

Global United Technology Services Co., Ltd.

Report No.: GTS2024060141F01

TEST REPORT

Ningbo Universal Dragon I/E Corp. **Applicant:**

Address of Applicant: 9/f kirin mansion, tiantong north road 1539#, Ningbo, China

Ningbo Universal Dragon I/E Corp. Manufacturer:

9/f kirin mansion, tiantong north road 1539#, Ningbo, China Address of

Manufacturer:

Equipment Under Test (EUT)

Product Name: Wireless Charger

Model No.: 25178

2BG2I-FL10273 FCC ID:

Applicable standards: FCC CFR Title 47 Part 15 Subpart C

Date of sample receipt: June 11, 2024

Date of Test: June 12-25, 2024

Date of report issued: June 25, 2024

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luo Laboratory Manager

2 Version

Version No.	Date	Description
00	June 25, 2024	Original

Prepared By:	Joseph Du	Date:	June 25, 2024
	Project Engineer		
Check By:	Reviewer	Date: 	June 25, 2024

Contents

		Pa	age
1	COVE	ER PAGE	1
•	WED		
2		SION	
3	CON	ITENTS	3
4	TES	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	ERAL INFORMATION	5
Š	5.1	GENERAL DESCRIPTION OF EUT	
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	DEVIATION FROM STANDARDS	
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	100
	5.6	TEST FACILITY	
	5.7	TEST LOCATION	
	5.8	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
6	TES	T INSTRUMENTS LIST	7
7	TES	T RESULTS AND MEASUREMENT DATA	Q
•			
	7.1	ANTENNA REQUIREMENT:	
	7.2 7.3	CONDUCTED EMISSIONS	
	7.4	20DB OCCUPY BANDWIDTH	
		T SETUP PHOTO	
8	IES	I SETUP PHOTO	. 18
9	FUT	CONSTRUCTIONAL DETAILS	18
-		AA1.A.1.4A.1.A.1.A.1.A.1.A.1.A.1.A.1.A.1	

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Radiated Emission	15.209	Pass
20dB Bandwidth	15.215	Pass

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range Measurement Uncertainty		Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.

5 General Information

5.1 General Description of EUT

Product Name:	Wireless Charger
Model No.:	25178
Serial No.:	N/A
Test sample(s) ID:	GTS2024060141-1
Sample(s) Status	Engineer sample
Operation Frequency:	111.5kHz~205kHz
Modulation type:	ASK
Antenna Type:	Inductance Coil Antenna
Antenna gain:	0dBi
Power supply:	USB input: DC 9V 15W
	Wireless Output: 15W

Remark:

- 1. Antenna gain information provided by the customer
- 2. The relevant information of the sample is provided by the entrusting company, and the laboratory is not responsible for its authenticity.

5.2 Test mode

Mode 1 Keep the EUT charging with wireless charging load (99% load).				
Mode 2	Keep the EUT charging with wireless charging load (50% load).			
Mode 3	Keep the EUT charging with wireless charging load (1% load).			

Keep the EUT in wireless charging status. Wireless output 99% load mode is worse case and reported.

5.3 Description of Support Units

Manufacturer	Manufacturer Description		S/N
YBZ	Wireless charging test load	001	N/A
XIAOMI	USB Charger	MDY-10-EH	N/A

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• ISED—Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of ISED for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Other Information Requested by the Customer

None.

6 Test Instruments list

Radia	Radiated Emission:							
Item	tem Test Equipment Manufacturer		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	June 22, 2024	June 21, 2027		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 11, 2024	April 10, 2025		
4	BiConiLog Antenna	ConiLog Antenna SCHWARZBECK MESS-ELEKTRONIK		GTS640	March 19, 2023	March 18, 2025		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
6	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 13, 2023	Nov.12, 2024		
7	RE cable 1	GTS	N/A	GTS675	July 31. 2023	July 30. 2024		
8	RE cable 2	GTS	N/A	GTS676	July 31. 2023	July 30. 2024		

Con	Conducted Emission							
Item Test Equipment		Manufacturer	Manufacturer Model No.		Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	July 12, 2022	July 11, 2027		
2	EMI Test Receiver R&S		ESCI 7	GTS552	April 11, 2024	April 10, 2025		
3	LISN ROHDE & SCHWARZ		ENV216	GTS226	April 11, 2024	April 10, 2025		
4	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

RF C	RF Conducted Test:								
Item	Test Equipment	ent Manufacturer Model No. Serial N		Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	April 11, 2024	April 10, 2025			
2	Thermo meter	JINCHUANG	GSP-8A	GTS641	April 18, 2024	April 17, 2025			

Gen	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Barometer	KUMAO	SF132	GTS647	April 18, 2024	April 17, 2025		

7 Test results and Measurement Data

7.1 Antenna requirement:

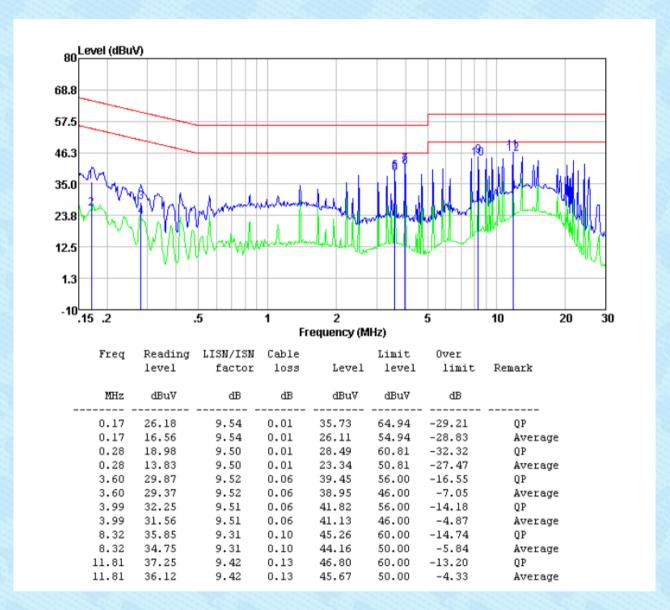
Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

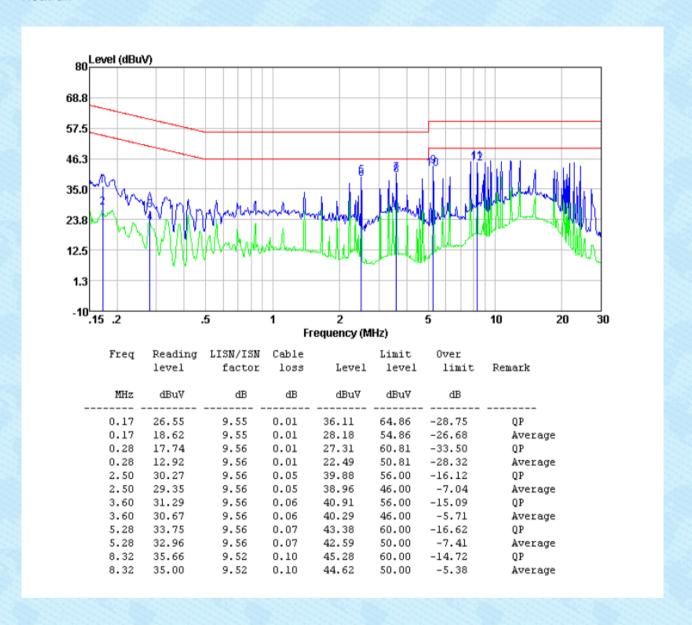
EUT Antenna:

The ant is inductance coil antenna, reference to the appendix II for details.


7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto					
Limit:	Frequency range (MHz)	Limit (dBuV) Quasi-peak Average				
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
Took ook in.	* Decreases with the logarithm of the frequency. Reference Plane					
Test setup:	AUX Equipment Test table/Insulation plane Remark E.U.T Remark E.U.T Receiver Remark E.U.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 					
	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details. Only show the worst cas (Charging with 10W wireless charging load).					
Test environment:	Temp.: 25 °C Hun	nid.: 52%	Press.: 1012mbar			
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					

Measurement data:


Line:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

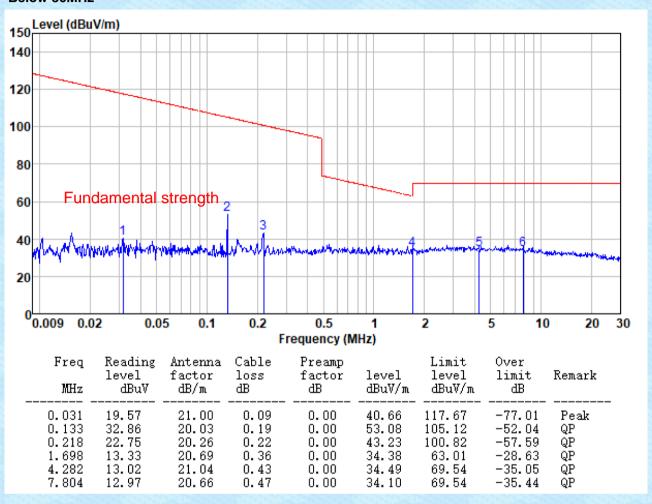
Neutral:

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Radiated Emission Method

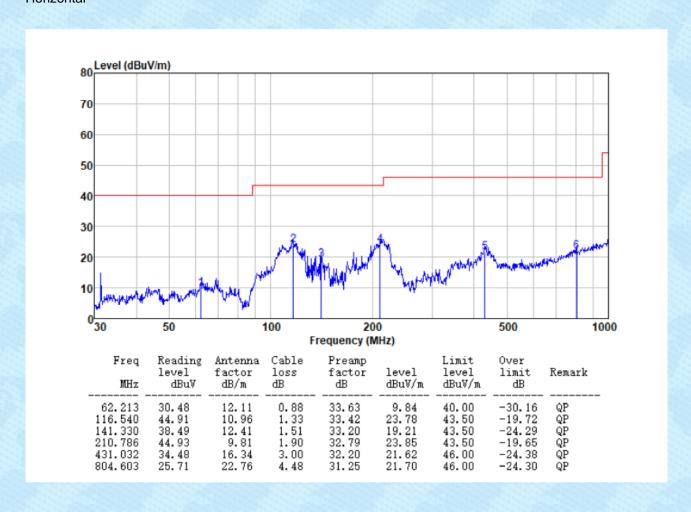
7.3 Radiated E	:mission Met	thou					
Test Requirer	ment:	FCC Part15 C Section 15.209					
Test Method:		ANSI C63.10:2013					
Test Frequen	cy Range:	9kHz to 1GHz					
Test site:		Measurement Distance: 3m					
Receiver setu	ıp:	Frequency Detector			RBW	VBW	Remark
		9kHz - 30MHz Quasi-peak		ık	10kHz	30kHz	Quasi-peak Value
		30MHz-1GHz	Quasi-pea		20kHz	300kHz	Quasi-peak Value
		Above 1GHz	Peak		1MHz	3MHz	Peak Value
			AV		1MHz	10Hz	Average Value
							kHz and above 1000
		MHz. Radiated e					based on
1		measurements e				ctor.	
Limit:		Limits for freque	ency below	30IVI			
(Spurious Em	issions)	Frequency	Limit (uV/m)		Measurement Distance(m)		Remark
		0.009-0.490	2400/F(k			300	Quasi-peak Value
		0.490-1.705	24000/F(F	(Hz)		30	Quasi-peak Value
		1.705-30	30			30	Quasi-peak Value
		Limits for freque				0.0	
		Frequen		Limit (dBuV/m @3m)			Remark
		30MHz-88			40.00		Quasi-peak Value
		88MHz-216MHz		43.50			Quasi-peak Value
		216MHz-96			46.0		Quasi-peak Value
		960MHz-1GHz Above 1GHz		54.00 54.00			Quasi-peak Value Average Value
					74.0		Peak Value
		Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements					
		employing an ave					
Test Procedu	re:						0.8 meters above the
							360 degrees to
		 determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the 					
		maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.					
		6. If the emission level of the EUT in peak mode was 10dB lower than the					
	and the same of the same of	The State of the S				30 To 10 To 17 To	


Report No.: GTS2024060141F01 limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 7. The radiation measurements are performed in X, Y, Z axis positioning. And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report. Test setup: Below 30MHz < 3m > Test Antenna EUT Turn Table < 80cm Receiver-30MHz ~ 1000MHz Test Antenna EUT Turn Table < 80cm Receivere Preamplifier. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details. Only show the worst cas (Charging with 10W wireless charging load). Test environment: Temp.: 25 °C Humid .: 52% Press.: 1012mbar Test voltage: AC 120V, 60Hz Test results: **Pass**

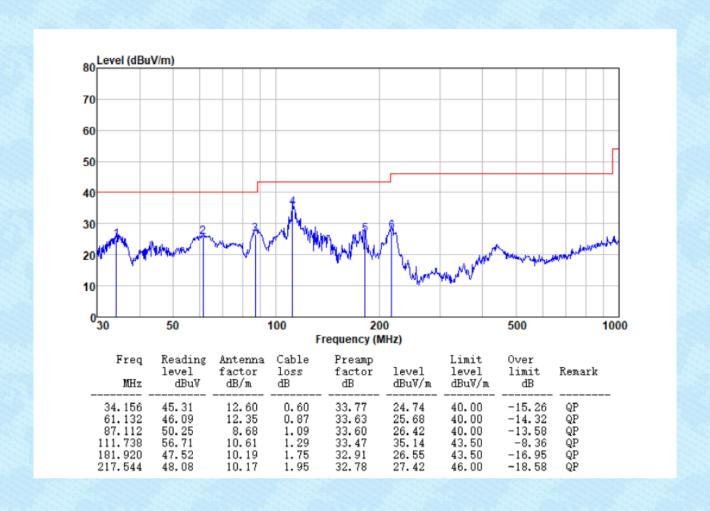
Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement data:

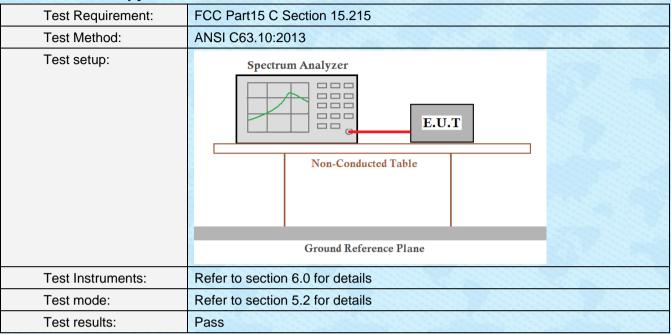
Below 30MHz



Note: Coplaner and Coaxial polarity all have been tested, only worse case(Maximum output 15W) is reported.


30MHz ~ 1GHz

Horizontal



Vertical

7.4 20dB Occupy Bandwidth

Measurement Data

Test frequency(kHz)	20dB bandwidth(Hz)	Result
133.1	604	Pass

Test plot as follows:

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----