

TEST REPORT

Report No.:	BCTC2408674254E				
Applicant:	Shenzhen Roundwhale Technology Co., Ltd.				
Product Name:	Combo Electrotherapy Device				
Test Model:	M100A-WH1-D (M100A-WH1-D indicates the host)				
Tested Date:	2024-08-14 to 2024-08-29				
Issued Date:	2024-08-30				
She	enzhen BCTC Testing Co., Ltd.				
No. : BCTC/RF-EMC-005	D05 Page 1 of 33 Edition B.2				

FCC ID: 2BG7H-R-W200

Product Name:	Combo Electrotherapy Device			
Trademark:	N/A			
Model/Type reference:	M100A-WH1-D (M100A-WH1-D indicates the host) M101A-UK1, R-C4D-WH1, M100A-WH1, R-C4D-RW1, R-W200A, R-W200B, R-W200C, R-W200D, R-W200E, R-W200, R-W201A, R-W201B, R-W201C, R-W201D, R-W201E, R-W201			
Prepared For:	Shenzhen Roundwhale Technology Co., Ltd.			
Address:	202, 2/F., Building 27, Dafa Industrial Park, Longxi Community, Longgang District, Shenzhen, China			
Manufacturer:	Shenzhen Roundwhale Technology Co., Ltd.			
Address:	202, 2/F., Building 27, Dafa Industrial Park, Longxi Community, Longgang District, Shenzhen, China			
Prepared By:	Shenzhen BCTC Testing Co., Ltd.			
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China			
Sample Received Date:	2024-08-13			
Sample tested Date:	2024-08-14 to 2024-08-29			
Issue Date:	2024-08-30			
Report No.:	BCTC2408674254E			
Test Standards:	FCC Part15.249 ANSI C63.10-2013			
Test Results:	PASS			

Tested by:

Eric Yang/Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Table Of Content

-	Test Report Declaration	Page
1.	Version	
2.	Test Summary	
3.	Measurement Uncertainty	6
4.	Product Information And Test Setup	7
4.1	Product Information	
4.2	Test Setup Configuration	8
4.3	Support Equipment	8
4.4	Channel List	9
4.5	Test Mode	9
5.	Test Facility And Test Instrument Used	10
5.1	Test Facility	
5.2	Test Instrument Used	10
6.	Conducted Emissions	12
6.1	Block Diagram Of Test Setup	12
6.2	Limit	
6.3	Test Procedure	12
6.4	EUT Operating Conditions	12
6.5	Test Result	
7.	Radiated Emissions	15
7.1	Block Diagram Of Test Setup	15
7.2	Limit	16
7.3	Test Procedure	
7.4	EUT Operating Conditions	18
7.5	Test Result	
7.6	Field Strength Calculation	
8.	100 kHz Bandwidth Of Frequency Band Edge	
8.1	Block Diagram Of Test Setup	24
8.2	Applicable Standard	24
8.3	Test Procedure	
8.4	EUT Operating Conditions	
8.5	Test Result	
9.	20 dB Bandwidth	27
9.1	Block Diagram Of Test Setup	27
9.2	Limit	27
9.3	Test Procedure	27
9.4	EUT Operation Conditions	27
9.5	Test Result	
10.	Test Result Limit	29
10.1	Limit	29
10.2	Test Result	29
11.	EUT Photographs EUT Test Setup Photographs	
12.	EUT Test Setup Photographs	
(Note	e: N/A Means Not Applicable)	

Page 3 of 33

,TC 3C

PR

еро

1. Version

Report No.	Issue Date	Description	Approved
BCTC2408674254E	2024-08-30	Original	Valid

Page 4 of 33

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No	Results
1	Conducted Emission	15.207	PASS
2	20dB Bandwidth	15.215	PASS
3	Fundamental &Radiated Spurious Emission Measurement	15.249	PASS
4	Band Edge Emission	15.205	PASS
5	Antenna Requirement	15.203	PASS

ΞD

No.: BCTC/RF-EMC-005

Page 5 of 33

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(9kHz-30MHz)	U=3.7dB
2	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission(150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	Ú=5.3%
10	Temperature uncertainty	U=0.59℃

4. Product Information And Test Setup

4.1 Product Information

Model/Type Reference:	M100A-WH1-D (M100A-WH1-D indicates the host) M101A-UK1, R-C4D-WH1, M100A-WH1, R-C4D-RW1, R-W200A, R-W200B, R-W200C, R-W200D, R-W200E, R-W200, R-W201A, R-W201B, R-W201C, R-W201D, R-W201E, R-W201
Model Differences:	All the model are the same circuit and RF module, except model names and appearance of the color.
Operation Frequency:	2416MHz
Type of Modulation:	GFSK
Number Of Channel	1CH
Antenna installation:	PCB antenna
Antenna Gain:	0.2 dBi
Ratings:	DC 3.7V From battery, DC 5V From adapter

No. : BCTC/RF-EMC-005

Page 7 of 33

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment. Radiated Spurious Emission

Conducted Emission:

Radiated Spurious Emission:

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-2	Adapter	N/A	CD226	N/A	Auxiliary

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	N/A	N/A	0.5M	USB cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 8 of 33

4.4 Channel List

2416MHz

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

For All Mode	Description	Modulation Type
Mode 1	CH1	GFSK
Mode 2	Link mode (Conducted emission & Radiated emission)	

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) Fully-charged battery is used during the test

JC JC PPR

еро

Page 9 of 33

5. **Test Facility And Test Instrument Used**

Test Facility 5.1

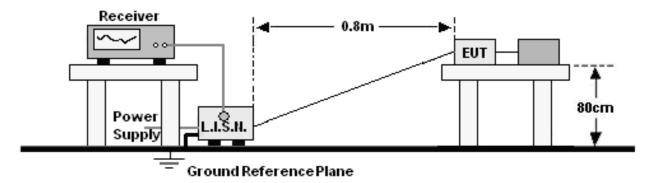
All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850 A2LA certificate registration number is: CN1212 ISED Registered No.: 23583

ISED CAB identifier: CN0017

Conducted Emissions Test						
Equipment Manufacturer Model# Serial# Last Cal. Next Ca						
Receiver	R&S	ESR3	102075	May 16, 2024	May 15, 2025	
LISN	R&S	ENV216	101375	May 16, 2024	May 15, 2025	
Software	Frad	EZ-EMC	EMC-CON 3A1	/	/	
Pulse limiter	Schwarzbeck	VTSD 9561-F	01323	May 16, 2024	May 15, 2025	

5.2	Test I	nstrument	Used
0.2	10001		0000

RF Conducted Test					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
Power Metter	Keysight	E4419		May 16, 2024	May 15, 2025
Power Sensor (AV)	Keysight	E9300A	$\sum_{i=1}^{n-1} \frac{1}{i} \sum_{j=1}^{n-1} \frac{1}{i$	May 16, 2024	May 15, 2025
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 16, 2024	May 15, 2025
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 16, 2024	May 15, 2025


Radiated Emissions Test (966 Chamber01)					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
966 chamber	ChengYu	966 Room	966	May 16, 2024	May 15, 2025
Receiver	R&S	ESR3	102075	May 16, 2024	May 15, 2025
Receiver	R&S	ESRP	101154	May 16, 2024	May 15, 2025
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 16, 2024	May 15, 2025
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 21, 2024	May 20, 2025
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 21, 2024	May 20, 2025
Amplifier	SKET	LAPA_01G1 8G-45dB	SK202104090 1	May 16, 2024	May 15, 2025
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 21, 2024	May 20, 2025
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 16, 2024	May 15, 2025
Horn Antenn(18GH z-40GHz)	Schwarzbeck	BBHA9170	00822	May 21, 2024	May 20, 2025
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 16, 2024	May 15, 2025
Software	Frad	EZ-EMC	FA-03A2 RE	1	Λ_{-}

Page 11 of 33

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

	Limit (o	Limit (dBuV)		
Frequency (MHz)	Quas-peak	Average		
0.15 -0.5	66 - 56 *	56 - 46 *		
0.50 -5.0	56.00	46.00		
5.0 -30.0	60.00	50.00		

Notes:

1. *Decreasing linearly with logarithm of frequency.

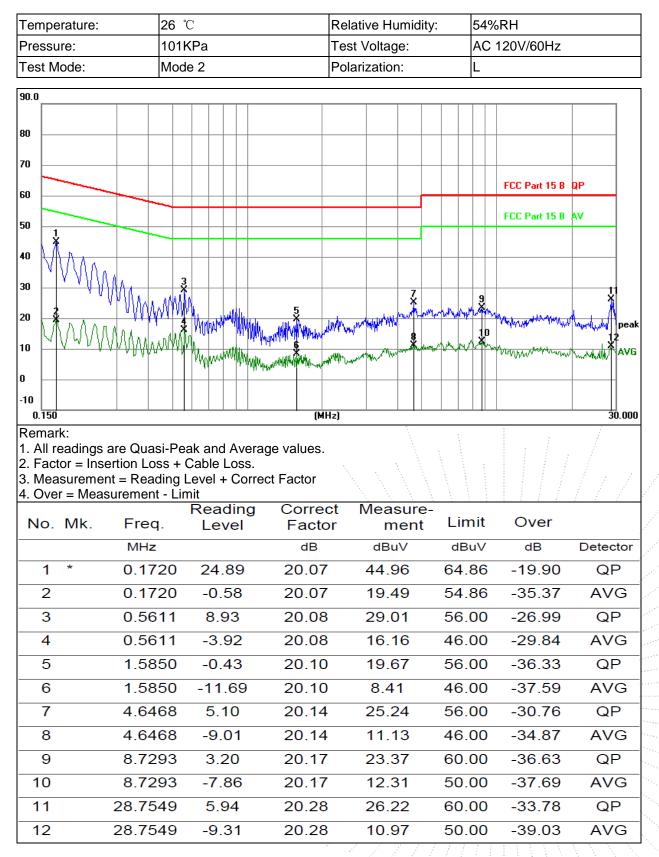
2. The lower limit shall apply at the transition frequencies.

6.3 Test Procedure

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

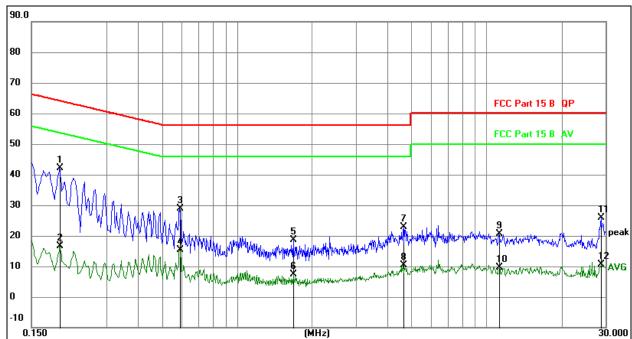
b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.


c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

6.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result



No. : BCTC/RF-EMC-005

Page 13 of 33

Temperature:	26 ℃	Relative Humidity:	54%RH
Pressure:	101KPa	Test Voltage:	AC 120V/60Hz
Test Mode:	Mode 2	Polarization:	Ν

Remark:

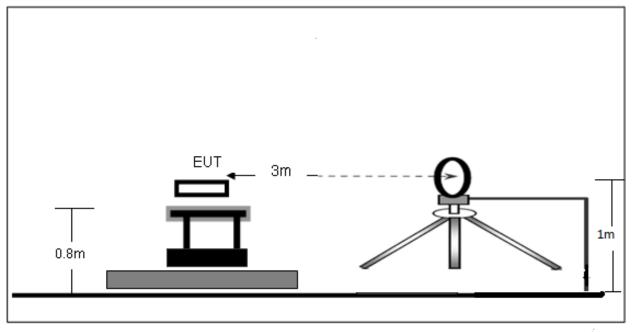
1. All readings are Quasi-Peak and Average values.

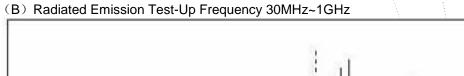
2. Factor = Insertion Loss + Cable Loss.

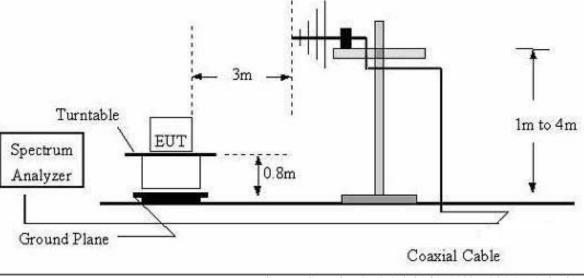
3. Measurement = Reading Level + Correct Factor

4. Over = Measurement - Limit

No. Mk.Freq.Reading LevelCorrect FactorMeasure- mentLimitOverMHzdBdBuVdBuVdBDetector1*0.194922.0920.0742.1663.83-21.67QP20.1949-3.5520.0716.5253.83-37.31AVG30.59098.8920.0828.9756.00-27.03QP40.5909-4.8020.0815.2846.00-30.72AVG51.6889-1.5420.1018.5656.00-37.44QP61.6889-12.6520.107.4546.00-38.55AVG74.65452.6320.1422.7756.00-33.23QP84.6545-9.7720.1410.3746.00-35.63AVG911.25600.4720.2120.6860.00-39.32QP1011.2560-10.5320.2825.8460.00-34.16QP1228.8510-9.5520.2810.7350.00-39.27AVG	4. Ove	r = meas	urement - Li	mit					
1 * 0.1949 22.09 20.07 42.16 63.83 -21.67 QP 2 0.1949 -3.55 20.07 16.52 53.83 -37.31 AVG 3 0.5909 8.89 20.08 28.97 56.00 -27.03 QP 4 0.5909 -4.80 20.08 15.28 46.00 -30.72 AVG 5 1.6889 -1.54 20.10 18.56 56.00 -37.44 QP 6 1.6889 -12.65 20.10 7.45 46.00 -38.55 AVG 7 4.6545 2.63 20.14 22.77 56.00 -33.23 QP 8 4.6545 -9.77 20.14 10.37 46.00 -35.63 AVG 9 11.2560 0.47 20.21 20.68 60.00 -39.32 QP 10 11.2560 -10.53 20.28 25.84 60.00 -34.16 QP	No.	Mk.	Freq.	•			Limit	Over	
1 0.1949 22.03 20.07 42.16 00.03 21.07 Qr 2 0.1949 -3.55 20.07 16.52 53.83 -37.31 AVG 3 0.5909 8.89 20.08 28.97 56.00 -27.03 QP 4 0.5909 -4.80 20.08 15.28 46.00 -30.72 AVG 5 1.6889 -1.54 20.10 18.56 56.00 -37.44 QP 6 1.6889 -12.65 20.10 7.45 46.00 -38.55 AVG 7 4.6545 2.63 20.14 22.77 56.00 -33.23 QP 8 4.6545 -9.77 20.14 10.37 46.00 -35.63 AVG 9 11.2560 0.47 20.21 20.68 60.00 -39.32 QP 10 11.2560 -10.53 20.28 25.84 60.00 -34.16 QP			MHz		dB	dBuV	dBuV	dB	Detector
3 0.5909 8.89 20.08 28.97 56.00 -27.03 QP 4 0.5909 -4.80 20.08 15.28 46.00 -30.72 AVG 5 1.6889 -1.54 20.10 18.56 56.00 -37.44 QP 6 1.6889 -12.65 20.10 7.45 46.00 -38.55 AVG 7 4.6545 2.63 20.14 22.77 56.00 -33.23 QP 8 4.6545 -9.77 20.14 10.37 46.00 -35.63 AVG 9 11.2560 0.47 20.21 20.68 60.00 -39.32 QP 10 11.2560 -10.53 20.21 9.68 50.00 -40.32 AVG 11 28.8510 5.56 20.28 25.84 60.00 -34.16 QP	1	*	0.1949	22.09	20.07	42.16	63.83	-21.67	QP
4 0.5909 -4.80 20.08 15.28 46.00 -30.72 AVG 5 1.6889 -1.54 20.10 18.56 56.00 -37.44 QP 6 1.6889 -12.65 20.10 7.45 46.00 -38.55 AVG 7 4.6545 2.63 20.14 22.77 56.00 -33.23 QP 8 4.6545 -9.77 20.14 10.37 46.00 -35.63 AVG 9 11.2560 0.47 20.21 20.68 60.00 -39.32 QP 10 11.2560 -10.53 20.21 9.68 50.00 -40.32 AVG 11 28.8510 5.56 20.28 25.84 60.00 -34.16 QP	2		0.1949	-3.55	20.07	16.52	53.83	-37.31	AVG
5 1.6889 -1.54 20.10 18.56 56.00 -37.44 QP 6 1.6889 -12.65 20.10 7.45 46.00 -38.55 AVG 7 4.6545 2.63 20.14 22.77 56.00 -33.23 QP 8 4.6545 -9.77 20.14 10.37 46.00 -35.63 AVG 9 11.2560 0.47 20.21 20.68 60.00 -39.32 QP 10 11.2560 -10.53 20.21 9.68 50.00 -40.32 AVG 11 28.8510 5.56 20.28 25.84 60.00 -34.16 QP	3		0.5909	8.89	20.08	28.97	56.00	-27.03	QP
61.6889-12.6520.107.4546.00-38.55AVG74.65452.6320.1422.7756.00-33.23QP84.6545-9.7720.1410.3746.00-35.63AVG911.25600.4720.2120.6860.00-39.32QP1011.2560-10.5320.219.6850.00-40.32AVG1128.85105.5620.2825.8460.00-34.16QP	4		0.5909	-4.80	20.08	15.28	46.00	-30.72	AVG
7 4.6545 2.63 20.14 22.77 56.00 -33.23 QP 8 4.6545 -9.77 20.14 10.37 46.00 -35.63 AVG 9 11.2560 0.47 20.21 20.68 60.00 -39.32 QP 10 11.2560 -10.53 20.21 9.68 50.00 -40.32 AVG 11 28.8510 5.56 20.28 25.84 60.00 -34.16 QP	5		1.6889	-1.54	20.10	18.56	56.00	-37.44	QP
8 4.6545 -9.77 20.14 10.37 46.00 -35.63 AVG 9 11.2560 0.47 20.21 20.68 60.00 -39.32 QP 10 11.2560 -10.53 20.21 9.68 50.00 -40.32 AVG 11 28.8510 5.56 20.28 25.84 60.00 -34.16 QP	6		1.6889	-12.65	20.10	7.45	46.00	-38.55	AVG
9 11.2560 0.47 20.21 20.68 60.00 -39.32 QP 10 11.2560 -10.53 20.21 9.68 50.00 -40.32 AVG 11 28.8510 5.56 20.28 25.84 60.00 -34.16 QP	7		4.6545	2.63	20.14	22.77	56.00	-33.23	QP
1011.2560-10.5320.219.6850.00-40.32AVG1128.85105.5620.2825.8460.00-34.16QP	8		4.6545	-9.77	20.14	10.37	46.00	-35.63	AVG
11 28.8510 5.56 20.28 25.84 60.00 -34.16 QP	9		11.2560	0.47	20.21	20.68	60.00	-39.32	QP
	10		11.2560	-10.53	20.21	9.68	50.00	-40.32	AVG
12 28.8510 -9.55 20.28 10.73 50.00 -39.27 AVG	11		28.8510	5.56	20.28	25.84	60.00	-34.16	QP
	12		28.8510	-9.55	20.28	10.73	50.00	-39.27	AVG

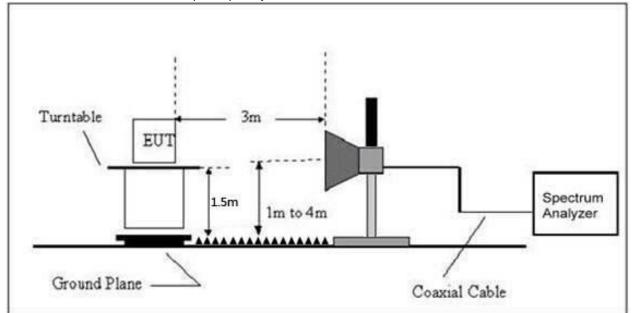

No.: BCTC/RF-EMC-005




7. Radiated Emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz



(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance	
(MHz)	uV/m	(m)	uV/m	dBuV/m
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	-	Field strength of harmonics (microvolts/meter)
902-928 MHz	50	500
2400-2483.5 MHz	50	500
5725-5875 MHz	50	500
24.0-24.25 GHz	250	2500

TE,

T(

OV

Limits Of Radiated Emission Measurement (Above 1000MHz)

Frequency (MHz)	Limit (dBuV/m) (at 3M)		
Frequency (Miriz)	Peak A		
Above 1000	74	54	

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Frequency Range Of Radiated Measurement (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

7.3 Test Procedure

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / <i>10Hz</i> for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).

h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel.

Note: Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g.Test the EUT in the lowest channel, the middlest channel, the highest channel.

Note: Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

No.: BCTC/RF-EMC-005

Page 18 of 3

7.5 Test Result

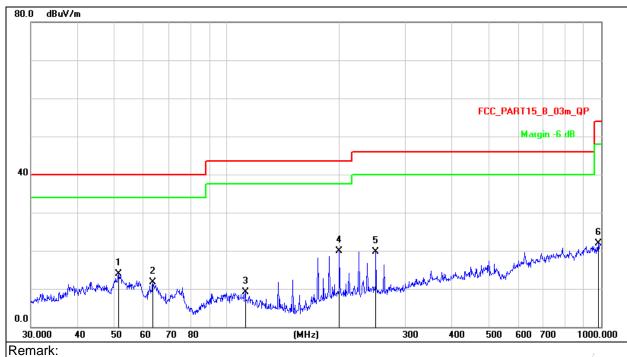
Below 30MHz

Temperature:	26 ℃	Relative Humidity:	54%RH
Pressure:	101 kPa	Test Voltage:	DC 3.7V
Test Mode:	Mode 2	Polarization:	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m) (dB)		P/F
				PASS
				PASS

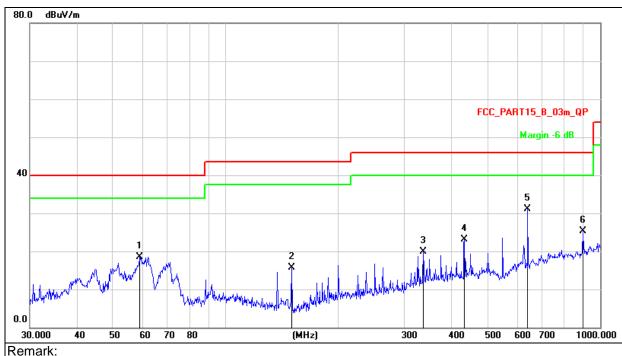
Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.



Page 19 of 33

Temperature:	26 ℃	Relative Humidity:	54%RH
Pressure:	101KPa	Test Voltage:	DC 3.7V
Test Mode:	Mode 2	Polarization:	Horizontal


1.Factor = Antenna Factor + Cable Loss – Pre-amplifier 2. Measurement=Reading Level+ Correct Factor

3. Over=Measurement-Limit

			-	4				
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		51.4807	28.06	-14.10	13.96	40.00	-26.04	QP
2		63.5356	27.90	-16.22	11.68	40.00	-28.32	QP
3		112.1305	25.82	-16.78	9.04	43.50	-34.46	QP
4	*	199.9856	35.72	-15.72	20.00	43.50	-23.50	QP
5		250.3012	34.07	-14.28	19.79	46.00	-26.21	QP
6		982.6200	24.49	-2.56	21.93	54.00	-32.07	QP

Temperature:	26 ℃	Relative Humidity:	54%RH
Pressure:	101KPa	Test Voltage:	DC 3.7V
Test Mode:	Mode 2	Polarization:	Vertical

Factor = Antenna Factor + Cable Loss – Pre-amplifier. Measurement=Reading Level+ Correct Factor Over=Measurement-Limit

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		58.8185	33.67	-15.09	18.58	40.00	-21.42	QP
2		150.0108	35.09	-19.43	15.66	43.50	-27.84	QP
3		337.2155	31.91	-11.93	19.98	46.00	-26.02	QP
4		434.0651	33.30	-10.17	23.13	46.00	-22.87	QP
5	*	640.6110	37.41	-6.32	31.09	46.00	-14.91	QP
6		900.1474	28.37	-3.12	25.25	46.00	-20.75	QP

JC JC JC

Pol

			GFSK				
Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dBuV/m) (dB) (dBu	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			2416MH	2			
V	4832.00	72.34	-19.94	52.40	74.00	-21.60	PK
V	4832.00	62.26	-19.94	42.32	54.00	-11.68	AV
V	7248.00	62.92	-14.11	48.81	74.00	-25.19	PK
V	7248.00	53.71	-14.11	39.60	54.00	-14.40	AV
Н	4832.00	68.59	-19.94	48.65	74.00	-25.35	PK
Н	4832.00	59.43	-19.94	39.49	54.00	-14.51	AV
Н	7248.00	61.71	-14.11	47.60	74.00	-26.40	PK
Н	7248.00	53.20	-14.11	39.09	54.00	-14.91	AV

Between 1GHz – 25GHz

Remark:

1.Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible

value has no need to be reported.

TE, T OV Se

Page 22 of 33

7.6 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows: FS=RA+AF+CL-AG

FS=Field Streng	th	CL=Cable Attenuation Factor (Cable Loss)			
RA=Reading Am	nplitude	AG=Amplifier Gain			
AF=Antenna Fa	ctor				
Test Rusult:					
Temperature:	26°C	Relative Humidity: 54%RH			
Pressure:	101kPa	Polarization: Horizontal			
Test Voltage:	DC 3.7V				
Test Mode:	Mode 1				

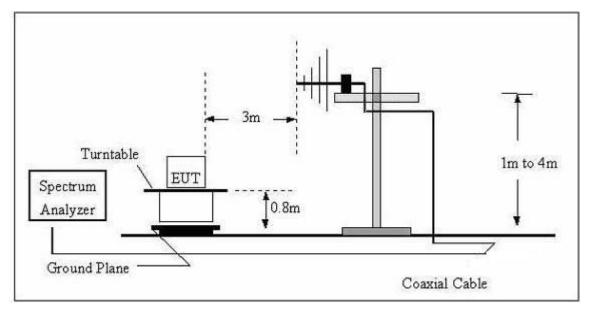
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2416	109.41	-24.87	84.54	114	-29.46	Peak
2416	106.96	-24.87	82.09	94	-11.91	Average

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All interfaces was connected, and TX mode

Temperature:	26°C	Relative Humidity:	54%RH		
Pressure:	101kPa	Polarization:	Vertical	1	
Test Voltage:	DC 3.7V				
Test Mode:	Mode 1				


Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2416	107.85	-24.87	82.98	114	-31.02	Peak
2416	105.51	-24.87	80.64	94	-13.36	Average
Remark:	na Factor I Cal	ala Loop Drov	omplifior			

Factor = Antenna Factor + Cable Loss – Pre-amplifier. All interfaces was connected, and TX mode

8. 100 kHz Bandwidth Of Frequency Band Edge

8.1 Block Diagram Of Test Setup

8.2 Applicable Standard

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation

8.3 Test Procedure

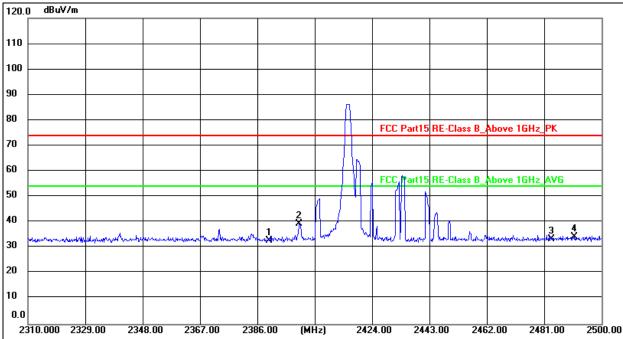
a.Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

b.Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.

c.VBW for Peak, Quasi-peak, or Average Detector Function: 3 × RBW

d.Repeat above procedures until all measured frequencies were complete.

Note: Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.


8.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

8.5 Test Result

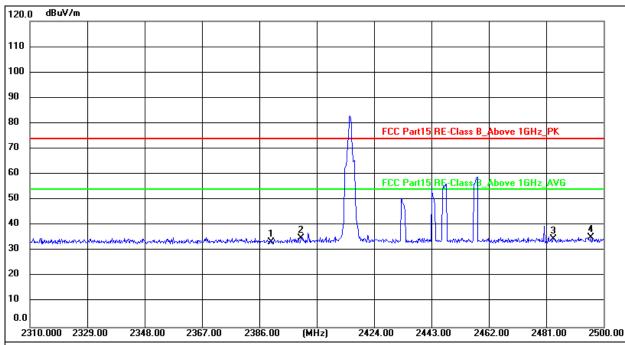
Temperature:	26 ℃	Relative Humidity:	54%RH
Pressure:	101 kPa	Test Voltage:	AC 120V/60Hz
Test Mode:	Transmitting (2416MHz)	Polarization:	Horizontal

1. Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.


In restricted bands of operation, The spurious emissions below the permissible value more than 20dB
The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.000	57.87	-24.95	32.92	74.00	-41.08	peak
2 *	2400.000	64.28	-24.92	39.36	74.00	-34.64	peak
3	2483.500	58.10	-24.68	33.42	74.00	-40.58	peak
4	2491.070	58.99	-24.66	34.33	74.00	-39.67	peak

No.: BCTC/RF-EMC-005

Temperature:	26 ℃	Relative Humidity:	54%RH
Pressure:	101 kPa	Test Voltage:	AC 120V/60Hz
Test Mode:	Transmitting (2416MHz)	Polarization:	Vertical

1. Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

In restricted bands of operation, The spurious emissions below the permissible value more than 20dB
The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.000	58.40	-24.95	33.45	74.00	-40.55	peak
2	2400.000	59.84	-24.92	34.92	74.00	-39.08	peak
3	2483.500	59.31	-24.68	34.63	74.00	-39.37	peak
4 *	2495.820	59.93	-24.64	35.29	74.00	-38.71	peak

SHEIVERS

9. 20 dB Bandwidth

9.1 Block Diagram Of Test Setup

EUT	SPECTRUM
	ANALYZER

9.2 Limit

FCC Part15 (15.249), Subpart C			
Section	Test Item	Frequency Range (MHz)	Result
15.249	Bandwidth	2402-2480	PASS

9.3 Test Procedure

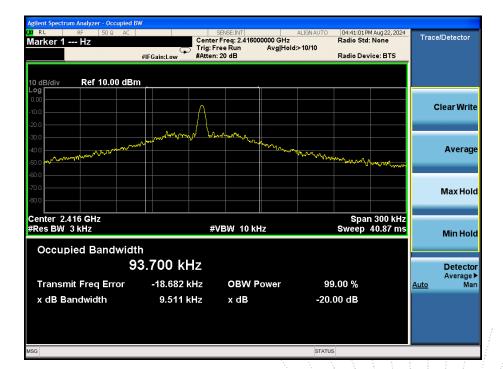
- 1. Set resolution bandwidth (RBW) = 1-5%
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

9.4 EUT Operation Conditions

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

No.: BCTC/RF-EMC-005


Page 27 of 3

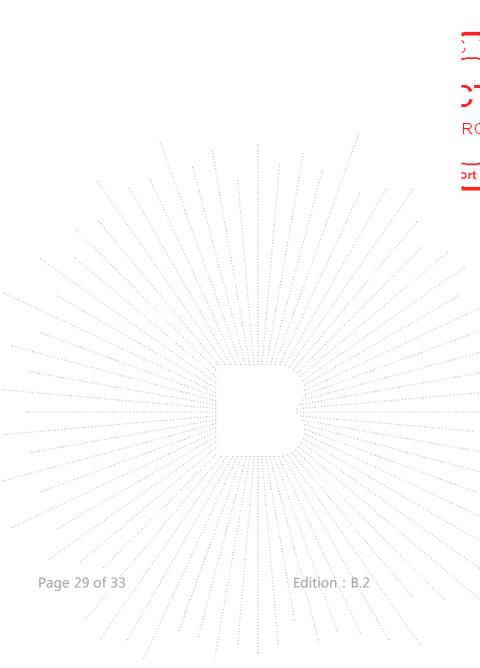
9.5 Test Result

Temperature:	26℃	Relative Humidity:	54%RH
Test Voltage:	DC 3.7V	Remark:	N/A
	- (111)		

Frequency (MHz)	20dB bandwidth (KHz)	
2416	9.511	

No. : BCTC/RF-EMC-005

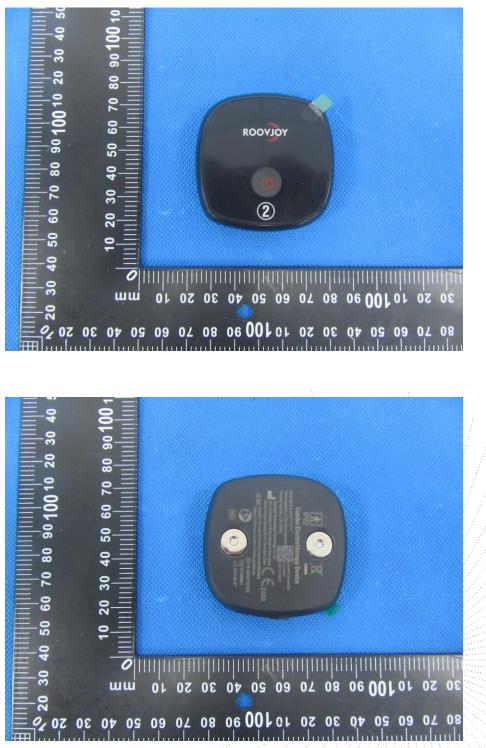
10. Antenna Requirement


10.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

10.2 Test Result

No.: BCTC/RF-EMC-005


The EUT antenna is PCB antenna, fulfill the requirement of this section.

11. EUT Photographs

EUT Photo

Appendix-Photographs Of EUT Constructional Details

No. : BCTC/RF-EMC-005

ΤE

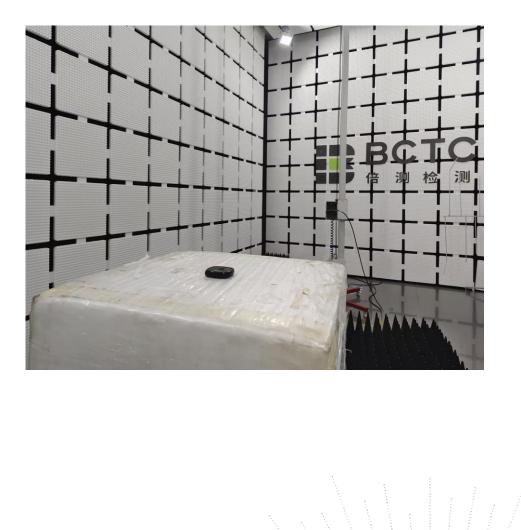
Г

) V

se

12. EUT Test Setup Photographs

Conducted emissions


Radiated Measurement Photos

No.: BCTC/RF-EMC-005

Edition : B.2

No. : BCTC/RF-EMC-005

Page 32 of 33

STATEMENT

- 1. The equipment lists are traceable to the national reference standards.
- 2. The test report can not be partially copied unless prior written approval is issued from our lab.
- 3. The test report is invalid without the "special seal for inspection and testing".
- 4. The test report is invalid without the signature of the approver.
- 5. The test process and test result is only related to the Unit Under Test.

6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.

7. The quality system of our laboratory is in accordance with ISO/IEC17025.

8. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

Consultation E-mail: bctc@bctc-lab.com.cn

Complaint/Advice E-mail: advice@bctc-lab.com.cn

***** END *****

No. : BCTC/RF-EMC-005

Page 33 of 33