.09	50.43	74.00	-23.57	peak	
2 *	4879.625	30.50	2.09	32.59	54.00	-21.41	AVG	

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

EN

Ant. Pol. Horizontal							
Test Mod	de:	TX BLE 2M M	lode 2480MH	Ηz			
Remark: No report for the emission which more than 20 dB below the prescrib- limit.				rescribed			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
		1					
1	4959.123	41.31	2.21	43.52	74.00	-30.48	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

nt. Pol		Vertical						
est Mo	de:	TX BLE 2M N	lode 2480MI	Ηz				
Remark	:	No report for the emission which more than 20 dB below the prescribed limit.						
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1	4959.043	46.23	2.21	48.44	74.00	-25.56	peak	
2 *	4960.962	29.81	2.21	32.02	54.00	-21.98	AVG	

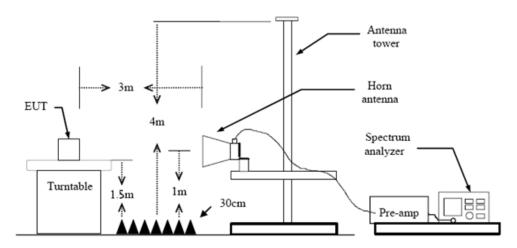
2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059

EN

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn


3.3. Band Edge Emissions (Radiated)

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)

Restricted Frequency Band	(dBµV/m	n) (at 3m)
(MHz)	Peak	Average
2310 ~ 2390	74	54
2483.5 ~ 2500	74	54

Test Configuration

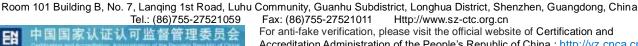
Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 2. degrees to determine the position of the maximum emission level.

The EUT was positioned such that the distance from antenna to the EUT was 3 meters. 3.

4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement. The receiver set as follow: 5


RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

			Horizont	al									
est Mod	e:		TX BLE	1M M	ode 24	102MI	Ηz						
20.0 dBuV	'/m								1				
10													
00													
)													Λ
)									FCC	Part15 C	- Above 1G	PK	
)													+
)									FCC	Part15 C	- Above 1G	AV	+
0											1 X		H
			Luff an an adama		a shara a sa	State Calm	anakati amu		and the second second	and the second	2	wind	_\
)													
)													
o													
0.0													
2306.000	2316.00	2326.00	2336.00	234	6.00	(MHz)	236	6.00	2376.00	2386	.00 239	6.00	2406
No.	Frequ (Mł		Read (dBu		Fac (dB/		1	vel V/m)	Lin (dBu)		Margir (dB)	ם ו	etecto
1	2390	.000	17.6	4	31.3	31	48	.95	74.	00	-25.05	5 p	eak
2 *	2390	.000	5.46	3	31.3	31	36	.77	54.	00	-17.23	3 A	٨VG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

EN

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Comunity, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

nt. Pol.		,	Vertical					
est Mod	le:	-	TX BLE 1M	Mode 2402M	Hz			
20.0 dBu\	//m	1	i		1		1	
10								
)								
)						FCC Part15 C	- Above 1G P	ĸ
)								
I						FCC Part15 C	- Above 1G A	v
)							1×	
1	mours and the may	and an and the service of the servic	an a	www.www.www.wor.wishedla.we	where the and a stand and a stand of the sta	an war	2	
·								
•								
)								
2305.500	2315.50	2325.50	2335.50	2345.50 (MHz)	2365.50	2375.50 2385.	50 2395.	50 2405.5
No.		uency Hz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
						74.00	-25.47	peak
1	2390	.000	17.22	31.31	48.53	74.00	-25.47	peak

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

	/m		LE 1M N				FCC Part15 C		
	1 1								
	Ŷ								
	Ŷ								
	Ŷ								
	Ŷ								
	Ŷ								
	Ŷ		eren manatari det						
	Ŷ	oud-recorder	ertus sur part and all the				FCC Part15 C	- Above 1G	AV
	Ŷ	out an area of the	erken metersen av Art				FCC Part15 C	: - Above 1G	AV
	2	outranser and	erden, maar op het heer om Art	man Mar Mar Jordan					
	Store of the contemporation	out and a second		mounder how bear					
I					deter and the second		amound have been been been been been been been be	week and the second second	horamatic and the state of the
).0									
).0									
	2485.50 249	5.50 250	5.50 25 [.]	15.50 (MHz)	2535.5	0 25	45.50 2555	6.50 2565	5.50 2575.
	Frequenc	y Re	ading	Factor	Leve	əl	Limit	Margir	
NO.	(MHz)	(dl	BuV)	(dB/m)	-		dBuV/m)	(dB)	Delecto
1	2483.500	20	0.49	31.48	51.9	7	74.00	-22.03	peak
2 *	2483.500) 6	6.80	31.48	38.2	8	54.00	-15.72	AVG

中国国家认证认

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

nt. Pol.	1	Vertical					
est Moo	de:	TX BLE 1M M	lode 2480MI	Ηz			
20.0 dBu	V/m						
0							
0							
					FCC Part15 C	- Above 1G Pl	ĸ
• HA							
	1 X				FCC Part15 C	- Above 16 A	×
	x 2						
	how we have the second s	y-bear algorithese markets and the second second	www.achtton.or	mellineret knowne know	and the second of the second second	have been been and the second	monthe
)							
2476.000	2486.00 2496.0	0 2506.00 25	16.00 (MHz)	2536.00	2546.00 2556.	.00 2566.0	0 2576.0
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	15.70	31.48	47.18	74.00	-26.82	peak
2 *	2483.500	5.60	31.48	37.08	54.00	-16.92	AVG
emarks							

2.Margin value = Level -Limit value

中国

EN

TX E	BLE 2M Mode	2402MHz		FCC Part15 C		
					- Above 1G AV	
					- Above 1G AV	
		entrologie conservations			- Above 1G AV	
		extent sector france gate form			- Above 1G AV	
		ge.brit.gue.rive/lace.gotichen			- Above 1G AV	
		poledaporer for godeler.			- Above 1G AV	
		ecterlane correlane gabetra	and a post of a second s	FCC Part15 C -	*	
		entroligencorrollans, and it on		FCC Part15 C	*	
		gesterlagessorr Nachaparlahon,				
		enterlagenerer Harrysolaken.	ىرىمى يەرىپىلىرىمى يەرىپىلىرىمى يەرىپىلىرىمى يەرىپىلىرىمى يەرىپىلىرىمى يەرىپىلىرىمى يەرىپىلىرىمى يەرىپىلىرىمى ي	a		
					· · · ·	
2326.50 23	336.50 2346.50	(MHz)	2366.50 237	76.50 2386.	50 2396.5	io 2406.
			Level BuV/m) (d		Margin (dB)	Detector
			46.07	74.00	-27.93	peak
0.000	5.23 3	31.31	36.54	54.00	-17.46	AVG
20	Hz) (0	Hz) (dBuV) (dBuV) (dBuV) (dBuV) (dBuV)	Hz) (dBuV) (dB/m) (d 0.000 14.76 31.31	Hz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dBuV) (dBuV) (dBuV) (dBuV) (dBuV) (dBuV) (dBuV/m) (dBuV	Hz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) 0.000 14.76 31.31 46.07 74.00	Hz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 0.000 14.76 31.31 46.07 74.00 -27.93

中国国家访

١Ŀ

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

nt. Pol.			Vertical						
est Mod	le:		TX BLE 2	M Mode 24	02MHz				
20.0 dBu\	//m			1				1	
10									
00									
D									
0							FCC Part15 C	- Above 1G P	
)								Abore ru	
)							FCC Part15 C	- Above 1G A	v
)								1 X	
• • • • • • • • • • • • • • • • • • •	nere and and and the			manlip	weter water			2	+
I									
)									
)									
2306.000	2316.00	2326.00	2336.00	2346.00	(MHz)	2366.00	2376.00 2386	.00 2396.	00 2406.0
No.	Frequ (Mł		Readin (dBuV)			Level BuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390	.000	15.64	31.3	31 -	46.95	74.00	-27.05	peak
1		.000	5.16	31.3	1	36.47	54.00	-17.53	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

中国

EN

国家认

ūΕΰ

nt. Pol.		Horiz	ontal					
est Mod	le:	TX B	LE 2M M	lode 2480M	Hz			
20.0 dBu\	//m							
10								
'						FCC Part15 C	- Above 1G Pl	د
' - -								
	1 ×					FCC Part15 C	- Above 1G A	,
' -	2							
· 🖌	human	net the second second	and the second	and the second	hologo and a second and the	uneverentherhadten	ward from the way with	walanawa
·								
•								
)								
).0 2474.000	2484.00 2494	00 250	4.00 25	14.00 (MHz)	2534.00	2544.00 2554	.00 2564.0	0 2574.0
	_							
No.	Frequenc (MHz)		ading BuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500) 2	3.65	31.48	55.13	74.00	-18.87	peak
2 *	2483.500) 1	4.47	31.48	45.95	54.00	-8.05	AVG

中国国家认证认

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant. Pol.			Vertical					
est Mod	le:		TX BLE 2M N	/lode 2480MH	Ηz			
20.0 dBu\	//m		i					
10								
00								
o								
o 🖂						FCC Part15 C	- Above 1G Pl	<u><</u>
) _								
, 🕂	1.					FCC Part15 C	- Above 1G A	<u> </u>
,	2							
, m./	Hendelson and service and and and a service and and a service and a service and a service and a service and a s	en alen alen	about materian and an in	Mar Mary Mary Market	www.angles.com	an-marken where reasons had	williaman	- marine berry law
,								
,								
D.0								
2474.000	2484.00 2	494.00	2504.00 25	514.00 (MHz)	2534.00	2544.00 2554.	00 2564.0	0 2574.0
	Frequer	ncv	Reading	Factor	Level	Limit	Margin	
No.	(MHz	-	(dBuV)	(dB/m)		(dBuV/m)	(dB)	Detector
1	2483.5	00	17.89	31.48	49.37	74.00	-24.63	peak
2 *	2483.5	00	6.36	31.48	37.84	54.00	-16.16	AVG
						-		

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

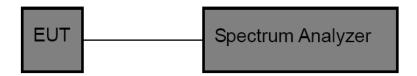
2.Margin value = Level -Limit value

中国国家认证认

EN

CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn


3.4. Band Edge and Spurious Emissions (Conducted)

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Configuration

Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Use the following spectrum analyzer settings: RBW = 100 kHz, VBW \geq RBW, scan up through 10th harmonic. Sweep = auto, Detector function = peak, Trace = max hold.
- Measure and record the results in the test report. 4.

Test Mode

Please refer to the clause 2.4.

CTC Laboratories, Inc. Room 101 Building B, No. 7, Langing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Tel.: (86)755-27521059 可监督管理委员会

Band Edge Conducted Test

TestMode	Antenna	ChName	Freq(MHz)	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
BLE 1M	Ant1	Low	2402	9.79	-32.53	≤-20.21	PASS
DLE_1IVI	Ant1	High	2480	6.94	-52.45	≤-23.06	PASS
BLE 2M	Ant1	Low	2402	7.93	-37.03	≤-22.07	PASS
	Anti	High	2480	5.74	-51.32	≤-24.26	PASS

Conducted Spurious Emissions Test

TestMode	Antenna	Freq(MHz)	FreqRange [MHz]	RefLevel [dBm]	Result[dBm]	Limit[dBm]	Verdict
			Reference	10.81	10.81		PASS
		2402	30~1000	10.81	-68.38	≤-19.19	PASS
			1000~26500	10.81	-30.36	≤-19.19	PASS
			Reference	7.89	7.89		PASS
BLE_1M	Ant1	2440	30~1000	7.89	-68.43	≤-22.11	PASS
			1000~26500	7.89	-36.63	≤-22.11	PASS
		2480	Reference	7.99	7.99		PASS
			30~1000	7.99	-68.5	≤-22.01	PASS
			1000~26500	7.99	-35.71	≤-22.01	PASS
			Reference	8.62	8.62		PASS
		2402	30~1000	8.62	-68.45	≤-21.38	PASS
			1000~26500	8.62	-35.53	≤-21.38	PASS
			Reference	8.44	8.44		PASS
BLE_2M	Ant1	2440	30~1000	8.44	-68.43	≤-21.56	PASS
			1000~26500	8.44	-36.65	≤-21.56	PASS
			Reference	8.63	8.63		PASS
		2480	30~1000	8.63	-68.4	≤-21.37	PASS
			1000~26500	8.63	-33.69	≤-21.37	PASS

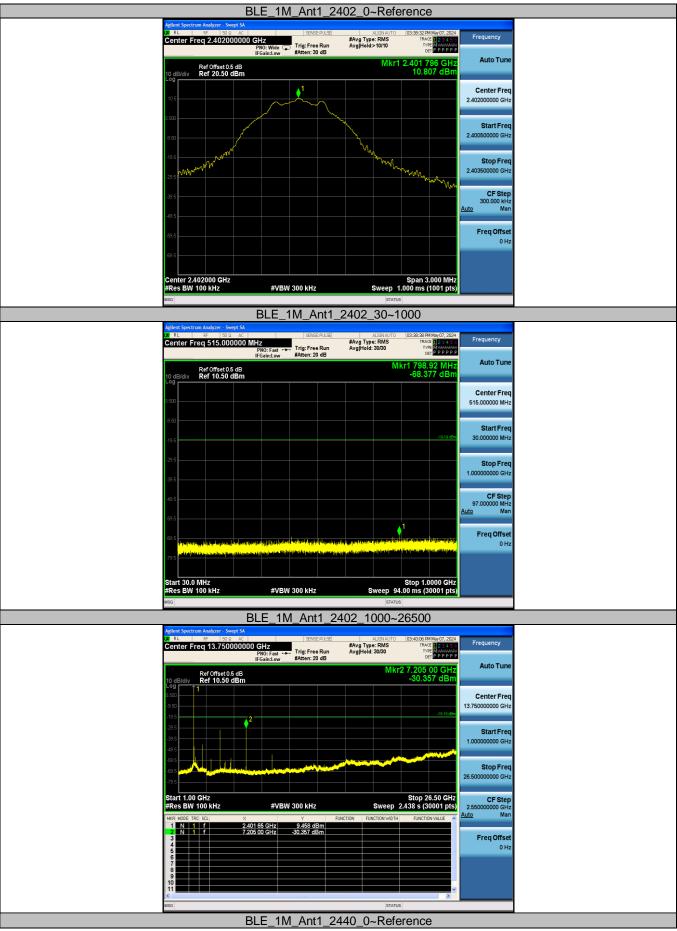
CTC Laboratories, Inc.

E1 中国国家认证认可监督管理委员会

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

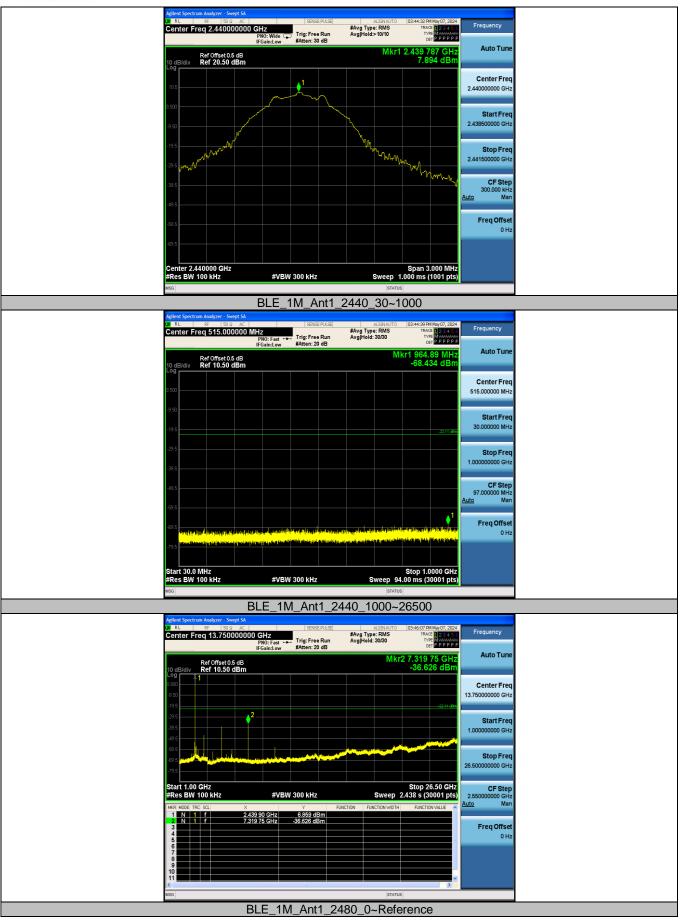
Band Edge Conducted Test plot as follows:

CTC Laboratories, Inc.

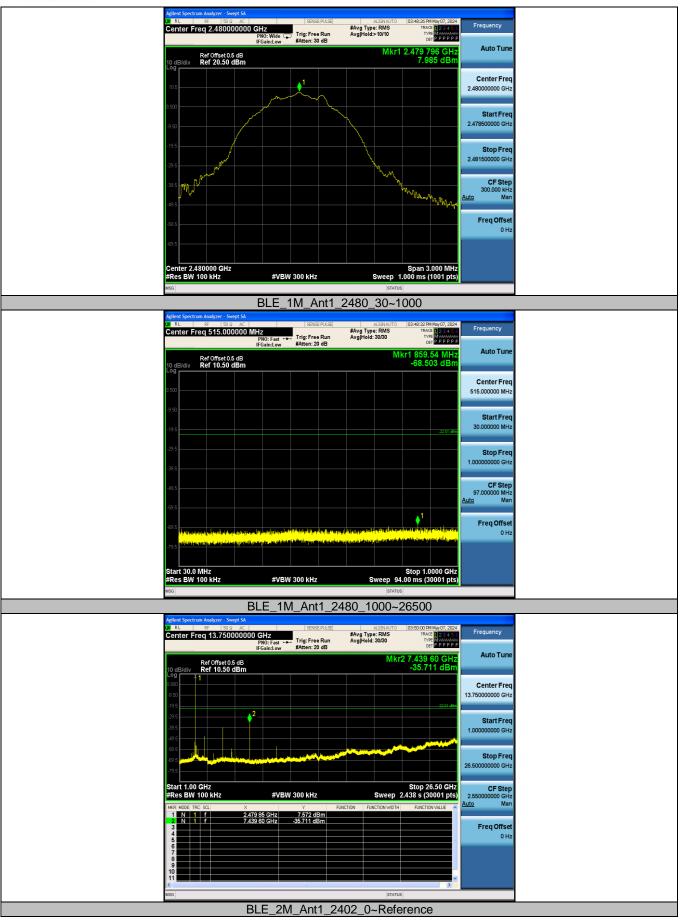

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

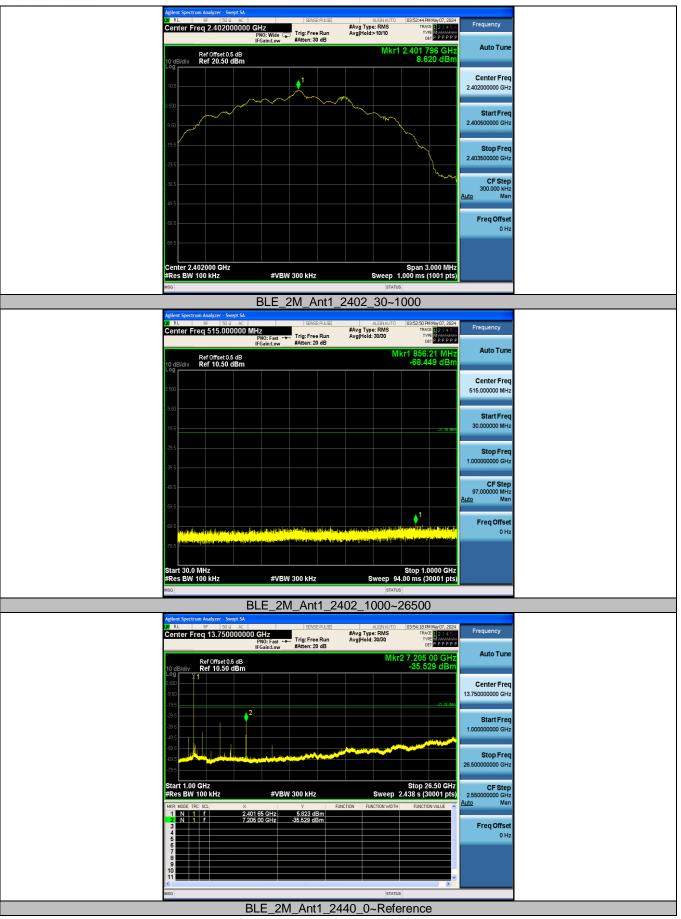
Agilent Spectrum Analyzer - Swe				
🗶 RL RF 50 Q		ALIGN AUTO 04:00:48 PM May 07, 2024	Frequency	
Center Freq 2.51000	0000 GHz PNO: East ↔ Trig: Free Run	#Avg Type: RMS TRACE 12345 Avg[Hold: 100/100 Type Mutation	Frequency	
	PNO: Fast ↔ Trig: Free Run IFGain:Low #Atten: 30 dB	DET PPPP		
	in Galilleon		Auto Tune	
Ref Offset 0.5	dB	Mkr4 2.483 52 GHz		
10 dB/div Ref 20.00 d	Bm	-51.318 dBm		
10.0			Center Freq	
0.00			2.51000000 GHz	
-10.0				
20.0				
-20.0		-24.26 dBr	Start Freq	
-30.0			2.47000000 GHz	
-40.0				
-50.0				
and month with the	march monor and the set of a s	فيعامدون فالتلاف مسلطانا فيرد ومعيرة المراجعة	Stop Freq	
-60.0			2.55000000 GHz	
-70.0			2.0000000000000	
Start 2.47000 GHz		Stop 2.55000 GHz		
#Res BW 100 kHz	#VBW 300 kHz	Sweep 7.667 ms (1001 pts		
MKR MODE TRC SCL	X Y FU	NCTION FUNCTION WIDTH FUNCTION VALUE	Auto Man	
1 N 1 f	2.479 92 GHz 5.740 dBm			
2 N 1 F 3 N 1 F	2.483 50 GHz -51.318 dBm		Eron Offect	
3 N 1 F	2.500 00 GHz -59.501 dBm 2.483 52 GHz -51.318 dBm		Freq Offset	
5	on one ability		0 Hz	
6				
8				
9				
10				
11				
~	Ш			
MSG		STATUS		

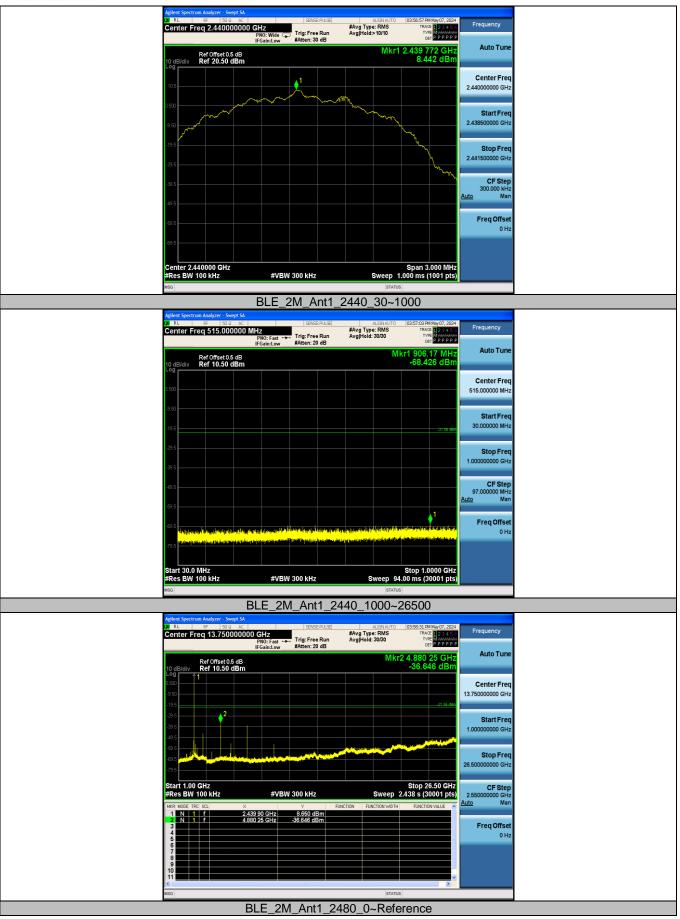
Conducted Spurious Emissions Test plot as follows:

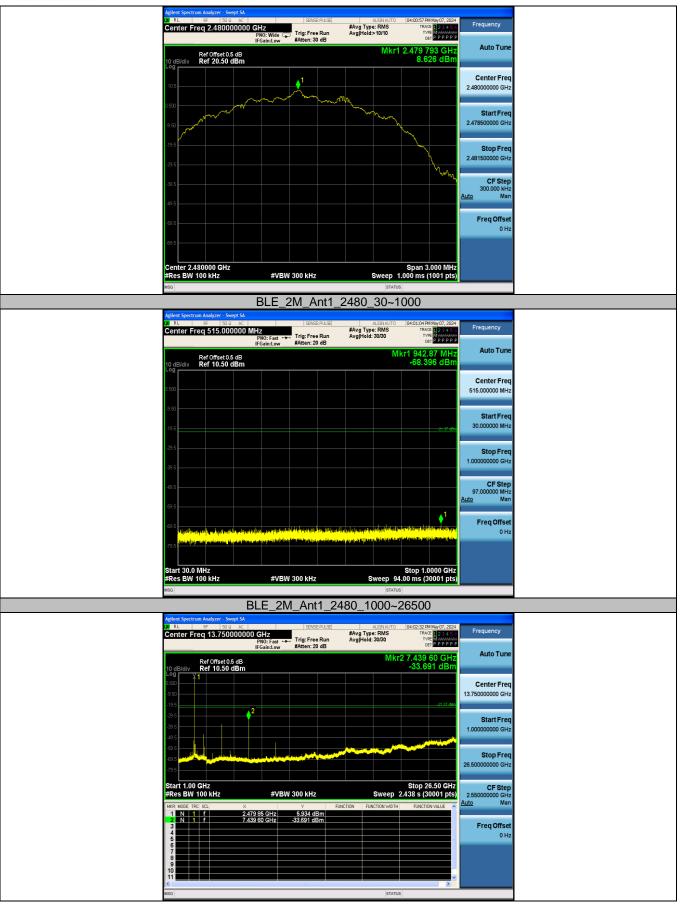

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China

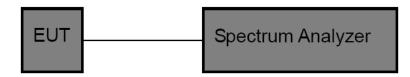

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn


Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN




Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN


3.5. DTS Bandwidth

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2)

Test Item	Limit	Frequency Range (MHz)	
DTS Bandwidth	≥500 kHz (6dB bandwidth)	2400~2483.5	

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. DTS Spectrum Setting:
 - (1) Set RBW = 100 kHz.
 - (2) Set the video bandwidth (VBW) \geq 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.
 - **OCB Spectrum Setting:**
 - (1) Set RBW = $1\% \sim 5\%$ occupied bandwidth.
 - (2) Set the video bandwidth (VBW) \geq 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

Please refer to the clause 2.4.

CTC Laboratories, Inc.

99% Bandwidth:

TestMode	Antenna	Freq(MHz)	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
BLE_1M Ant1		2402	1.0721	2401.2641	2402.3362		
	Ant1	2440	1.0973	2439.2430	2440.3403		
		2480	1.0805	2479.2499	2480.3304		
		2402	2.1114	2400.7429	2402.8543		
BLE_2M	Ant1	2440	2.1157	2438.7385	2440.8542		
		2480	2.1173	2478.7350	2480.8523		

DTS Bandwidth:

TestMode	Antenna	Freq(MHz)	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.624	2401.480	2402.104	0.5	PASS
BLE_1M	Ant1	2440	0.680	2439.464	2440.144	0.5	PASS
		2480	0.648	2479.468	2480.116	0.5	PASS
		2402	1.092	2401.264	2402.356	0.5	PASS
BLE_2M	Ant1	2440	1.332	2439.108	2440.440	0.5	PASS
		2480	1.072	2479.240	2480.312	0.5	PASS

CTC Laboratories, Inc.



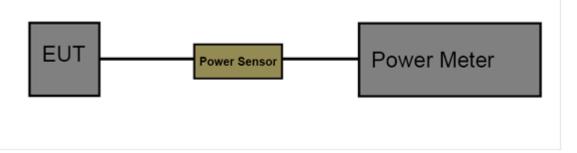
BLE_2M_Ant1_2402

DTS Bandwidth:

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn



Output Power 3.6.

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3)

Section	Test Item	Limit	Frequency Range (MHz)
FCC CFR 47 Part15.247 (b)(3)	Maximum Conducted Output Power	1 Watt or 30dBm	2400~2483.5

Test Procedure

- 1. The maximum conducted output power may be measured using a broadband RF power meter.
- 2. Power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor.
- The power meter implemented triggering and gating capabilities which were set up such that power 3. measurements were recorded only during the ON time of the transmitter.
- 4. Record the measurement data.

Test Mode

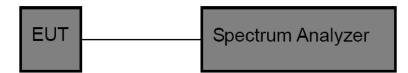
Please refer to the clause 2.4.

Test Result

TestMode	Antenna	Freq(MHz)	AV Conducted Power[dBm]	Conducted Limit[dBm]	Verdict
		2402	9.89	≤30	PASS
BLE_1M	Ant1	2440	7.04	≤30	PASS
		2480	7.33	≤30	PASS
BLE_2M Ant1	2402	7.89	≤30	PASS	
	Ant1	2440	8.23	≤30	PASS
		2480	8.31	≤30	PASS

CTC Laboratories, Inc.

Tel.: (86)755-27521059


3.7. **Power Spectral Density**

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e)

Test Item	Limit	Frequency Range (MHz)	
Power Spectral Density	8 dBm (in any 3 kHz)	2400~2483.5	

Test Configuration

Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.

3. Spectrum Setting:

Measure the duty cycle (D) of the transmitter output signal as described in 11.6.

- b) Set instrument center frequency to DTS channel center frequency.
- c) Set span to at least 1.5 times the OBW.
- d) Set RBW to: 3 kHz \leq RBW \leq 100 kHz.
- e) Set VBW \geq [3 \times RBW].

f) Detector = power averaging (rms) or sample detector (when rms not available).

- g) Ensure that the number of measurement points in the sweep \Box [2 \times span / RBW].
- h) Sweep time = auto couple.
- i) Do not use sweep triggering; allow sweep to "free run."
- j) Employ trace averaging (rms) mode over a minimum of 100 traces.

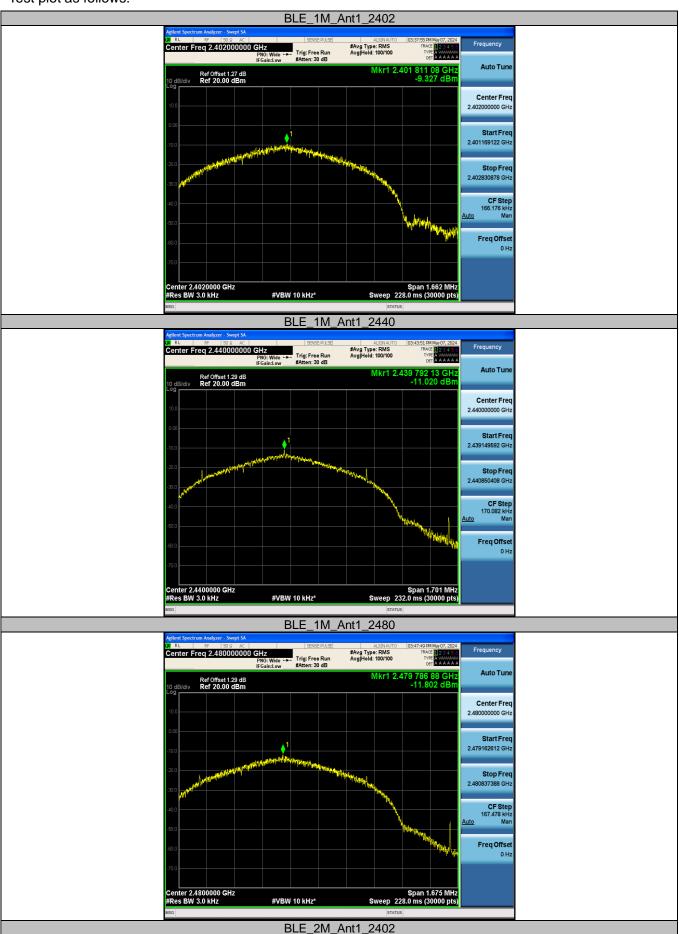
k) Use the peak marker function to determine the maximum amplitude level.

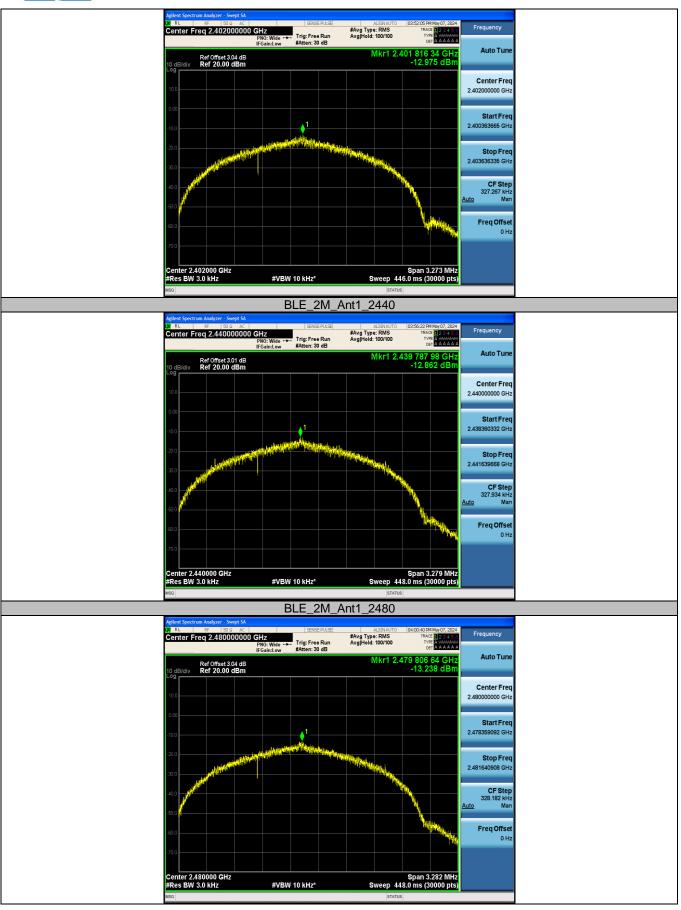
I) Add [10 log (1 / D)], where D is the duty cycle measured in step a), to the measured PSD to compute the average PSD during the actual transmission time.

m) If measured value exceeds requirement specified by regulatory agency, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).

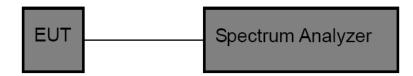
Test Mode

Please refer to the clause 2.4.


CTC Laboratories, Inc.


TestMode	Antenna	Freq(MHz) AV Result [dBm/3kHz]		Limit[dBm/3kHz]	Verdict
		2402	-9.33	≤8.00	PASS
BLE_1M	Ant1	2440	-11.02	≤8.00	PASS
		2480	-11.80	≤8.00	PASS
BLE_2M Ant		2402	-12.98	≤8.00	PASS
		2440	-12.86	≤8.00	PASS
		2480	-13.24	≤8.00	PASS

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN



3.8. Duty Cycle

<u>Limit</u>

None, for report purposes only.

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.

Spectrum Setting:
 Set analyzer center frequency to test channel center frequency.
 Set the span to 0Hz.
 Set the RBW to 10MHz.
 Set the VBW to 10MHz.
 Detector: Peak.
 Sweep time: Auto.

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

Please refer to the clause 2.4.

Test Result

Test Mode	Frequency (MHz)	Transmission Duration (ms)	Transmission Period (ms)	Duty Cycle (%)	1/T Minimum VBW (kHz)	Final Setting for VBW (kHz)
	2402	2.10	2.51	83.67	0.48	1
BLE_1M	2440	2.10	2.50	84.00	0.48	1
	2480	2.10	2.50	84.00	0.48	1
	2402	1.07	1.88	56.91	0.93	1
BLE_2M	2440	1.06	1.87	56.68	0.94	1
	2480	1.06	1.87	56.68	0.94	1

CTC Laboratories, Inc.

 Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China

 Tel.: (86)755-27521059
 Fax: (86)755-27521011
 Http://www.sz-ctc.org.cn

国家い

ΕN

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN

3.9. Antenna Requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i)

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The directional gain of the antenna is less than 6dBi, please refer to the EUT internal photographs antenna photo.

CTC Laboratories, Inc. Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 日目家认证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn