

TEST Report

Applicant:	Shenzhen Shisuo Technology Co., Ltd.
Address of Applicant:	Room 401, No. 1, Gangbei Industrial Zone, Longcheng Street, Longgang District, Shenzhen, China.
Manufacturer :	Shenzhen Shisuo Technology Co., Ltd.
Address of Manufacturer : Equipment Under Test (El	Room 401, No. 1, Gangbei Industrial Zone, Longcheng Street, Longgang District, Shenzhen, China. JT)
Product Name:	Microphone
Model No.:	A5
Series model:	A5S, A6, A1, A2, A3, A4, A7, A8, A9, A10, A11, A12, A15, A16, A17, A18, A20
Trade Mark:	N/A
FCC ID:	2BGBG-A5
Applicable standards: Date of sample receipt:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 Apr. 30, 2024
Date of Test:	Apr. 30, 2024 ~ May. 09, 2024
Date of report issued:	May. 09, 2024
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	May. 09, 2024	Original

Tested/ Prepared By

Heber He Date:

May. 09, 2024

Check By:

Bruce Zhu Date:

Project Engineer

May. 09, 2024

Reviewer

Kein Oh Date: Authorized Signature

May. 09, 2024

Approved By :

2. Contents

1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	4
4. GENERAL INFORMATION	5
 4.1. GENERAL DESCRIPTION OF EUT	7 7 7 7 7 7
5. TEST INSTRUMENTS LIST	ð
5. TEST INSTRUMENTS LIST 6. TEST RESULTS AND MEASUREMENT DATA	
	9 12 13 15 17 17 18 20 20 22
6. TEST RESULTS AND MEASUREMENT DATA 6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED OUTPUT POWER 6.3. CHANNEL BANDWIDTH 6.4. POWER SPECTRAL DENSITY 6.5. BAND EDGES 6.5.1 Conducted Emission Method 6.5.2 Radiated Emission Method 6.6. SPURIOUS EMISSION 6.6.1 Conducted Emission Method 6.6.2 Radiated Emission Method	9 12 13 15 17 17 17 18 20 20 22 29

3. Test Summary

Test Item	Section in CFR 47	Result	
Antenna requirement	15.203/15.247 (c)	Pass	
AC Power Line Conducted Emission	15.207	Pass	
Conducted Output Power	15.247 (b)(3)	Pass	
Channel Bandwidth	15.247 (a)(2)	Pass	
Power Spectral Density	15.247 (e)	Pass	
Band Edge	15.247(d)	Pass	
Spurious Emission	15.205/15.209	Pass	

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Frequency Range	Measurement Uncertainty	Notes
30~1000MHz	3.45 dB	(1)
1~18GHz	3.54 dB	(1)
18-40GHz	5.38 dB	(1)
0.15~30MHz	2.66 dB	(1)
-	30~1000MHz 1~18GHz 18-40GHz	30~1000MHz 3.45 dB 1~18GHz 3.54 dB 18-40GHz 5.38 dB

4. General Information

4.1. General Description of EUT

Product Name:	Microphone
Model No.:	A5
Series model:	A5S, A6, A1, A2, A3, A4, A7, A8, A9, A10, A11, A12, A15, A16, A17, A18, A20
Test sample(s) ID:	HTT202405019-1(Engineer sample) HTT202405019-2(Normal sample)
Operation frequency	2402~2480 MHz
Number of Channels	40
Modulation Type	GFSK
Channel separation	2MHz
Antenna Type:	Chip Antenna
Antenna Gain:	2.67 dBi
Power Supply:	DC 3.7V From Battery and DC 5V From External Circuit
Adapter Information	Mode: GS-0500200
(Auxiliary test provided by the lab):	Input: AC100-240V, 50/60Hz, 0.3A max Output: DC 5V, 2A

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-23595200

Fax: 0755-23595201

4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2021	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2021	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2024	Apr. 25 2025
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2024	Apr. 25 2025
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2024	Apr. 25 2025
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2024	Apr. 25 2025
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2024	Apr. 25 2025
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2024	Apr. 25 2025
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2023	May. 20 2024
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2023	May. 19 2024
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2024	Apr. 25 2025
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2024	Apr. 25 2025
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2024	Apr. 25 2025
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2024	Apr. 25 2025
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	Apr. 26 2024	Apr. 25 2025
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2024	Apr. 25 2025
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2023	May. 22 2024
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2023	May. 22 2024
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	Apr. 26 2024	Apr. 25 2025
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2024	Apr. 25 2025
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2024	Apr. 25 2025
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2021	Aug. 09 2024
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2024	Apr. 25 2025
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2024	Apr. 25 2025
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2024	Apr. 25 2025
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2024	Apr. 25 2025
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2024	Apr. 25 2025
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2023	Apr. 27 2024
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

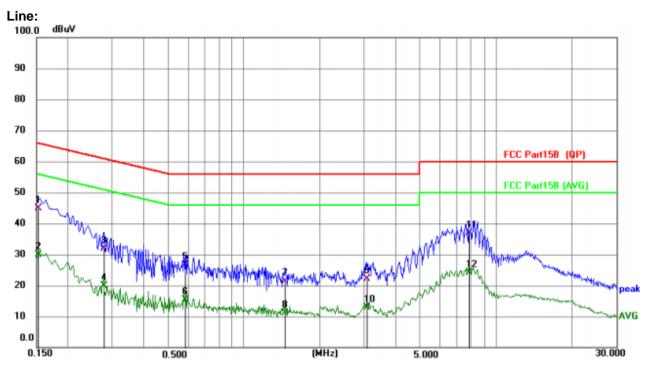
Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

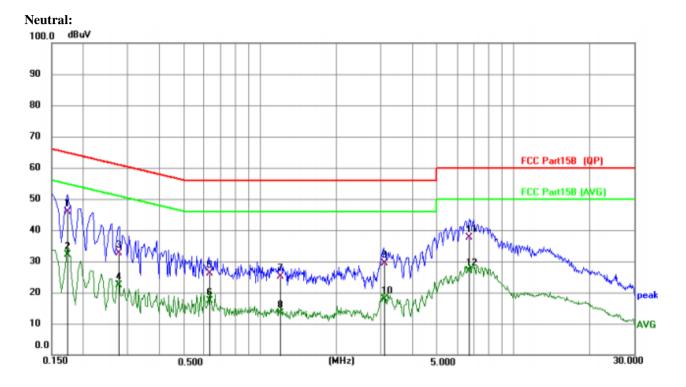
1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

6. Test results and Measurement Data

6.1. Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto					
Limit:		Lim	it (dBuV)				
	Frequency range (MHz)	Quasi-peak	Ave	erage			
	0.15-0.5	66 to 56*		o 46*			
	0.5-5	56		46			
	5-30 * Decreases with the logarithm	60		50			
Test setup:	Reference Plane	· · ·					
Test procedure:	LISN 40cm 80cm AUX 80cm 80cm Equipment E.U.T 1000000000000000000000000000000000000	EMI Receiver are connected to the n network (L.I.S.N.) edance for the mea also connected to	. This provide suring equipn the main pow	es a nent. er through a			
Test Instruments:	 termination. (Please refer to photographs). 3. Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.10: Refer to section 6.0 for details 	o the block diagram checked for maxim d the maximum em all of the interface 2013 on conducted	um conducted ission, the rel cables must	etup and d ative be changed			
Test mode:	Refer to section 5.2 for details						
Test environment:		nid.: 52%	Press.:	1012mbar			
Toot voltago:	AC 120V, 60Hz						
Test voltage:	AC 1207, 00112						

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.


Report No.: HTT202405019F01

Measurement data:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1 *	0.1530	34.72	10.16	44.88	65.84	-20.96	QP
2	0.1530	19.60	10.16	29.76	55.84	-26.08	AVG
3	0.2760	21.71	10.23	31.94	60.94	-29.00	QP
4	0.2760	9.76	10.23	19.99	50.94	-30.95	AVG
5	0.5864	16.39	10.31	26.70	56.00	-29.30	QP
6	0.5864	4.97	10.31	15.28	46.00	-30.72	AVG
7	1.4589	10.97	10.41	21.38	56.00	-34.62	QP
8	1.4589	0.82	10.41	11.23	46.00	-34.77	AVG
9	3.0895	11.63	10.51	22.14	56.00	-33.86	QP
10	3.0895	2.46	10.51	12.97	46.00	-33.03	AVG
11	7.8301	26.24	10.64	36.88	60.00	-23.12	QP
12	7.8301	13.50	10.64	24.14	50.00	-25.86	AVG

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1 *	0.1731	35.73	10.18	45.91	64.81	-18.90	QP
2	0.1731	21.83	10.18	32.01	54.81	-22.80	AVG
3	0.2770	22.38	10.23	32.61	60.91	-28.30	QP
4	0.2770	12.09	10.23	22.32	50.91	-28.59	AVG
5	0.6326	15.88	10.35	26.23	56.00	-29.77	QP
6	0.6326	7.03	10.35	17.38	46.00	-28.62	AVG
7	1.1985	14.78	10.34	25.12	56.00	-30.88	QP
8	1.1985	2.94	10.34	13.28	46.00	-32.72	AVG
9	3.0951	18.88	10.45	29.33	56.00	-26.67	QP
10	3.0951	7.42	10.45	17.87	46.00	-28.13	AVG
11	6.7214	27.02	10.67	37.69	60.00	-22.31	QP
12	6.7214	16.25	10.67	26.92	50.00	-23.08	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

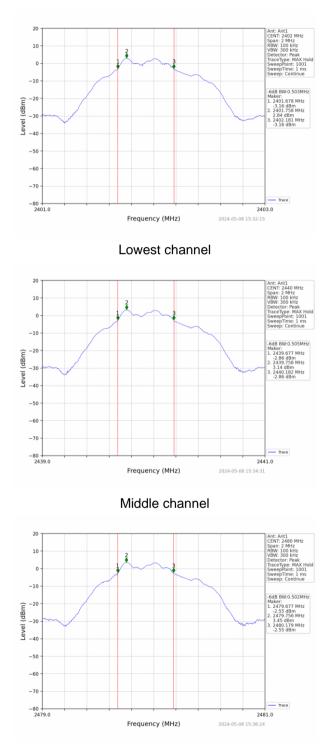
Shenzhen HTT Technology Co.,Ltd.Tel: 0755-23595200Fax: 0755-235952011F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
Shenzhen, Guangdong, China

Test Requirement: Test Method:		FCC Part15 C Section 15.247 (b)(3) ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02							
Limit:	30dBm	30dBm							
Test setup:	Power M	Aeter Non-Conducted Tab							
Test Instruments:	Refer to se	Refer to section 6.0 for details							
Test mode:	Refer to se	Refer to section 5.2 for details							
Test results:	Pass								
Test environment:	Temp.:								

6.2. Conducted Output Power

Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result	
Lowest	2.97			
Middle	3.25	30.00	Pass	
Highest	3.56			


6.3. Channel Bandwidth

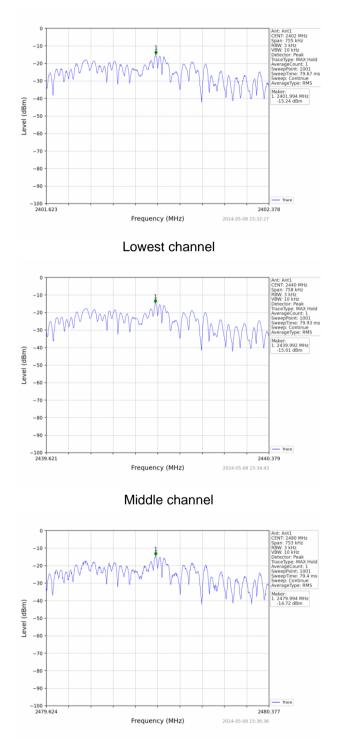
Test Requirement:	FCC Part15 C Section 15.247 (a)(2)								
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02								
Limit:	>500KHz								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar								

Measurement Data

Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result	
Lowest	0.503			
Middle	0.505	>500	Pass	
Highest	0.502			

Test plot as follows:

Highest channel


Test Requirement:	FCC Part15 C Section 15.247 (e)							
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02							
Limit:	8dBm/3kHz	8dBm/3kHz						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table							
			I Reference Pla					
Test Instruments:	Refer to see	ction 6.0 for d	letails					
Test mode:	Refer to see	ction 5.2 for d	letails					
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

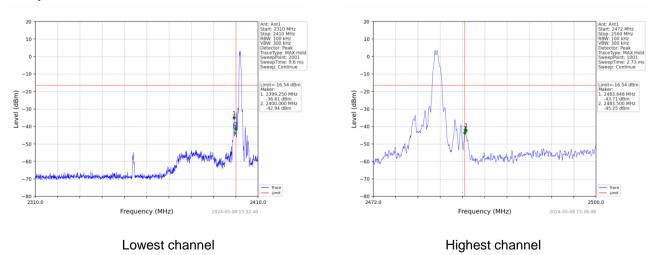
6.4. Power Spectral Density

Measurement Data

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result	
Lowest	-15.24			
Middle	-15.01	8.00	Pass	
Highest	-14.72			

Test plot as follows:

Highest channel



6.5. Band edges

6.5.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)								
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02								
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	radiated measurement.								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar								

Test plot as follows:

 Shenzhen HTT Technology Co.,Ltd.
 Tel: 0755-23595200 Fax: 0755-23595201

 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Test Requirement: FCC Part15 C Section 15.209 and 15.205 Test Method: ANSI C63.10:2013 All of the restrict bands were tested, only the worst band's (2310MHz to Test Frequency Range: 2500MHz) data was showed. Measurement Distance: 3m Test site: Receiver setup: Detector RBW VBW Value Frequency 3MHz Peak Peak 1MHz Above 1GHz RMS 1MHz 3MHz Average Limit: Limit (dBuV/m @3m) Value Frequency 54.00 Average Above 1GHz Peak 74.00 Test setup: < 3m > Test Antenna+ < 1m ... 4m > FUT. Tum Table+ -150cm SI Preamplifier Receiver. Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test results: Pass Test environment: Temp.: 25 °C Humid.: 52% Press.: 1012mbar

6.5.2 Radiated Emission Method

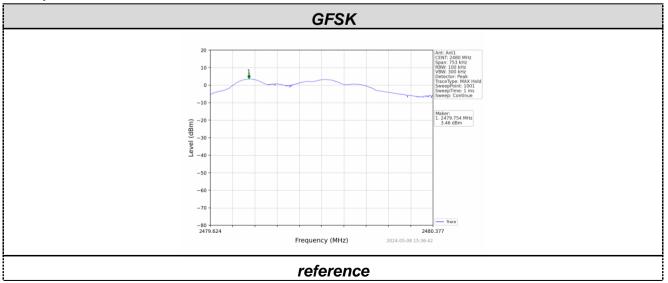
Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

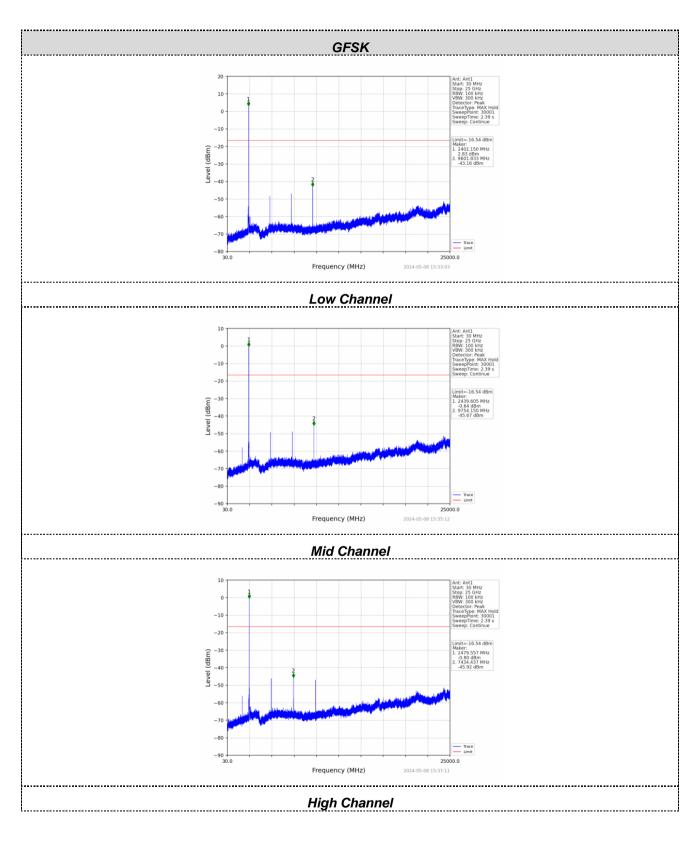
Measurement Data

Operation Mode: GFSK

Freque	Frequency(MHz):		2402		Pola	arity:	HORIZONTAL		
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.59	PK	74	13.41	61.98	27.2	4.31	32.9	-1.39
2390.00	44.88	AV	54	9.12	46.27	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	58.87	PK	74	15.13	60.26	27.2	4.31	32.9	-1.39
2390.00	46.72	AV	54	7.28	48.11	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	2480		P olarity:		HORIZONTAL		
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	55.76	PK	74	18.24	56.69	27.4	4.47	32.8	-0.93
2483.50	46.15	AV	54	7.85	47.08	27.4	4.47	32.8	-0.93
Freque	ncy(MHz)	:	24	80	Pola	arity:	VERTICAL		
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	54.48	, PK	74	19.52	55.41	27.4	4.47	32.8	-0.93
2483.50	43.43	AV	54	10.57	44.36	27.4	4.47	32.8	-0.93

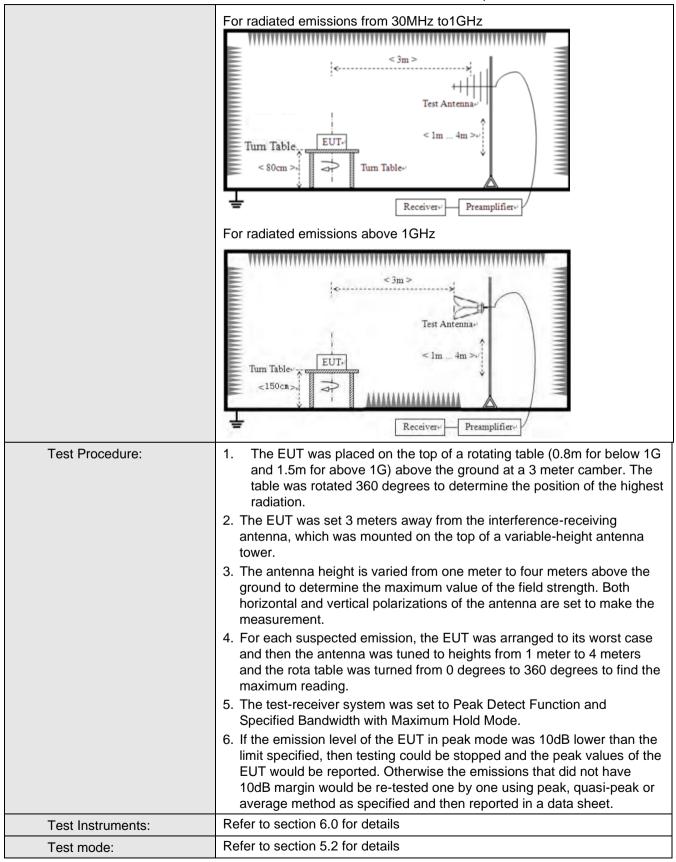


6.6. Spurious Emission


6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Fadiated measurement. Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar							

Test plot as follows:


Shenzhen HTT Technology Co.,Ltd.Tel: 0755-23595200Fax: 0755-235952011F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
Shenzhen, Guangdong, China

6.6.2 Radiated Emission Metho		on 16	200						
Test Requirement: Test Method:	FCC Part15 C Section 15.209 ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	-	Detector	RB		VBW			
	9KHz-150KHz		lasi-peak	200H		600Hz			
	150KHz-30MHz		lasi-peak	9K⊢		30KH:			
	30MHz-1GHz	Qı	lasi-peak	120K		300KH			
	Above 1GHz		Peak	1M⊦		3MHz			
			Peak	1M⊦	lz	10Hz	Average		
Limit:	Frequency		Limit (u\	//m)	V	alue	Measurement Distance		
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP	300m		
	0.490MHz-1.705M	Hz	24000/F(KHz)	QP		30m		
	1.705MHz-30MH	z	30		QP		30m		
	30MHz-88MHz		100		QP		3m		
	88MHz-216MHz		150			QP			
	216MHz-960MH	Z	200		QP				
	960MHz-1GHz		500		QP		511		
	Above 1GHz		500		Average				
	Above Tonz		5000		Peak				
Test setup:	For radiated emissio	ns fr	om 9kHz to	30MH	z				
	<pre></pre>								

6.6.2 Radiated Emission Method

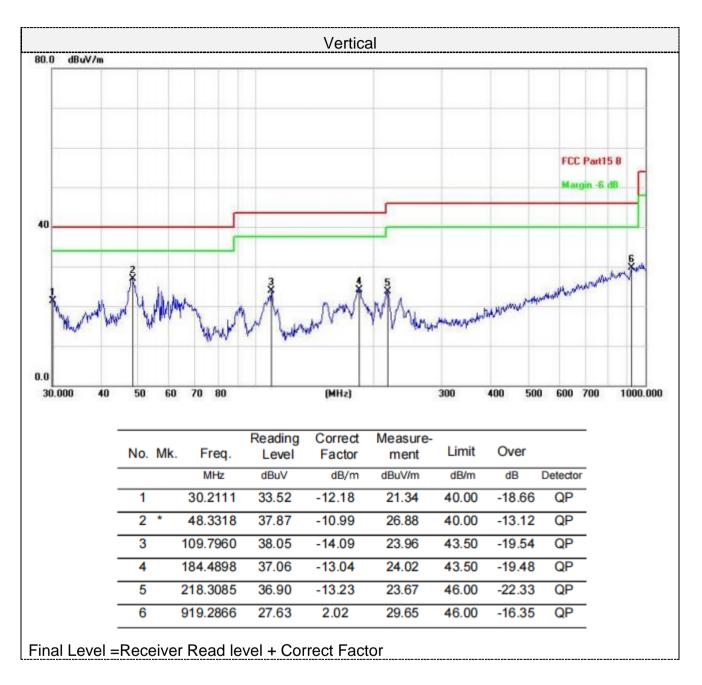
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	
Test voltage:	AC 120V, 60Hz						
Test results:	Pass						

Measurement data:

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

					-			
						-		
								Part15 B
							Margi	n -6 dB
	Г	_						
	-							
								5
				5				all the way and
	3	3	4	, Å		muthorphi	Hendling	×1
1	Au II	. Au	Mun	Man	population	-AVAD - MA		
and a decision	- And Martin	Mr. nr.	who are a	M M IS	10.10			
	11.00					100 500		
0 60	70 80		(MHz)		300	400 500	600 7	1000.00
	From				Limit	Over		
J. IVIK.							latastas	
4								
·								
4	187.0958	33.68	-13.18	20.50	43.50	-23.00	QP	
4	107.0550							
	236.6447	35.33	-12.05	23.28	46.00	-22.72	QP	
	0 60 0. Mk. 1 2 * 3	o. Mk. Freq. MHz 1 42.6000 2 * 65.3432	o. Mk. Freq. Reading Level MHz dBuV 1 42.6000 27.74 2 * 65.3432 31.85	Nk. Freq. Reading Level Correct Factor MHz dBuV dB/m 1 42.6000 27.74 -10.24 2 * 65.3432 31.85 -12.53	No 60 70 80 (MHz) No 60 70 80 (MHz) No MHz Reading Level Correct Factor Measure- ment MHz dBuV dB/m dBuV/m 1 42.6000 27.74 -10.24 17.50 2 * 65.3432 31.85 -12.53 19.32	x0 60 70 80 (MHz) 300 x0 60 70 80 (MHz) 300 x0 MHz Reading Level Correct Factor Measure- ment Limit MHz dBuV dB/m dBuV/m dB/m 1 42.6000 27.74 -10.24 17.50 40.00 2 * 65.3432 31.85 -12.53 19.32 40.00	x0 60 70 80 (MHz) 300 400 500 x0 60 70 80 (MHz) 300 400 500 x0 MHz Buy Correct Measure- ment Limit Over MHz dBuV dB/m dBuV/m dB/m dB D 1 42.6000 27.74 -10.24 17.50 40.00 -22.50 2 * 65.3432 31.85 -12.53 19.32 40.00 -20.68	30 60 70 80 (MHz) 300 400 500 600 7 0. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB/m dBuV/m dB/m dB/m dB Detector 1 42.6000 27.74 -10.24 17.50 40.00 -22.50 QP 2 * 65.3432 31.85 -12.53 19.32 40.00 -20.68 QP

Below 1GHz

Above 1-25GHz

Frequency(MHz):			2402		Polarity:		HORIZONTAL		
Frequency	Emission Level		Limit N	Margin	Raw	Antenna	Cable	Pre-	Correction
(MHz)	_	V/m)	(dBuV/m)	(dB)	Value (dBuV)	Factor (dB/m)	Factor (dB)	amplifier (dB)	Factor (dB/m)
4804.00	59.70	PK	74	14.30	54.00	31	6.5	31.8	5.7
4804.00	42.11	AV	54	11.89	36.41	31	6.5	31.8	5.7
7206.00	53.39	PK	74	20.61	40.74	36	8.15	31.5	12.65
7206.00	44.24	AV	54	9.76	31.59	36	8.15	31.5	12.65

Frequency(MHz):			2402		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	59.43	PK	74	14.57	53.73	31	6.5	31.8	5.7
4804.00	43.98	AV	54	10.02	38.28	31	6.5	31.8	5.7
7206.00	53.04	PK	74	20.96	40.39	36	8.15	31.5	12.65
7206.00	43.49	AV	54	10.51	30.84	36	8.15	31.5	12.65

Frequency(MHz):			2440		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	61.13	PK	74	12.87	54.97	31.2	6.61	31.65	6.16
4880.00	43.73	AV	54	10.27	37.57	31.2	6.61	31.65	6.16
7320.00	52.63	PK	74	21.37	39.68	36.2	8.23	31.48	12.95
7320.00	43.74	AV	54	10.26	30.79	36.2	8.23	31.48	12.95

Frequency(MHz):			2440		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	60.47	PK	74	13.53	54.31	31.2	6.61	31.65	6.16
4880.00	42.30	AV	54	11.70	36.14	31.2	6.61	31.65	6.16
7320.00	53.64	PK	74	20.36	40.69	36.2	8.23	31.48	12.95
7320.00	43.21	AV	54	10.79	30.26	36.2	8.23	31.48	12.95

Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Le ^s (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	61.49	PK	74	12.51	54.83	31.4	6.76	31.5	6.66
4960.00	41.56	AV	54	12.44	34.90	31.4	6.76	31.5	6.66
7440.00	52.91	PK	74	21.09	39.61	36.4	8.35	31.45	13.3
7440.00	44.50	AV	54	9.50	31.20	36.4	8.35	31.45	13.3

Frequency(MHz):			2480		Polarity:		VERTICAL		
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre-	Correction
	Level		Ũ		Factor	Factor	amplifier	Factor	
(MHz)	(dBuV/m)		(dBuV/m) (dB)	(UD)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4960.00	63.29	PK	74	10.71	56.63	31.4	6.76	31.5	6.66
4960.00	42.36	AV	54	11.64	35.70	31.4	6.76	31.5	6.66
7440.00	54.86	PK	74	19.14	41.56	36.4	8.35	31.45	13.3
7440.00	44.84	AV	54	9.16	31.54	36.4	8.35	31.45	13.3

Remark:

(1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

Shenzhen HTT Technology Co.,Ltd.Tel: 0755-23595200Fax: 0755-235952011F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
Shenzhen, Guangdong, China

6.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 2.67 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the **appendix I** for details.

8. EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----