

RF Exposure Evaluation

Client Information:

Applicant:	Dongguan Dingguanlong Electrical Appliance Co.,Ltd
Applicant add.:	long xin san jie 3 hao 2dong 301 shi dongguan shi huangjiang zhen guangdong sheng 523750
Manufacturer:	Dongguan Dingguanlong Electrical Appliance Co.,Ltd
Manufacturer add.:	long xin san jie 3 hao 2dong 301 shi dongguan shi huangjiang zhen guangdong sheng 523750
Product Information:	
Product Name:	3 in 1 Wireless Charging Station
Model No.:	M9A
Brand Name:	N/A
FCC ID:	2BG7B-M9A
Applicable	FCC CFR 47 PART 1, § 1.1310
standards:	KDB 680106 D01 Wireless Power Transfer v04

Prepared By:

Guangdong Asia Hongke Test Technology Limited

B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

	Tel.: +86 0755-230967639	Fax.: +86	0755-230967639
Date of Receipt:	Jun. 06, 2024	Date of Test:	Jun. 06, 2024 ~ Jun. 14, 2024
Date of Issue:	Jun. 14, 2024	Test Result:	Pass

This device described above has been tested by Guangdong Asia Hongke Test Technology Limited and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

Note: This report shall not be reproduced except in full, without the written approval of Guangdong Asia Hongke Test Technology Limited, this document may be altered or revised by Guangdong Asia Hongke Test Technology Limited, personal only, and shall be noted in the revision of the document. This test report must not be used by the client to claim product endorsement.

Jeon YI

Leon.yi

Reviewed by: _____

Approved by: _

Sean She

Sean She

1 CONTENTS

CO	VER P	AGE	Page
1	CON	NTENTS	2
2	TES	ST FACILITY	4
	2.1	Deviation from standard	4
	2.2	Abnormalities from standard conditions	4
	2.3	Test Location	4
3	GEN	VERAL INFORMATION	5
4	TES	ST METHODOLOGY	6
	4.1	Measuring Standard	6
	4.2	Requirements	6
	4.3	Limits	6
	4.4	Test Setup	7
	4.5	Test Procedure	7
5	Equ	ipment Approval Considerations	8
	5.1	Description of the test mode	9
	5.2	Peripheral List	9
	5.3	Test Instruments list	9
	5.4	Duty Cycle:	10
	5.5	Test Result	12
	1.1	Test Setup photo	16

Revision History

Revision	Issue Date	Revisions	Revised By
00	Jun. 14, 2024	Initial Issue	Sean She

2 TEST FACILITY

The test facility is recognized, certified or accredited by the following organizations:

FCC-Registration No.: 251906 Designation Number: CN1376

Guangdong Asia Hongke Test Technology Limited has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC — Registration No.: 31737 CAB identifier: CN0165

The 3m Semi-anechoic chamber of Guangdong Asia Hongke Test Technology Limited has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 31737

A2LA-Lab Cert. No.: 7133.01

Guangdong Asia Hongke Test Technology Limited has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

2.1 Deviation from standard

None

2.2 Abnormalities from standard conditions

None

2.3 Test Location

Guangdong Asia Hongke Test Technology Limited

Address: B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Tel.: +86 0755-230967639 Fax.: +86 0755-230967639

3 GENERAL INFORMATION

EUT Name:	3 in 1 Wireless Charging Station		
Model No:	M9A		
Serial Model:	N/A		
Test sample(s) ID:	AIT24060324001		
Sample(s) Status:	Engineer sample		
	Coil1: For Phone: 113kHz-205kHz		
Operation frequency:	Coil2: For Earphone: 113kHz-205kHz		
	Coil3: Watch: 300kHz-350kHz		
Modulation Technology:	ASK		
Antenna Type:	Coil1/Coil2/Coil3: Loop coil Antenna		
Antenna gain:	Coil1/Coil2/Coil3: 0dBi		
Hardware version .:	M9-M9A-9610-V1.2		
Software version.:	ZLGD-M9A-D9610_Bin0x0044A512_Gui0x00052763_In0x004F9338_0x004F9		
	2EA_20240508032206		
Power Supply:	Input: DC 5V=3A, 9V=2A, 12V=1.5A		
	Output: 5W/7.5W/10W/15W		
Model different:	Different model names		
Note:	For a more detailed features description, please refer to the manufacturer's		
	specifications or the User's Manual.		

4 TEST METHODOLOGY

4.1 Measuring Standard

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines. According to §1.1310 and §2.1091 RF exposure is calculated. According KDB680106 D01: KDB 680106 D01 Wireless Power Transfer v04.

4.2 Requirements

According to the item 3 of KDB 680106 D01v04:

Inductive wireless power transfer applications that meet all of the following requirements are excluded from submitting an RF exposure evaluation.

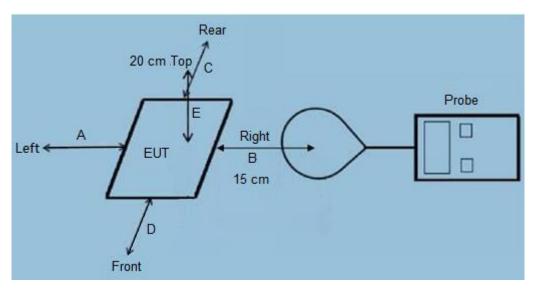
(1) Mobile Device and Portable Device Configurations

(2) Equipment Authorization Procedures for Devices Operating at Frequencies Below 4 MHz

(3) The aggregate H-field strengths anywhere at or beyond 15 cm surrounding the device, and 20 cm away from the top surface.

4.3 Limits

The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)


Frequency range (MHz)	Electric field strength (V/m)	field strength (V/m) (A/m)		Averaging time (minutes)
	(A) Limits for Occ	cupational/Controlled Ex	posures	
0.3-3.0	614	1.63	*(100)	6
3.0-30	1842/f	4.89/f	*(900/f ²)	6
30-300	61.4	0.163	1.0	6
300-1500	/	/	f/300	6
1500-100,000	/	1	5	6
	(B) Limits for Genera	Population/Uncontrolle	d Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	1	1	1.0	30
RF exposure com	valent power density pliance will need to be	determined with respect i		

Limits for Maximum Permissible Exposure (MPE)

HF exposure compliance will need to be determined with respect to 1.1307(c) and (d) of the FCC rules. The emissions should be within the limits at 300kHz in Table 1 of 1.1310(use the 300kHz limits for 150kHz:614V/m,1.63A/m).

4.4 Test Setup

4.5 Test Procedure

1) The RF exposure test was performed in anechoic chamber.

2) The measurement probe was placed at test distance (15 cm from all sides and 20 cm from the top) which is between the edge of the charger and the geometric center of probe.

3) The highest emission level was recorded and compared with limit as soon as measurement of each points (A, B, C, D, E,F) were completed.

4) The EUT was measured according to the dictates of KDB 680106 D01 Wireless Power Transfer v04.

Remark: The EUT's test position A, B, C, D, E and F is valid for the E and H field measurements.

5 Equipment Approval Considerations

The EUT does comply with KDB 680106 D01 as follow table.

Requirements of section 5 of KDB 680106 D01	Yes / No	Description
Mobile Device and Portable Device Configurations	Yes	Mobile Device
Equipment Authorization Procedures for Devices Operating at Frequencies Below 4 MHz	Yes	The device operate in the frequency range113-205KHz(for mobile phone & earphone) and 300-350KHz(for watch).
RF Exposure compliance may be ensured only for a minimum separation distance that is greater than 20 cm, while use conditions at smaller distances can still be considered unlikely.	Yes	The EUT H-field strengths at 15 cm surrounding the device and 20 cm above the top surface.

5.1 Description of the test mode

Equipment under test was operated during the measurement under the following conditions:

Description				
AC Adapter + EUT + Phone + Earphone + Watch	Record			
AC Adapter + EUT + Phone + Earphone	Pre-tested			
AC Adapter + EUT + Phone + Watch	Pre-tested			
AC Adapter + EUT + Phone	Pre-tested			
AC Adapter + EUT + Earphone + Watch	Pre-tested			
AC Adapter + EUT + Earphone	Pre-tested			
AC Adapter + EUT + Watch	Pre-tested			
Test the EUT in idle mode.	Pre-tested			
Note: 1. All test modes were pre-tested, but we only recorded the worst case in this report.				
	AC Adapter + EUT + Phone + Earphone + Watch AC Adapter + EUT + Phone + Earphone AC Adapter + EUT + Phone + Watch AC Adapter + EUT + Phone AC Adapter + EUT + Phone AC Adapter + EUT + Earphone + Watch AC Adapter + EUT + Earphone AC Adapter + EUT + Watch Test the EUT in idle mode.			

5.2 Peripheral List

No.	Equipment	Manufacturer	Model No.	Serial No.	Power cord	signal cable
1	Adapter	N/A	DGL-QC6638	N/A	N/A	N/A

5.3 Test Peripheral List

No.	Equipment	Manufacturer	Model No.	Serial No.	Power cord	signal cable
1	Phone	OSCAL	PILOT2	N/A	N/A	N/A
2	Earphone	PocBuds	K6	N/A	N/A	N/A
3	Watch	Apple	S6	N/A	N/A	N/A

5.4 Test Instruments list

Test Equipment	Manufacturer	Model No.	SN.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
Magnetic Amplitude and Gradient Probe System	SPEAG	MAGPy-8H3D+E3D V2 & MAGPy-DAS V2	3107 & 3097	03.15.2024	03.14.2025

5.5 Duty Cycle:

Mode	ON Time(ms)	Period(ms)	Duty Cycle(%)
Operating(126.7kHz)	/	/	100
Operating(202.8kHz)	/	/	100
Operating(342.7kHz)	/	/	100

🔤 Keys		Analyzer - Swept S								
L <mark>XI</mark>	RI			SEN	NSE:PULSE					PM Jun 13, 2024
Cent	er Freq	126.700 kl	P	NO:Wide ↔→ Gain:Low	Trig: Free F Atten: 6 df		Avg Type:	Log-Pwr		ACE 1 2 3 4 5 6 TYPE WWWWWWW DET P NNNNN
10 dB Log r	/div Re	f -30.00 dB	m							
-40.0										
-50.0										
-60.0										
-70.0	****	n - frage and a		whenthe	~~ <u>~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	-homen	m	and	- Martine and
-80.0										
-90.0 -										
-100 -										
-110										
-120 -										
	100 7									
Res	er 126.70 BW 3.0 k			#VB\	№ 10 kHz				500.0 ms	Span 0 Hz (1001 pts)
MSG								DC Coupled		

	ectrum Analyzer - Swept SA				
LXI	RF 50 Ω 🚹 DC	SE	NSE:PULSE		06:47:52 PM Jun 13, 2024
Center F	req 202.800 kHz	PNO: Wide	Trig: Free Run Atten: 6 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE WWWWWW DET PNNNN
10 dB/div Log	Ref -30.00 dBm				
-40.0					
-50.0					
-60.0	-		mar mar and a day of the second	and and the contraction of the state of the	and the stand and a stand a
-70.0					
-80.0					
-90.0					
-100					
-110					
-120					
Center 20 Res BW 3	02.800 kHz 3.0 kHz	#VB	W 10 kHz	Swe	Span 0 Hz ep 500.0 ms (1001 pts)
MSG				STATUS ! DC Couple	d

Page 11 of 18

	ectrum Analyzer - Swept								
	RF 50 Ω 🦺 I	DC 0	SE	NSE:PULSE					PMJun 13, 202
enter Fr	req 342.700 k	F	PNO: Wide ↔ FGain:Low	. Trig: Free F Atten: 6 di		Avg Type: I	Log-Pwr		ACE 1 2 3 4 S TYPE WWWW DET P NNN
0 dB/div og	Ref -30.00 dE	3m							
40.0									
50.0									
0.0 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	manage	way and a second of	why new your	wanne war	m	- magner	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0.0									
0.0									
0.0									
10									
20									
20									
enter 342 es BW 3.	2.700 kHz .0 kHz		#VB	W 10 kHz			Sweer	500.0 ms	Span 0 (1001 p
			"••				51100		1 P

5.6 Test Result

	Test Mode 1_MPE_Coil 1_Phone									
	MPE									
Test distance	Battery levels	Probe from EUT Side	E-field (V/m)	H-field (A/m)						
20cm	< 1%	Тор	11.24	0.52						
15cm	< 1%	Bottom	11.22	0.55						
15cm	< 1%	Left	11.09	0.57						
15cm	< 1%	Right	11.27	0.52						
15cm	< 1%	Front	11.27	0.57						
15cm	< 1%	Rear	10.97	0.42						
	614	1.63								
	Margin Lin	nit (%)	1.84%	34.97%						

MPE								
Test	Battery levels	Probe from EUT Side	E-field	H-field				
distance	Dattery levels		(V/m)	(A/m)				
20cm	< 50%	Тор	10.80	0.46				
15cm	< 50%	Bottom	9.71	0.55				
15cm	< 50%	Left	10.50	0.41				
15cm	< 50%	Right	10.55	0.48				
15cm	< 50%	Front	10.01	0.49				
15cm	< 50%	Rear	10.48	0.43				
	614	1.63						
	Margin Lin	nit (%)	1.76%	33.74%				

	MPE								
Test distance	Battery levels	Probe from EUT Side	E-field (V/m)	H-field (A/m)					
20cm	< 99%	Тор	9.96	0.18					
15cm	< 99%	Bottom	9.25	0.31					
15cm	< 99%	Left	9.74	0.25					
15cm	< 99%	Right	9.62	0.25					
15cm	< 99%	Front	9.50	0.22					
15cm	< 99%	Rear	9.58	0.24					
	Limit								
	Margin Lim	nit (%)	1.62%	19.02%					

Test Mode 1_MPE_Coil 1_Earphone								
		MPE						
Test	Pottony lovolo	Probe from EUT Side	E-field	H-field				
distance	Battery levels		(V/m)	(A/m)				
20cm	< 1%	Тор	8.29	0.37				
15cm	< 1%	Bottom	8.14	0.35				
15cm	< 1%	Left	8.66	0.26				
15cm	< 1%	Right	8.24	0.33				
15cm	< 1%	Front	8.47	0.21				
15cm	< 1%	Rear	8.15	0.39				
	614	1.63						
	Margin Lin	nit (%)	1.41%	23.93%				

MPE									
Test	Battery levels	Probe from EUT Side	E-field	H-field					
distance	Dattery levels		(V/m)	(A/m)					
20cm	< 50%	Тор	7.62	0.43					
15cm	< 50%	Bottom	6.58	0.46					
15cm	< 50%	Left	7.49	0.50					
15cm	< 50%	Right	7.04	0.39					
15cm	< 50%	Front	7.14	0.55					
15cm	< 50%	Rear	7.56	0.35					
	614	1.63							
	Margin Limit (%)								

MPE									
Test	Battery levels	Probe from EUT Side	E-field	H-field					
distance	Dattery levels		(V/m)	(A/m)					
20cm	< 99%	Тор	6.43	0.23					
15cm	< 99%	Bottom	5.28	0.41					
15cm	< 99%	Left	5.92	0.28					
15cm	< 99%	Right	6.19	0.17					
15cm	< 99%	Front	5.90	0.23					
15cm	< 99%	Rear	6.35	0.25					
	614	1.63							
	Margin Lin	nit (%)	1.05%	25.15%					

Test Mode 1_MPE_Coil 1_Wacth										
	MPE									
Test	Pottony lovolo	Probe from EUT Side	E-field	H-field						
distance	Battery levels	FIDDE HOITEUT SIDE	(V/m)	(A/m)						
20cm	< 1%	Тор	8.05	0.27						
15cm	< 1%	Bottom	8.11	0.30						
15cm	< 1%	Left	8.14	0.38						
15cm	< 1%	Right	8.13	0.15						
15cm	< 1%	Front	8.45	0.26						
15cm	< 1%	Rear	8.11	0.30						
	Limit									
	Margin Limit (%)									

MPE								
Test	Battery levels	Probe from EUT Side	E-field	H-field				
distance	Dattery levels		(V/m)	(A/m)				
20cm	< 50%	Тор	7.46	0.29				
15cm	< 50%	Bottom	6.41	0.38				
15cm	< 50%	Left	6.65	0.32				
15cm	< 50%	Right	6.74	0.34				
15cm	< 50%	Front	6.88	0.35				
15cm	< 50%	Rear	6.87	0.16				
	614	1.63						
	Margin Limit (%)							

MPE								
Test	Battery levels	Probe from EUT Side	E-field	H-field				
distance	Dattery levels	FIDDE HUITEUT SIDE	(V/m)	(A/m)				
20cm	< 99%	Тор	6.70	0.30				
15cm	< 99%	Bottom	5.66	0.26				
15cm	< 99%	Left	6.10	0.34				
15cm	< 99%	Right	6.00	0.41				
15cm	< 99%	Front	6.29	0.23				
15cm	< 99%	Rear	5.97	0.40				
	614	1.63						
	Margin Limit (%)							

Total exposure

MPE-based total exposure ratio (Worst case):

E-field: Coil 1+Coil 2+Coil 3 = 0.0184 + 0.0141 + 0.0138 = 0.0462 < 1

H-field:

Coil 1+Coil 2+Coil 3 = 0.3497 + 0.3374 + 0.2515 = 0.9387 < 1

Note: All test modes were pre-tested, but we only recorded the worst case in this report.

1.1 Test Setup photo

Front

Rear

Right

End of report