

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel: +86-755-27521059 Fax: +86-755-27521011 Http://www.sz-ctc.org.cn

TCI. 100-733-27321033 T dx. 10	0-733-27321011 Thtp://www.sz-cic.or	9.01
٦	EST REPORT	
Report No. ·····:	CTC2024098407	
FCC ID:	2BGEC-RPT2024	
Applicant:	Shanghai Yibo Technology Co., LTD	
Address:	Room C1047, Building 9, No. 785 Tieli Shanghai, China	Road, Baoshan District,
Manufacturer ······	Shanghai Yibo Technology Co., LTD	
Address:	Room C1047, Building 9, No. 785 Tieli Shanghai, China	Road, Baoshan District,
Product Name······:	Broadcast Module	
Trade Mark······:	EabloPilot	
Model/Type reference······:	EabloPilot Tag	
Listed Model(s) ······	/	
Standard:	FCC CFR Title 47 Part 15 Subpart C	Section 15.247
Date of receipt of test sample:	May 07, 2024	
Date of testing	May 07, 2024 ~ May 21, 2024	
Date of issue	May 28, 2024	
Result:	PASS	
Compiled by:		1 mlan
(Printed name+signature)	Lucy Lan	cherg com
Supervised by:		a: Thana
(Printed name+signature)	Eric Zhang	luoy loun Zric 2hang 1 Anas
Approved by:		1 Inas

 (Printed name+signature)
 Totti Zhao

 Testing Laboratory Name.....:
 CTC Laboratories, Inc.

 Address............
 Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China

 This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to

the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Table of Contents

Page

1.	TEST	SUMMARY	3
1	.1.	Test Standards	3
1	.2.	REPORT VERSION	3
1	.3.	TEST DESCRIPTION	4
1		Test Facility	
1	.5.	Measurement Uncertainty	6
1	.6.	Environmental conditions	6
2.	GENE	RAL INFORMATION	7
2		CLIENT INFORMATION	
2	.2.	GENERAL DESCRIPTION OF EUT	7
2	.3.	Accessory Equipment Information	8
2		OPERATION STATE	
2	.5.	Measurement Instruments List	10
3.	TEST	ITEM AND RESULTS	11
3	.1.	CONDUCTED EMISSION	11
3	.2.	RADIATED EMISSION	14
3	.3.	BAND EDGE EMISSIONS	30
3		BAND EDGE AND SPURIOUS EMISSIONS (CONDUCTED)	
3	.5.	Bandwidth	64
3		OUTPUT POWER	
3		POWER SPECTRAL DENSITY	
3		DUTY CYCLE	
3	.9.	ANTENNA REQUIREMENT	87

CTC Laboratories, Inc.

Accreditation Administration of the People's Republic of China : yz.cnca.cn

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Report No.	Date of issue	Description
01	CTC2024098407	May 28, 2024	Original

CTC Laboratories, Inc.

1.3. Test Description

FCC Part 15 Subpart C (15.247)				
Test Item	Standard Section	Result	Test Engineer	
	FCC	Result		
Antenna Requirement	15.203	Pass	Alicia	
Conducted Emission	15.207	Pass	Alicia	
Band Edge Emissions	15.247(d)	Pass	Alicia	
6dB Bandwidth	15.247(a)(2)	Pass	Alicia	
Conducted Max Output Power	15.247(b)(3)	Pass	Alicia	
Power Spectral Density	15.247(e)	Pass	Alicia	
Transmitter Radiated Spurious	15.209&15.247(d)	Pass	Alicia	

Note: The measurement uncertainty is not included in the test result.

CTC Laboratories, Inc. Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Tel.: (86)755-27521059 E的中国国家认证认可监督管理委员会 CTC Laboratories, Inc. Fax: (86)755-27521011 Fax: (86)755-27521011 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>vz.cnca.cn</u>

1.4. Test Facility

CTC Laboratories, Inc.

Add: Room 101 Building B,Room 107, 108, 207, 208, 303 Building A, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China (formerly 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, High-Tech Park, Guanlan Sub-District, Longhua New District, Shenzhen, Guangdong, China)

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in th e identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Indus try Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (F CC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Test Items	Measurement Uncertainty	Notes
DTS Bandwidth	±0.0196%	(1)
Maximum Conducted Output Power	±0.686 dB	(1)
Maximum Power Spectral Density Level	±0.743 dB	(1)
Band-edge Compliance	±1.328 dB	(1)
Unwanted Emissions In Non-restricted Freq Bands	9kHz-1GHz: ±0.746dB 1GHz-26GHz: ±1.328dB	(1)
Conducted Emissions 9kHz~30MHz	±3.08 dB	(1)
Radiated Emissions 30~1000MHz	±4.51 dB	(1)
Radiated Emissions 1~18GHz	±5.84 dB	(1)
Radiated Emissions 18~40GHz	±6.12 dB	(1)

Below is the best measurement capability for CTC Laboratories, Inc.

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	25°C
Relative Humidity:	40%
Air Pressure:	101kPa

CTC Laboratories, Inc.

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Shanghai Yibo Technology Co., LTD
Address:	Room C1047, Building 9, No. 785 Tieli Road, Baoshan District, Shanghai, China
Manufacturer :	Shanghai Yibo Technology Co., LTD
Address:	Room C1047, Building 9, No. 785 Tieli Road, Baoshan District, Shanghai, China

2.2. General Description of EUT

Product Name:	Broadcast Module	
Trade Mark:	EabloPilot	
Model/Type reference:	EabloPilot Tag	
Listed Model(s):	/	
Model Difference:	/	
Power supply:	DC 5V/0.5A from AC/DC Adapter	
Hardware version:	/	
Software version:	/	
WIFI 802.11b/ g/ n(HT20)/n(HT40)		
Modulation:	DSSS for 802.11b OFDM for 802.11g/802.11n(HT20)/802.11n(HT40)	
Operation frequency:	2412MHz~2462MHz for 802.11b/802.11g/802.11n(HT20) 2422MHz~2452MHz for 802.11n(HT40)	
Channel number:	11 for 802.11b/802.11g/802.11n(HT20) 7 for 802.11n(HT40)	
Channel separation:	5MHz	
Antenna 0 and 1 type:	Ceramic Chip Antenna	
Antenna 0 gain:	5.05dBi	

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn 中国国家认证认可监督管理委员会 EN

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

2.3. Accessory Equipment Information

Equipment Information					
Name	Model	S/N	Manufacturer		
Adapter	PS06CA050K1000CU	/	/		
Cable Information	Cable Information				
Name	Shielded Type	Ferrite Core	Length		
USB Cable	Unshielded	NO	150cm		
Test Software Information					
Name	Version	/	/		
EspRFTestTool	V3.6	/	/		

2.4. Operation state

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Operation Frequency List:

Channel	Frequency (MHz)
01	2412
02	2417
03	2422
04	2427
05	2432
06	2437
07	2442
08	2447
09	2452
10	2457
11	2462

Note: CH 01~CH 11 for 802.11b/g/n(HT20), CH 03~CH 09 for 802.11n(HT40)

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 可监督管理委员会 中国国家访 EN

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

Data Rated

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

Mode	Data rate (worst mode)
802.11b	1Mbps
802.11g	6Mbps
802.11n(HT20)	HT-MCS8
802.11n(HT40)	HT-MCS8

Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit (duty cycle>98%). EUT support for SISO and ANT1 Transmission,802.11b/g only supports SISO Mode, SISO mode sets the same power level as ANT1 mode, so ANT1 mode is the worst case. Recorded in the report.

2.5. Measurement Instruments List

	RF Test System - SRD				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	MXA Signal Analyzer	Keysight	N9020A	MY52091402	Aug. 22, 2024
2	RF Control Unit	Tonscend	JS0806-2	/	Aug. 22, 2024
3	Test Software	Tonscend	JS1120-3	V2.6.88.0346	/

		Radia	ated emission		
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Sep. 25, 2025
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 12, 2024
4	Broadband Amplifier	SCHWARZBECK	BBV9743B	259	Dec. 12, 2024
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 12, 2024
6	3m chamber 3	YIHENG	EE106	/	Aug. 28, 2026
7	Test Software	FARA	EZ-EMC	FA-03A2	/

		Cor	nducted emission		
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	LISN	R&S	ENV216	101112	Dec. 12, 2024
2	LISN	R&S	ENV216	101113	Dec. 12, 2024
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 12, 2024
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 12, 2024
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 12, 2024
6	Test Software	R&S	EMC32	6.10.10	/

Note:1. The Cal. Interval was one year.

2. The cable loss has calculated in test result which connection between each test instruments.

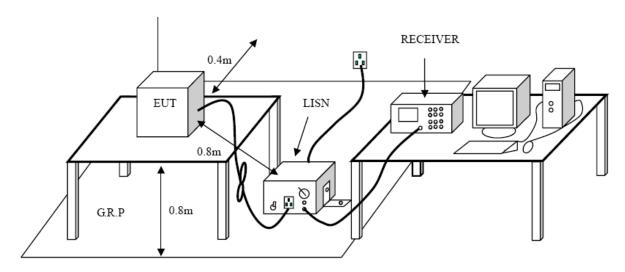
CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN

Accreditation Administration of the People's Republic of China : yz.cnca.cn

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207

	Limit (d	BuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

1. The EUT was setup according to ANSI C63.10:2013 requirements.

2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.

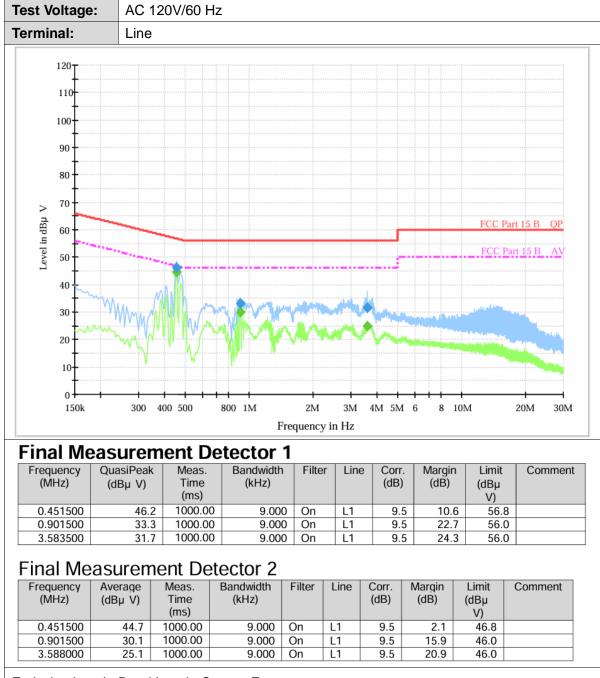
3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)

4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.

5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.

6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.

7. During the above scans, the emissions were maximized by cable manipulation.


	CTC Laboratories, Inc.
Room 101 Building B, No. 7, Lanqing 1st Road, Luh	u Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China
Tel.: (86)755-27521059	Fax: (86)755-27521011 Http://www.sz-ctc.org.cn
中国国家认证认可监督管理委员会	For anti-fake verification, please visit the official website of Certification and
CR Cellisian and Accediance Apresidence of the People's Reputits of Oura	Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

Test Mode:

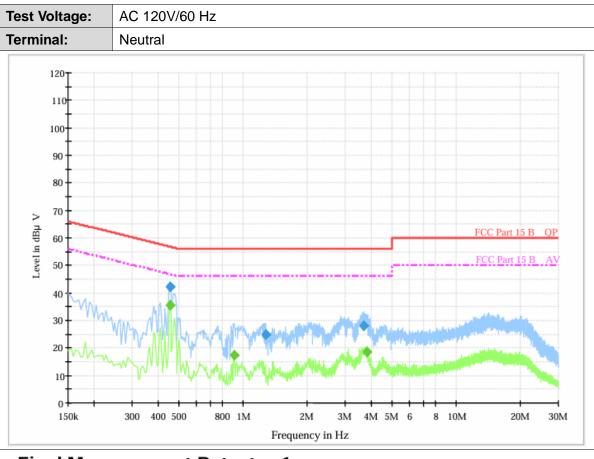
Please refer to the clause 2.3.

Test Results

Emission Level= Read Level+ Correct Factor

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn


中国国家认

EN

可监督管理委员会

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

Final Measurement Detector 1

	Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
Ī	0.451500	42.2	1000.00	9.000	On	N	9.4	14.6	56.8	
[1.266000	24.7	1000.00	9.000	On	N	9.4	31.3	56.0	
[3.664500	27.8	1000.00	9.000	On	N	9.4	28.2	56.0	

Final Measurement Detector 2

	Frequency	Average	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment	
	(MHz)	(dBµ V)	Time	(kHz)			(dB)	(dB)	(dBµ		
			(ms)						V)		
[0.451500	35.4	1000.00	9.000	On	Ν	9.4	11.4	46.8		
	0.901500	17.5	1000.00	9.000	On	Ν	9.4	28.5	46.0		
[3.772500	18.6	1000.00	9.000	On	N	9.4	27.4	46.0		

Emission Level= Read Level+ Correct Factor

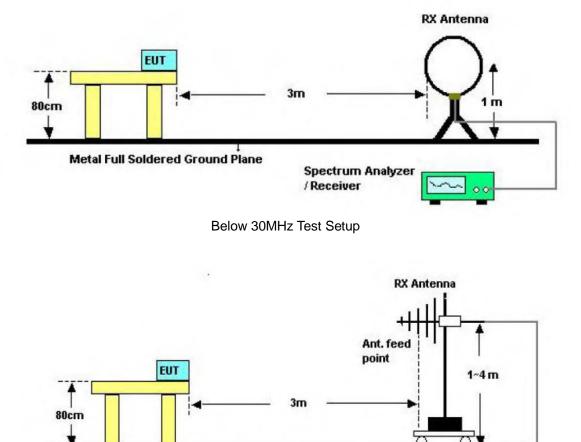
CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

EN

3.2. Radiated Emission

<u>Limit</u>


FCC CFR Title 47 Part 15 Subpart C Section 15.209:

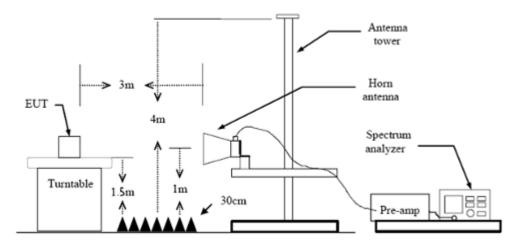
Frequency	Limit (dBuV/m @3m)	Value
30 MHz ~ 88 MHz	40.00	Quasi-peak
88 MHz ~ 216 MHz	43.50	Quasi-peak
216 MHz ~ 960 MHz	46.00	Quasi-peak
960 MHz ~ 1 GHz	54.00	Quasi-peak
	54.00	Average
Above 1 GHz	74.00	Peak

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m).

Test Configuration

Metal Full Soldered Ground Plane Spectrum Analyzer


Below1000MHz Test Setup

/Receiver

CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

Above 1GHz Test Setup

Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013

2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable 3. height antenna tower.

For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna 4. tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.

Set to the maximum power setting and enable the EUT transmit continuously. 5.

- 6. Use the following spectrum analyzer settings
- (1) Span shall wide enough to fully capture the emission being measured;
- (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the guasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=3MHz RMS detector for Average value.

Test Mode

Please refer to the clause 2.3.

Test Result

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

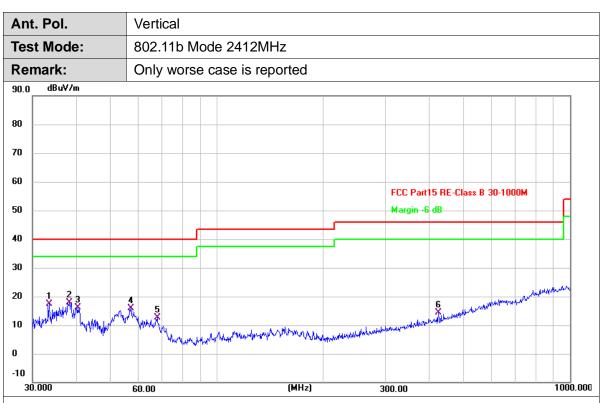
CTC Laboratories, Inc.

30MHz-1GHz

Ant. Pol.	Horizontal			
Test Mode:	802.11b Mode 2412	MHz		
Remark:	Only worse case is	reported		
90.0 dBuV/m				
80				
70				
60			FCC Part15 RE-Class B 30-1000M	
50			Margin-6 dB	
40				
30				
20			6	Neopoler
10 1 2	3	ant many prover and	When he had been and the second	
0				
-10 30.000	60.00	(MHz) 3	00.00	1000.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	37.1550	27.90	-18.52	9.38	40.00	-30.62	QP
2	51.3005	27.76	-18.04	9.72	40.00	-30.28	QP
3	65.1145	26.95	-19.61	7.34	40.00	-32.66	QP
4	141.8262	28.91	-18.86	10.05	43.50	-33.45	QP
5	198.5880	30.86	-21.12	9.74	43.50	-33.76	QP
6 *	369.4047	32.73	-15.79	16.94	46.00	-29.06	QP

Remarks:


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	33.4449	36.26	-18.94	17.32	40.00	-22.68	QP
2 *	38.2120	36.33	-18.37	17.96	40.00	-22.04	QP
3	40.4172	34.37	-18.16	16.21	40.00	-23.79	QP
4	56.9912	34.45	-18.59	15.86	40.00	-24.14	QP
5	67.6751	32.76	-20.01	12.75	40.00	-27.25	QP
6	423.5403	28.71	-14.21	14.50	46.00	-31.50	QP

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Accreditation Administration of the People's Republic of China : yz.cnca.cn

More (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 4823.497 46.47 2.02 48.49 74.00 -25.51 per	Ant No.		ANT1						
Remark: No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Deter 1 4823.497 46.47 2.02 48.49 74.00 -25.51 per	Ant. Pol.		Horizo	ontal					
Imit. Only worse case is reportedNo.Frequency (MHz)Reading (dBuV)Factor (dB/m)Level (dBuV/m)Limit (dBuV/m)Margin (dB)Dete14823.49746.472.0248.4974.00-25.51per	Test Mod	e:	TX B	Mode 2412M	lHz				
No. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Dete 1 4823.497 46.47 2.02 48.49 74.00 -25.51 per	Remark:						10 dB below	/ the pres	cribed
No. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Deternation 1 4823.497 46.47 2.02 48.49 74.00 -25.51 per									
	No.		-	• • •				-	Detector
2 * 4823.607 43.67 2.02 45.69 54.00 -8.31 AV	1	4823.4	497	46.47	2.02	48.49	74.00	-25.51	peak
	2 *	4823.6	607	43.67	2.02	45.69	54.00	-8.31	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.		ANT1						
Ant. Pol	•	Vertic	al					
Fest Mo	de:	TX B	Mode 2412N	1Hz				
Remark					ch more than ted Only wors			cribed
No.	Freque (MH	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
No.		z)					-	Detector AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059 可监督管理委员会 国家讧 EN

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

	Ant No.		ANT1							
	Ant. Pol.		Horizontal							
	Test Mod	de:	TX B Mode 2437MHz							
F	Remark:			port for the e Only worse o		ch more thar ted	10 dB belo	w the pre	scribed	
	Na	Frequer								
	No.	Frequer (MHz	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1)	· · ·				-	Detector peak	

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.		ANT1									
Ant. Pol. Test Mode:		Vertic	al								
		TX B	TX B Mode 2437MHz								
Remark:			No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported								
No.	Freque (MH	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
1 *	4873.	578	43.82	2.09	45.91	54.00	-8.09	AVG			
2	4873.6	673	50.80	2.09	52.89	74.00	-21.11	peak			

Remarks:

EN

国家1

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

可监督管理委员会

Fax: (86)755-27521011Http://www.sz-ctc.org.cnFor anti-fake verification, please visit the official website of Certification andAccreditation Administration of the People's Republic of China : yz.cnca.cn

Ant No.	ANT1
Ant. Pol.	Horizontal
Test Mode:	TX B Mode 2462MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4923.589	41.35	2.16	43.51	54.00	-10.49	AVG
2	4923.609	48.27	2.16	50.43	74.00	-23.57	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.		ANT1								
Ant. Pol	•	Vertical								
Test Mo	de:	TX B	TX B Mode 2462MHz							
Remark			port for the e Only worse o		ich more thar rted	n 10 dB belo	w the pre	scribed		
No.	Freque (MH:	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
1 4923.5		540	53.22	2.16	55.38	74.00	-18.62	peak		
2 *	4923.6	606	47.07	2.16	49.23	54.00	-4.77	AVG		
								. <u> </u>		

Remarks:

目家も

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

可监督管理委员会

	Ant No.		ANT1								
	Ant. Pol		Horiz	Horizontal							
-	Test Mo	de:	TX G	TX G Mode 2412MHz							
	Remark:			port for the e Only worse o		ch more thar ted	n 10 dB belo	w the pre	scribed		
	No.	Freque (MH	•	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Ī	
	1	4824.1	135	42.28	2.02	44.30	74.00	-29.70	peak		
	2 *	4824.7	708	28.59	2.02	30.61	54.00	-23.39	AVG		

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. Po	Ant No.									
	1.	Vertical								
Test Mo	ode:	TX G Mode 2412MHz								
Remark	K :		port for the e Only worse c		ch more than ed	10 dB below	/ the pres	cribed		
No.	Freque (MH		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
1 *	4823.	504	41.07	2.02	43.09	54.00	-10.91	AVG		
2	4824.	907	55.09	2.02	57.11	74.00	-16.89	peak		

Remarks:

目家も

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

可监督管理委员会

Ant No.	ANT1
Ant. Pol.	Horizontal
Test Mode:	TX G Mode 2437MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.833	29.56	2.09	31.65	54.00	-22.35	AVG
2	4874.524	42.00	2.09	44.09	74.00	-29.91	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.		ANT1	1							
Ant. Pol	l .	Vertic	Vertical							
Test Mo	de:	TX G	TX G Mode 2437MHz							
Remark	:		port for the e		ich more thai rted	n 10 dB belo	w the pre	scribed		
No.	Freque (MH	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
No.		z)					-	Detector AVG		

Remarks:

目家:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Ant No.	ANT1
Ant. Pol.	Horizontal
Test Mode:	TX G Mode 2462MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4923.797	31.89	2.16	34.05	54.00	-19.95	AVG
2	4924.971	44.55	2.16	46.71	74.00	-27.29	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No. ANT1								
Ant. Pol. Vertical								
Test Mode: TX G Mode 2462MHz								
Remark: No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported							scribed	
No.	Freque (MH:	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	* 4923.020		07.00	0.45	20.44	E4 00	44.50	
1 *	4923.0)20	37.29	2.15	39.44	54.00	-14.56	AVG

Remarks:

目家も

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

可监督管理委员会

Ant No.	ANT1
Ant. Pol.	Horizontal
Test Mode:	TX N20 Mode 2412MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4824.135	30.59	2.02	32.61	54.00	-21.39	AVG
2	4824.753	43.53	2.02	45.55	74.00	-28.45	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.		ANT1	l					
Ant. Pol		Vertic	cal					
Test Mode: TX N20 Mode 2412MHz								
Remark:No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported								
	Frequency (MHz)							
No.		-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
No.		z)	, <u> </u>					Detector peak

Remarks:

中国国家い

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Ant No.	ANT1
Ant. Pol.	Horizontal
Test Mode:	TX N20 Mode 2437MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.260	41.37	2.09	43.46	74.00	-30.54	peak
2 *	4873.293	28.06	2.09	30.15	54.00	-23.85	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.		ANT1						
Ant. Pol	•	Vertic	al					
Test Mode: TX N20 Mode 2437MHz								
Remark:No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported								
No.	No. Frequency (MHz)			Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4873.192		45.86	2.09	47.95	74.00	-26.05	peak
2 *	4873.	586	32.44	2.09	34.53	54.00	-19.47	AVG
								· (

Remarks:

目家も

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

可监督管理委员会

Ant No.	ANT1
Ant. Pol.	Horizontal
Test Mode:	TX N20 Mode 2462MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4923.337	29.02	2.16	31.18	54.00	-22.82	AVG
2	4923.841	43.74	2.16	45.90	74.00	-28.10	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.		ANT1						
Ant. Pol. Vertical								
Test Mo	de:	TX N2	20 Mode 246	2MHz				
Remark:No report for the emission which more than 1limit. Only worse case is reported						10 dB below	the pres	cribed
No.	Freque (MH	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4923.0	037	48.17	2.15	50.32	74.00	-23.68	peak
2 *	4923.2	4923.287 34.98		2.15	37.13	54.00	-16.87	AVG
	-				-			

Remarks:

目家も

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

可监督管理委员会

Ant No.		ANT1	l							
Ant. Pol	I.	Horiz	Horizontal							
Test Mo	de:	TX N	TX N40 Mode 2422MHz							
Remark	:		port for the e		ich more thai rted	n 10 dB belo	w the pre	scribed		
No.	Frequency (MHz)		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
1 *	4843.4	181	26.91	2.05	28.96	54.00	-25.04	AVG		
2	2 4843.797		41.29	2.05	43.34	74.00	-30.66	peak		
-										
Remarks	S:									

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

			NT1					
Ant. Pol. Vertical								
Test Mode: TX N40 Mode 2422MHz								
Remark: No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported							scribed	
0.	Frequency F (MHz)		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
*	4843.479		31.04	2.05	33.09	54.00	-20.91	AVG
2 4844.277 44.39 2.05 46.44 74.00 -27.5				-27.56	peak			
	Mod bark: 0.	Mode: hark: o. Freque (MHz * 4843.4	Mode: TX No re limit. 0. Frequency (MHz) * 4843.479	Mode: TX N40 Mode 242 ark: No report for the elimit. Only worse of o. Frequency (MHz) Reading (dBuV) * 4843.479 31.04	Mode: TX N40 Mode 2422MHz mark: No report for the emission whilimit. Only worse case is reported by the emission while the emissis and the emission while the emission while the emissio	Mode: TX N40 Mode 2422MHz mark: No report for the emission which more than limit. Only worse case is reported o. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) * 4843.479 31.04 2.05 33.09	Mode: TX N40 Mode 2422MHz mark: No report for the emission which more than 10 dB belo limit. Only worse case is reported o. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) * 4843.479 31.04 2.05 33.09 54.00	Mode: TX N40 Mode 2422MHz mark: No report for the emission which more than 10 dB below the pre limit. Only worse case is reported o. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) * 4843.479 31.04 2.05 33.09 54.00 -20.91

Remarks:

目家も

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

 Tel.: (86)755-27521059
 Fax: (86)755-27521011
 Http://www.sz-ctc.org.cn

 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

Ant No.	ANT1
Ant. Pol.	Horizontal
Test Mode:	TX N40 Mode 2437MHz
Remark:	No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.680	40.55	2.09	42.64	74.00	-31.36	peak
2 *	4874.539	26.39	2.09	28.48	54.00	-25.52	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No. ANT1									
,	Ant. Pol	•	Vertic	al					
•	Test Mo	de:	TX N	40 Mode 243	87MHz				
Remark: No report for the emission which more than 10 dB below the prescribed limit. Only worse case is reported							scribed		
	No.	Freque (MH	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1 * 4873.411 29.42								
	1 *	4873.4	411	29.42	2.09	31.51	54.00	-22.49	AVG

Remarks:

目家も

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

-22.24

54.00

AVG

Ant No.		ANT1							
Ant. Pol	. Horizontal								
Test Mo	TX N40 Mode 2452MHz								
Remark:			port for the e Only worse o		ch more thar ted	n 10 dB belo	w the pre	scribed	
No.	Freque (MHz	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1	4904.2	237	43.16	2.13	45.29	74.00	-28.71	peak	-

Ren	narks	

2 *

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.13

31.76

29.63

2.Margin value = Level -Limit value

4904.363

Ant No.		ANT1							
Ant. Pol		Vertic	al						
Test Mo	de:	TX N40 Mode 2452MHz							
Remark:No report for the emission which more than 10 dB below the pre limit. Only worse case is reported							the pres	cribed	
No.	Freque (MH	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
No.		z)					-	Detector AVG	

Remarks:

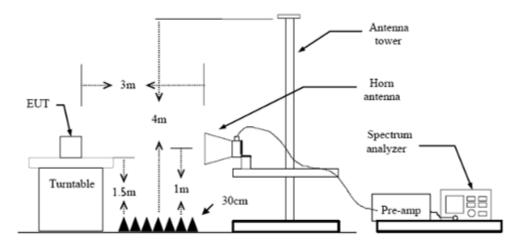
ΕN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

可监督管理委员会


3.3. Band Edge Emissions

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)/ RSS 247 5.5:

Restricted Frequency Band	(dBuV/m)(at 3m)					
(MHz)	Peak	Average				
2310 ~2390	74	54				
2483.5 ~2500	74	54				

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow: RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=10Hz with PEAK Detector for Average Value.

Test Mode

Please refer to the clause 2.3.

Test Results

CTC Laboratories, Inc.

Ant No.		ANT	1										
Ant. Po		Horiz	contal										
Fest Mo	de:	B Mo	de 2412	2MHz									
Remark	:	Only	worse o	ase is	s repo	rted							
120.0 dBu	W/m							1					1
10													
00													
o 📃													
0												\sim	
									FCC F	Part15 C	- Aboye 1G		
0													
										Part15 C	- Above 1G	AV	
									X				
0 mlnn	and mark		an a	uramed area		nennenter		an a	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	marken	al and		
0													
:0													
0													
2302.800	2314.80	2326.80	2338.8	0 23	50.80	(MHz)	237	4.80	2386.80	2398.	80 241	0.80 242	2.8
No.		uency IHz)	Read (dBu			ctor /m)		vel IV/m)	Lin (dBu\		Margir (dB)	Detecto	or
1	239	0.000	16.4	49	31	.31	47	.80	74.	00	-26.20) peak	<
2 *	239	0.000	5.7	2	31	.31	37	.03	54.	00	-16.97	/ AVG	;
Remarks		= Anteni	na Facto	or (dB	/m)+C	able F	actor	(dB)-Pi	e-amp	lifier F	actor		

CTC Laboratories, Inc.

Accreditation Administration of the People's Republic of China : yz.cnca.cn

20.0 dBuV/m 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 1 00 00 00 00 00 1 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 <th>nt</th> <th>No.</th> <th></th> <th>ANT1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	nt	No.		ANT1						
Remark: Only worse case is reported 20.0 dBuW/m 10 FCC Part15 C - Above 16 PK 00 FCC Part15 C - Above 16 AV 01 FCC Part15 C - Above 16 AV 02 FCC Part15 C - Above 16 AV 03 FCC Part15 C - Above 16 AV 04 FCC Part15 C - Above 16 AV 05 FCC Part15 C - Above 16 AV 10 FCC Part15 C - Above 16 AV 1 Z326.20 Z338.20 Z350.20 1 Z390.000 14.26 31.31 45.57	nt.	Pol.		Vertic	al					
120.0 dBuV/m 110	est	Mod	e:	B Mod	de 2412MH	z				
No. Frequency (MHz) Reading (dBuV) Factor (dBm) Level (dBuV/m) Limit (dBuV/m) Margin (dBuV/m) Detection	em	nark:		Only	worse case	is reported				
Image: No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detection 1 2390.000 14.26 31.31 45.57 74.00 -28.43 peak	20.0	dBu¥∕	m							
No. Frequency (MHz) Reading (dBuV) Factor (dBuV) Level (dBuV/m) Limit (dBuV/m) Margin (dBuV/m) Detector 1 2390.000 14.26 31.31 45.57 74.00 -28.43 pear	0									
Image: No. Frequency (MHz) Reading (dBuV) Factor (dBuV/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detector 1 2390.000 14.26 31.31 45.57 74.00 -28.43 pear	0									
FCC Part15 C - Above 16 PK FCC Part15 C - Above 16 AV FCC Par	• -									
No. Frequency (MHz) Reading (dBuV) Factor (dBv) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detection								ECC Davit E C	Abarra at Dir	
S0 FCC Part15 C - Atove 1G AV 40 1 30 20 20 20 20 2302.200 2314.20 2326.20 2338.20 2350.20 (MHz) 2374.20 2386.20 2398.20 2410.20 242 No. Frequency (MHz) Reading (dBuV) Factor (dB/m) 1 2390.000 14.26 31.31 45.57 74.00 -28.43 pear	ı þ								ADOVE TO FK	
50 1 1 1 40 30 30 30 30 20 20 30 30 30 30 20 20 20 20 20 20 20 20 20 2302.200 2314.20 2326.20 2338.20 2350.20 (MHz) 2374.20 2386.20 2398.20 2410.20 242 No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detector 1 2390.000 14.26 31.31 45.57 74.00 -28.43 pea	• -							ECC Pay15 C		\rightarrow
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detector 1 2390.000 14.26 31.31 45.57 74.00 -28.43 pear	ı þ									
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detector 1 2390.000 14.26 31.31 45.57 74.00 -28.43 pear										
IO IO <thio< th=""> IO IO <thi< th=""><th>1</th><th></th><th>61.474),6-19-94-94936</th><th>an an an an Anna an Anna an Anna Anna A</th><th>And an and a second second</th><th>Laugher Handle Hanger of Sparson Party Sparson</th><th></th><th>And dimension of the second second</th><th></th><th></th></thi<></thio<>	1		61.474),6-19-94-94936	an an an an Anna an Anna an Anna Anna A	And an and a second	Laugher Handle Hanger of Sparson Party Sparson		And dimension of the second		
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detector 1 2390.000 14.26 31.31 45.57 74.00 -28.43 pear	۱ -									
2302.200 2314.20 2326.20 2338.20 2350.20 (MHz) 2374.20 2386.20 2398.20 2410.20 242 No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detector 1 2390.000 14.26 31.31 45.57 74.00 -28.43 pear	• -									
No.Frequency (MHz)Reading (dBuV)Factor (dB/m)Level (dBuV/m)Limit (dBuV/m)Margin (dB)Detector Detector12390.00014.2631.3145.5774.00-28.43pear		2 200	2214 20	2226.20	2220.20 22	50.20 (MU-)	2274.20 23	200 200 2200 20	0 2410.20	2422.20
NO. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detection 1 2390.000 14.26 31.31 45.57 74.00 -28.43 pear			Frequ	Jency	Reading	Factor	Level	Limit	Margin	D. t. t.
			(M	Hz)	(dBuV)				(dB)	Detector
2 * 2390.000 6.27 31.31 37.58 54.00 -16.42 AV		1	2390	0.000	14.26	31.31	45.57	74.00	-28.43	peak
		2 *	2390	000.0	6.27	31.31	37.58	54.00	-16.42	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Accreditation Administration of the People's Republic of China : yz.cnca.cn

Ant No.		ANT1											
Ant. Pol.		Horizo	ontal										
Test Mod	e:	B Moc	le 2462 l	MHz									
Remark:		Only v	vorse ca	se is	reported	b							
120.0 dBuV/	'm												
110													
100													
10													
0	~~												
ro 🗲									FCC P	art15 C - A	Above 1G	PK	
io	$ \rightarrow $												
50			×						FCC P	art15 C - /	Above 1G	AV	
10													
io		howard	2		and an and a second		Martina	⋏ ₽ ₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩	h-mahartin	danagemethoward	monorth	بالمحاوم بادي	monters
20													
10													
0.0													
2450.600	2462.60	2474.60	2486.60	249	3.60 (MH	lz)	2522.6	D 25	34.60	2546.60) 255	8.60	2570.6
No.		uency Hz)	Readi (dBu)	-	Facto (dB/n		Lev (dBu\			nit V/m)	Marg (dB		Detecto
1	2483	3.500	18.2	1	31.4	8	49.0	69	74	.00	-24.3	31	peak
2 *	2483	3.500	5.67	7	31.4	8	37.	15	54	.00	-16.8	35	AVG
Remarks:													
I.Factor (2.Margin v					m)+Cabl	e Fa	actor (d	B)-Pr	e-amp	olifier F	actor		

CTC Laboratories, Inc.

Accreditation Administration of the People's Republic of China : yz.cnca.cn

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accorditation Administration of the People's Republic of China : vz coco. cn EN

nt No.		ANT1						
nt. Pol	•	Vertic	al					
est Mo	de:	B Mo	de 2462 MHz	<u> </u>				
emark:		Only	worse case i	s reported				
0.0 dBu\	//m							
o								
o								
	~~					FCC Part15 C	- Above 1G Pl	ĸ
	\rightarrow					FCC Part15 C	- Above 1G A	<
			X					
2		Unander	- Martin and a second		admit and programmed a	and an an an and the second stranger	water and the state of	und you not a way of
.0								
2450.600	2462.60	2474.60	2486.60 24	198.60 (MHz)	2522.60	2534.60 2546.	60 2558.0	50 257 0.6
No.	Freque (MH		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.	500	14.41	31.48	45.89	74.00	-28.11	peak
2 *	2483.	500	5.09	31.48	36.57	54.00	-17.43	AVG
	1							

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant No.		ANT1									
Ant. Pol.		Horiz	ontal								
Test Mod	le:	G Mo	de 2412M	Ηz							
Remark:		Only	worse case	e is reported	k						
120.0 dBu¥/	/m										
110											
100											
90											
80							FCC	0	- Above 1G P		
70									- ADOVE TO F		
60							FCC	Dent E.C.	- Above 1G A		
50							1 X				
40		1.11. A.I			o lot au	and a rate of the design of the		and the second states		\longrightarrow	
30											
20											
10											
0.0 2302.800	2314.80	2326.80	2338.80	2350.80 (MH	z)	2374.80	2386.80	2398.	80 2410.	30 2422.	.80
No.	Freque (MH:	-	Reading (dBuV)	Facto (dB/m		Level (dBuV/m	Lir (dBu	nit V/m)	Margin (dB)	Detecto	or
1	2390.0	000	15.64	31.31		46.95	74	.00	-27.05	peak	
2 *	2390.0	000	5.45	31.31		36.76	54	.00	-17.24	AVG	
Demerius											
	(dB/m) = /		ha Factor (c Limit value	IB/m)+Cabl	e Fa	actor (dB)-	Pre-am	plifier	Factor		

CTC Laboratories, Inc.

Accreditation Administration of the People's Republic of China : yz.cnca.cn

Ant No.		ANT1								
Ant. Pol.		Vertical								
Test Mode:		G Mode 2412MHz								
Remark:		Only worse case is reported								
120.0 dBuV/m										
110										
100										
90										
80								ECC Part15 C	- Above 1G Pl	<u>, </u>
70										
60								ECC Part15 C	- Above 1G A	
50								1 X		
40	and and a second second second		went under a source	a chillen an takan	-	an marater failer somethings	man	2 and the state of	~	
30										
20										
10										
0.0 2303.400	2315.40	2327.40	2339.40	2351.40	(MHz)	2375.40	23	87.40 2399	.40 2411.4	10 2423.40
No.	Frequency (MHz)		Reading (dBuV)		ctor /m)	Level (dBuV/m)		Limit dBuV/m)	Margin (dB)	Detector
1	2390.	000 16.81		31	.31	48.12		74.00	-25.88	peak
2 *	2390.	000 5.52		31	.31	36.83		54.00	-17.17	AVG
										L
Remarks		Antenr	a Factor (IR/m)⊥(ahle I	Factor (dB))_Pr	e-amplifier	Factor	
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value										

CTC Laboratories, Inc.

Accreditation Administration of the People's Republic of China : yz.cnca.cn

Ant No.		ANT1											
Ant. Pol		Horiz	ontal										
Test Mo	de:	G Mo	de 2462	ИНz	<u>Z</u>								
Remark		Only	worse ca	se i	s reporte	ed							
120.0 dBu	V/m												1
110													
100													
90													
80									FCC I		- Above 1G	DY	
70		1									- ADUYE TO	<u>FN</u>	
60									ECC	2-415 C	- Above 1G	A1/	
50			×								- ADUYE TO	AV	
40			2				و بر الم		ahundar georgeon	k. ou		14-mart 10-14-14-	
30		-10-101 W.W.M.M.		r	441~-+470-(M)-*1742*8784				a mataka sharaka a	and and a second			
20													
10													
0.0 2 4 50.600	2462.60	2474.60	2486.60	24	98.60 (M	IHz)	252	2.60	2534.60	2546.	60 2558	260 257	0.60
No.	Frequ (Mł		Readir (dBuV	- 1	Facto (dB/m			vel IV/m)	Lir (dBu		Margii (dB)	Detect	tor
1	2483	.500	18.42	2	31.48	3	49	.90	74.	00	-24.10) pea	k
2 *	2483	.500	5.05		31.48	3	36	.53	54.	00	-17.47	7 AVC	3
Remarks	2.												
1.Factor	(dB/m) =		a Factor imit valu		8/m)+Cat	ole F	actor	(dB)-F	Pre-am	plifier	Factor		

Ant No.		ANT1						
Ant. Pol	•	Vertic	al					
est Mo	de:	G Mo	de 2462MF	Ηz				
Remark:		Only	worse case	e is reported				
20.0 dBu\	//m							
10								
00								
o								
o								
0						FCC Part15 C	- Above 1G P	ĸ
o		٦						
o 🗐			1 X			FCC Part15 C	- Above 1G A	v
o 📗								
o		menderte	www.		Annen and an anne an	net man and a second star of the	man has many mark	downwoor
o								
0								
0.0								
2450.000	2462.00	2474.00	2486.00	2498.00 (MHz)	2522.00	2534.00 2546.	.00 2558.0	00 2570.0
No.		uency Hz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483	8.500	15.76	31.48	47.24	74.00	-26.76	peak
2 *	2483	3.500	5.54	31.48	37.02	54.00	-16.98	AVG
Remarks								

nt No.		ANT1						
nt. Po		Horiz	ontal					
est Mo	de:	N(HT	20) Mode 2	412MHz				
emark	:	Only	worse case	is reported				
20.0 dBu	V/m							
0								
0								
,								
						FCC Part15 C	Above 1G PR	<u> </u>
						FCC Part15 C	Above 1G AV	<u> </u>
								1
		man marine	near a spectrum man	h-hadan Marina hanna marina		and the second second		
)								
).0 2302.800	2314.80	2326.80	2338.80 2	350.80 (MHz)	2374.80	2386.80 2398.	80 2410.8	0 2422.8
No.		uency Hz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390	0.000	19.32	31.31	50.63	74.00	-23.37	peak
2 *	2390	0.000	5.39	31.31	36.70	54.00	-17.30	AVG
emark								

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant No.	ANT	1					
Ant. Pol.	Vertio	cal					
Test Mode:	N(HT	20) Mode 24	12MHz				
Remark:	Only	worse case i	s reported				
120.0 dBu¥/m							
110							
100							
90							
80					FOOD HE C	AL 10 DE	
70					FCC Part15 C		
60					FCC Part15 C	h	
50						ADOVE TO AV	
40				and the second	2 And Sector March and	/	
30	and an all the second	**************************************					
20							
10							
0.0 2302.800 231	4.80 2326.80	2338.80 23	50.80 (MHz)	2374.80 2	2386.80 2398.0	80 2410.8	0 2422.80
No. Fi	requency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 2	390.000	23.56	31.31	54.87	74.00	-19.13	peak
2 * 2	390.000	6.09	31.31	37.40	54.00	-16.60	AVG
<u> </u>							. <u> </u>
Remarks: 1.Factor (dB	(m) - Anton	a Eactor (dB		Eactor (dP) P	Pro-omplifier	Factor	
2.Margin val				acioi (UD)-P	re-ampliller		

Ant No.		ANT1											
Ant. Pol	•	Horiz	ontal										
Test Mo	de:	N(HT	20) Mode	24	62MHz								
Remark	1	Only	worse ca	se i	s reporte	d							
120.0 dBu	//m												
110													
100													
90													
80									ECC E		- Above 1G F)K	
70		۱ –									- ADOVE TO T	<u> </u>	
60									FCC F		- Above 1G A		
50			1 X								- ADOVE TO F		
40		La come	2				~~~~~	ette jako e konst			-	rohuman	
30			en offen in a standard second second										
20													
10													
0.0 2 4 50.600	2462.60	2474.60	2486.60	24	98.60 (M	Hz)	252	2.60	2534.60	2546.	.60 2558	.60 2570	60
									1		I	1	
No.	Frequ (MF		Readin (dBuV		Facto (dB/m			vel V/m)	Lin (dBu\		Margin (dB)	Detecto	r
1	2483	.500	15.81		31.48	;	47	.29	74.	00	-26.71	peak	T
2 *	2483	.500	5.95		31.48	;	37	.43	54.	00	-16.57	AVG	T
	(dB/m) =		a Factor imit value		8/m)+Cab	le F	actor	(dB)-F	Pre-amp	olifier	Factor		

nt No.		ANT1											
nt. Pol.		Vertic	al										
est Mod	de:	N(HT	20) Mo	de 24	62MHz								
emark:		Only	worse o	case is	s reported	ł							
20.0 dBu\	//m												
10													
0													
ı													
									FCC P	art15 C	- Above 1G F	РК	
			¥						FCC P	art15 C	- Above 1G A	w	
1		Commen		-	water and the second	home	MARLA ARABA	on all he served	ang de has water van sta	an a	whenever	and white many so	
)													
2450.600	2462.60	2474.60	2486.6	D 24	98.60 (M	Hz)	252	2.60 2	2534.60	2546.	.60 2558	.60 257	0.0
	_											1	
No.	Frequ (Mł	-	Read (dBu	· ·	Facto (dB/m			vel IV/m)	Lim (dBu\		Margin (dB)	Detecto	or
1	2483	.500	18.	23	31.48	3	49	.71	74.(00	-24.29	peak	<
2 *	2483	.500	4.7	' 9	31.48	}	36	.27	54.(00	-17.73	AVG	;
emarks		A			/m)+Cabl	- -		(JD)			- octor		

2.Margin value = Level -Limit value

EN

CTC Laboratories, Inc.

nt No.		AN	T1										
nt. Po	l	Но	rizonta	al									
est Mo	de:	N(ł	HT40)	Mode 2	2422M	Hz							
emark	:	On	ly wor	se case	e is rep	orted							
20.0 dBu	W/m												1
10													
io													
ı													
,													
									FCC	Part <u>15 C</u>	- Above 1G	PK	
											,		
								1	FCO	Part15 C	- Above 1G	AV	
								1 X 2					
Holenon	en	no all and and a second		r	ware about the second	mholumous	and participants and participants of the	2	and a start of the			(
).0													
2292.250	2307.25	2322.2	25 23	37.25	2352.25	(MHz)	238	2.25	2397.25	2412.	25 242	7.25 244	2.2
No.		uency Hz)		eading IBuV)		actor 3/m)	1	vel IV/m)		mit ıV/m)	Margii (dB)	ר Detect	tor
1	239	0.000	1	5.96	31	1.31	47	.27	74	.00	-26.73	3 peal	k
2 *	239	0.000		6.54	31	1.31	37	.85	54	.00	-16.15	5 AVG	3
emark	s:												

2.Margin value = Level -Limit value

EN

CTC Laboratories, Inc.

Ant No.		ANT1						
Ant. Pol		Vertic	al					
Fest Mo	de:	N(HT	40) Mode 2	2422MHz				
Remark	:	Only	worse case	e is reported				
20.0 dBu	V/m							
10								
00								
ю —								
0								
70 						FCC Part15 C	- Above 1G Pl	<u>(</u>
:0							1	
;0					1 ×		- Above 16 A	
0					2			
		and an and a second	the horizon and a second construction	underen mensemental and	warden warden warden 18	- marked - marked		
:0								
0								
0.0								
2292.250	2307.25	2322.25	2337.25	2352.25 (MHz)	2382.25	2397.25 2412	.25 2427.2	25 2442.2
No.		uency IHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m	Limit) (dBuV/m)	Margin (dB)	Detector
1	239	0.000	17.85	31.31	49.16	74.00	-24.84	peak
2 *	239	0.000	5.69	31.31	37.00	54.00	-17.00	AVG
Remarks		<u>Antone</u>	no Footor (a		Footor (dD)	-Pre-amplifier	Factor	

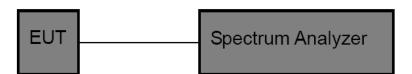
Ant No.			ANT1															
Ant. Po	I.		Horiz	onta														
Test Mo	ode:		N(HT	40) I	Node	24	52MI	Ηz										
Remark	K:		Only	wors	e cas	se is	s rep	orted										
120.0 dB	uV/m																	
10																		_
00																		
ю —																		
80																		
70 -		~~~~											FUU	Part15 C	- Abov	re iti h	TK	
io		V																
io 📃					1 X								FUUR	Part15 C	- Abov	/e 16 /	v	
ю /					2													_
:0				2000	hijinen den	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	and the second	Westersetter		and services the surger	white	ntellige		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V 89 442-4-74-	******	
20																		
IO																		
0.0 2431.000) 2446.0		161.00		6.00	240	91.00	(MHz		252	1.00	2536		2551	00	2566	00	2581.0
No.		equer MHz			adin BuV			actor 3/m)	- 1	Le (dBu	vel IV/m)) (d	Lin IBu'			argir dB)	Det	ector
1	24	83.50	00	1	6.61		31	.48		48	.09		74.	00	-2	5.91	pe	eak
2 *	24	83.50	00	5	5.49		31	.48		36	.97		54.	00	-17	7.03	A	٧G
	-																	
Remark I.Facto 2.Margi	r (dB/m						/m)+(Cable	e F	actor	(dB)-	Pre	-am	olifier	Fac	tor		

nt No.		ANT1										
nt. Pol	-	Vertic	al									
est Mo	de:	N(HT	40) N	lode 24	52MHz							
Remark	:	Only	worse	e case is	s reported	ł						
20.0 dBu'	V/m											
10												
00												
o												
)									500.5			
) 📂									FUUP	art15 C	- Above 1G	РК
, ⊨				1 X					FCC F	art15 C	- Above 1G	AV
,				× 2								
· /			ma	mmin	en and the second second	a.e.	- Andrew Mary	whenterner	ubud monselv	na na sana sa	wangenthem	water
,												
,												
D.O												
2431.000	2446.00	2461.00	241	6.00 24	91.00 (M	Hz)		1.00 2	2536.00	2551.	.00 230	6.00 2581
No.	Frequ (MF	-		ading BuV)	Facto (dB/m			vel V/m)	Lim (dBu\		Margii (dB)	Detecto
1	2483	500	1	5.61	31.48	;	47	.09	74.	00	-26.91	l peak
2 *	2483	500	5	i.49	31.48	;	36	.97	54.	00	-17.03	3 AVG
Remarks	S:				/m)+Cabl							

2.Margin value = Level -Limit value

EN

CTC Laboratories, Inc.



3.4. Band edge and Spurious Emissions (Conducted)

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Configuration

Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic. Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

Test Mode

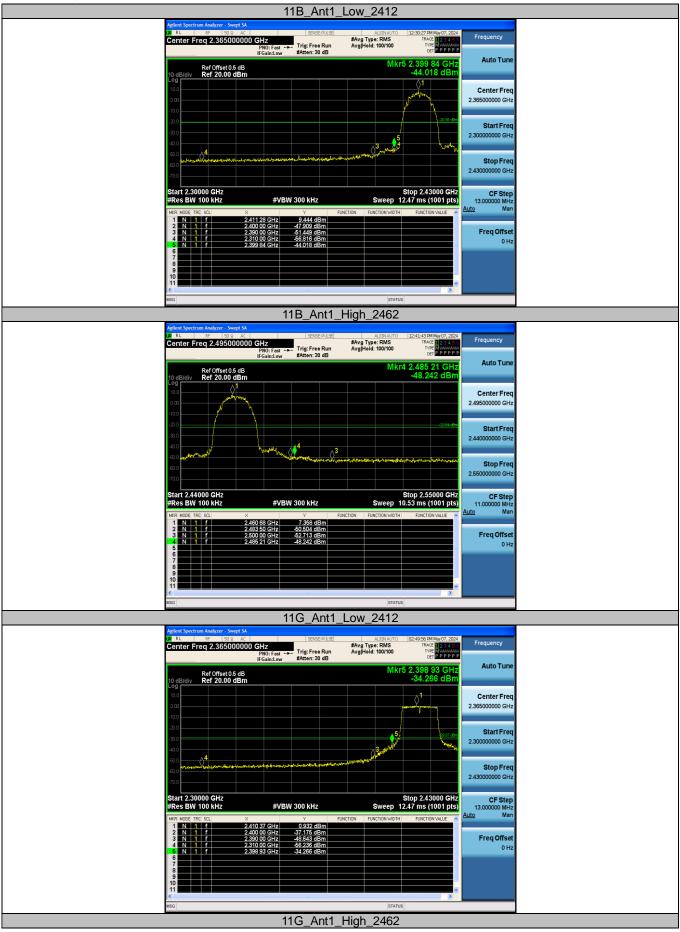
Please refer to the clause 2.4.

Test Results

CTC Laboratories, Inc. Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Tel.: (86)755-27521059 百百百家认证认可监督管理委员会 下 anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

Band edge measurements

TestMode	Antenna	ChName	Frequency[MHz]	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
11B	Ant1	Low	2412	9.44	-44.02	≤-20.56	PASS
ПD	Anti	High	2462	7.36	-48.24	≤-22.64	PASS
11G	Ant1	Low	2412	0.93	-34.27	≤-29.07	PASS
no	Anti	High	2462	2.89	-44.02	≤-27.11	PASS
11N20SISO	Ant1	Low	2412	2.04	-36.22	≤-27.96	PASS
1111205150	Anti	High	2462	1.86	-44.84	≤-28.14	PASS
11N40SISO	Ant1	Low	2422	-0.73	-38.92	≤-30.73	PASS
1111403130	AILI	High	2452	-1.09	-43.48	≤-31.09	PASS


Conducted Spurious Emission

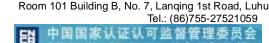
TestMode	Antenna	Frequency[MHz]	FreqRange [Mhz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
			Reference	9.54	9.54		PASS
		2412	30~1000	9.54	-67.21	≤-20.46	PASS
			1000~26500	9.54	-24.11	≤-20.46	PASS
			Reference	9.59	9.59		PASS
11B	Ant1	2437	30~1000	9.59	-67.57	≤-20.41	PASS
			1000~26500	9.59	-24.23	≤-20.41	PASS
			Reference	-1.09	-1.09		PASS
		2462	30~1000	-1.09	-69.15	≤-31.09	PASS
			1000~26500	-1.09	-42.31	≤-31.09	PASS
			Reference	3.15	3.15		PASS
		2412	30~1000	3.15	-68.24	≤-26.85	PASS
			1000~26500	3.15	-29.38	≤-26.85	PASS
			Reference	3.03	3.03		PASS
11G	Ant1	2437	30~1000	3.03	-68.68	≤-26.97	PASS
		2462	1000~26500	3.03	-29.13	≤-26.97	PASS
			Reference	3.19	3.19		PASS
			30~1000	3.19	-68.3	≤-26.81	PASS
			1000~26500	3.19	-28.54	≤-26.81	PASS
			Reference	3.19	3.19		PASS
		2412	30~1000	3.19	-68.28	≤-26.81	PASS
			1000~26500	3.19	-31.31	≤-26.81	PASS
			Reference	2.23	2.23		PASS
11N20SISO	Ant1	2437	30~1000	2.23	-67.72	≤-27.77	PASS
			1000~26500	2.23	-31.45	≤-27.77	PASS
			Reference	2.03	2.03		PASS
		2462	30~1000	2.03	-68.42	≤-27.97	PASS
			1000~26500	2.03	-31.62	≤-27.97	PASS
			Reference	-0.55	-0.55		PASS
		2422	30~1000	-0.55	-59.44	≤-30.55	PASS
			1000~26500	-0.55	-32.47	≤-30.55	PASS
			Reference	-0.56	-0.56		PASS
11N40SISO	Ant1	2437	30~1000	-0.56	-60.66	≤-30.56	PASS
			1000~26500	-0.56	-36.25	≤-30.56	PASS
			Reference	-2.59	-2.59		PASS
		2452	30~1000	-2.59	-56.46	≤-32.59	PASS
			1000~26500	-2.59	-35.72	≤-32.59	PASS

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN



Band edge measurements Test Graphs

CTC Laboratories, Inc.

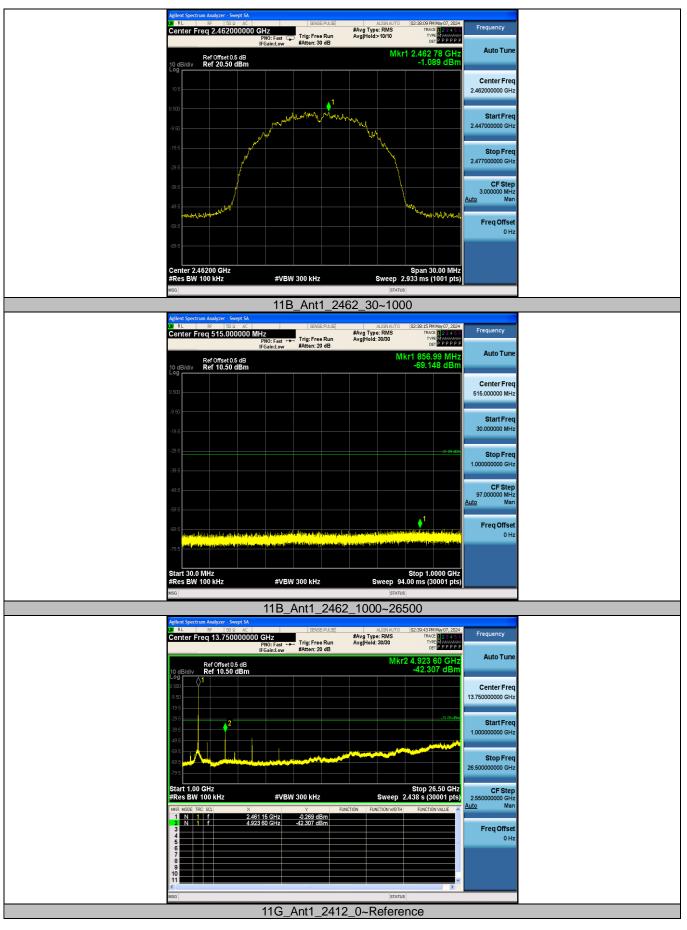

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

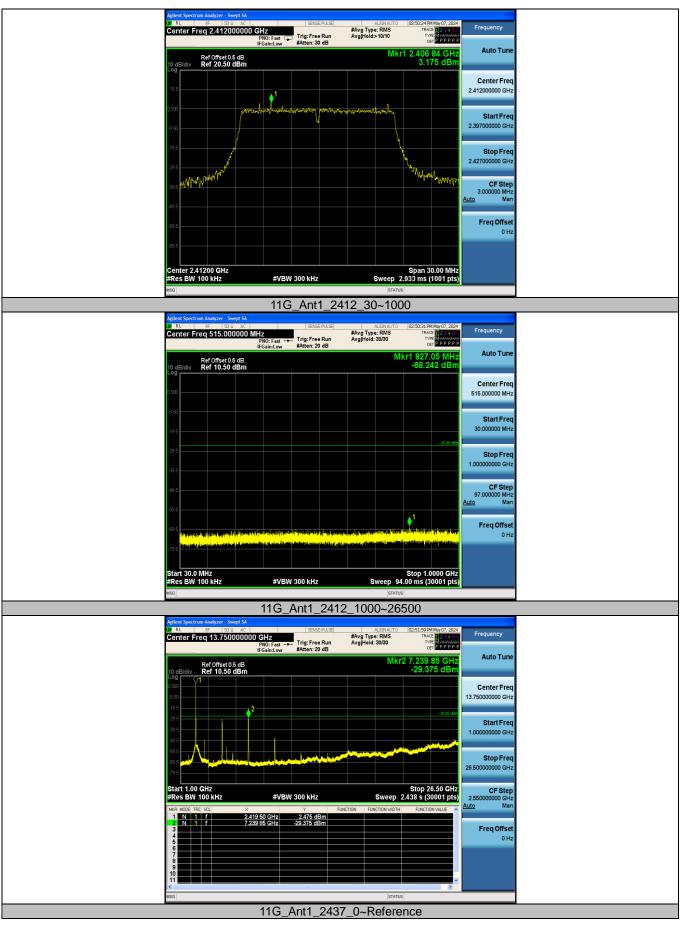
Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

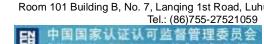
Conducted Spurious Emission

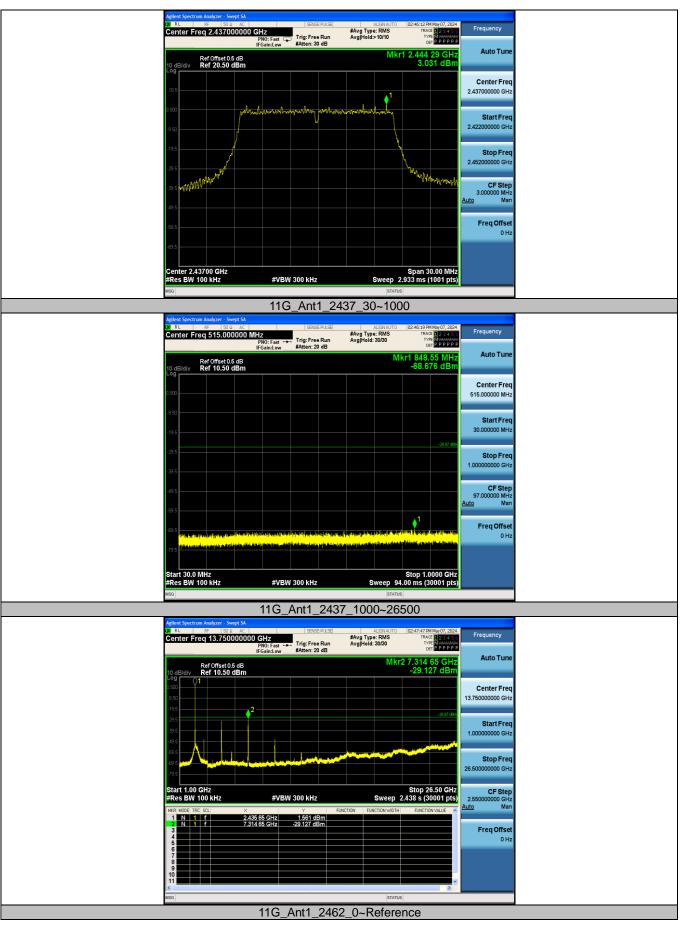
CTC Laboratories, Inc.

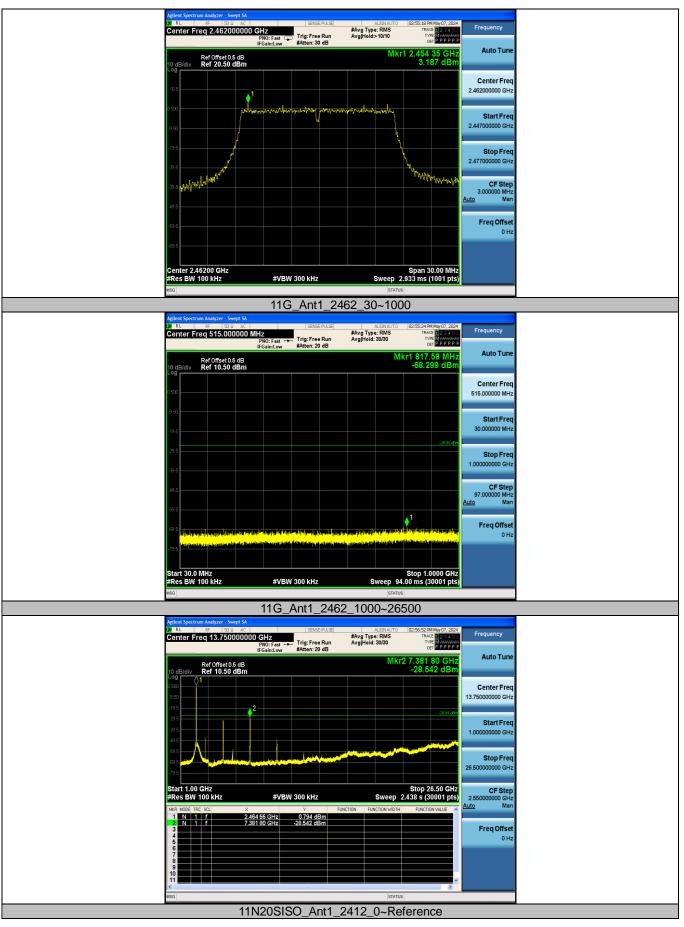
Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

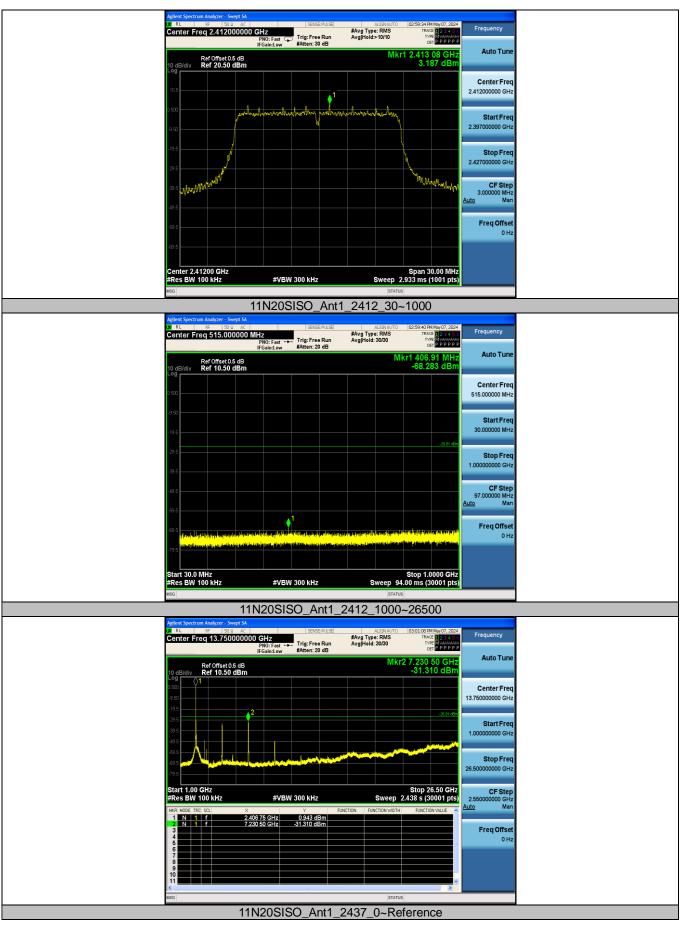

Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>










Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN

