

# **FCC Test Report**

| Application No.:  | DNT241189R1627-4077                                                |  |  |
|-------------------|--------------------------------------------------------------------|--|--|
| Applicant:        | Yongkang Chuangchen Industry and Trade Co., Ltd                    |  |  |
| Address of        | 3rd Floor, No.13 Jingong Road, Jinjiang Long Village, Gushan Town, |  |  |
| Applicant:        | Yongkang City, Jinhua City, Zhejiang Province                      |  |  |
| EUT Description:  | Music boxing target                                                |  |  |
|                   | QJBM-01,QJBM-02,QJBM-03,QJBM-04,QJBM-05,QJBM-06,QJBM-07,           |  |  |
| Model No.:        | QJBM-08,QJBM-09,QJBM-10,QJFW-01,QJFW-02,QJFW-03,QJFW04,            |  |  |
|                   | QJFW-05,QJFW-06,QJFW-07,QJFW-08,QJFW-09,QJFW-10                    |  |  |
| FCC ID:           | 2BG2F-QJBM-01                                                      |  |  |
| Power Supply:     | DC 4V/0.8A From Battery; DC 5V From Adapter                        |  |  |
| Charging Voltage: | DC 5V                                                              |  |  |
| Trade Mark:       |                                                                    |  |  |
|                   | 47 CFR FCC Part 2, Subpart J                                       |  |  |
| Standards:        | 47 CFR Part 15, Subpart C                                          |  |  |
|                   | ANSI C63.10: 2013                                                  |  |  |
| Date of Receipt:  | 2024/6/6                                                           |  |  |
| Date of Test:     | 2024/6/7 to 2024/6/14                                              |  |  |
|                   | 2024/6/14                                                          |  |  |
| Test Result:      | PASS                                                               |  |  |
| Prepared By:      | Wayne Jon (Testing Engineer)                                       |  |  |
| Reviewed By:      | Penuils . chen (Project Engineer)                                  |  |  |
| Approved By:      | Merre Aher (Manager)                                               |  |  |

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

### Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com

 Tel:+86-769-88087383

 E-mail: <a href="mailto:service@dn-testing.com">service@dn-testing.com</a>



Date: June 14, 2024 Page: 2 / 68

**Report Revise Record** 

| Report Version | Revise Time | Issued Date  | Valid Version | Notes           |
|----------------|-------------|--------------|---------------|-----------------|
| V1.0           |             | Jun.14, 2024 | Valid         | Original Report |



1

Report No.: DNT241189R1627-4077

Date: June 14, 2024

Page: 3/68

## Test Summary

| Test Item                                                               | Test Requirement            | Test Method        | Test Result | Result |
|-------------------------------------------------------------------------|-----------------------------|--------------------|-------------|--------|
| Antenna Requirement                                                     | 15.203/247(b)               |                    | Clause 3.1  | PASS   |
| 20dB Emission Bandwidth                                                 | 15.247 (a)(1)               | ANSI C63.10 (2013) | Clause 3.2  | PASS   |
| Conducted Peak Output<br>Power                                          | 15.247 (b)(1)               | ANSI C63.10 (2013) | Clause 3.3  | PASS   |
| Carrier Frequencies<br>Separation                                       | 15.247 (a)(1)               | ANSI C63.10 (2013) | Clause 3.4  | PASS   |
| Dwell Time                                                              | 15.247 (a)(1)               | ANSI C63.10 (2013) | Clause 3.5  | PASS   |
| Hopping Channel Number                                                  | 15.247 (a)(1)               | ANSI C63.10 (2013) | Clause 3.6  | PASS   |
| Band-edge for RF<br>Conducted Emissions                                 | 15.247(d)                   | ANSI C63.10 (2013) | Clause 3.7  | PASS   |
| RF Conducted Spurious<br>Emissions                                      | 15.247(d)                   | ANSI C63.10 (2013) | Clause 3.8  | PASS   |
| Radiated Spurious                                                       | 15.247(d);                  | ANSI C63.10 (2013) | Clause 3.9  | PASS   |
| emissions                                                               | 15.205/15.209               | ANOI 003.10 (2013) | Clause 5.5  | 1,00   |
| Restricted bands around<br>fundamental frequency (Radiated<br>Emission) | 15.247(d);<br>15.205/15.209 | ANSI C63.10 (2013) | Clause 3.10 | PASS   |
| AC Power Line Conducted Emission                                        | 15.207                      | ANSI C63.10 (2013) | Clause 3.11 | PASS   |

### Note:

1. "N/A" denotes test is not applicable in this test report.



Date: June 14, 2024

Page: 4/68

## Contents

| 1 Test Summary                                           |   |
|----------------------------------------------------------|---|
| 2 General Information                                    | 5 |
| 2.1 Test Location                                        |   |
| 2.2 General Description of EUT                           |   |
| 2.3 Channel List                                         |   |
| 2.4 5Test Environment and Mode                           |   |
| 2.5 Power Setting of Test Software                       |   |
| 2.6 Description of Support Units                         |   |
| 2.7 Test Facility                                        |   |
| 2.8 Measurement Uncertainty (95% confidence levels, k=2) |   |
| 2.9 Equipment List                                       |   |
| 2.10 Assistant equipment used for test                   |   |
| 3 Test results and Measurement Data                      |   |
| 3.1 Antenna Requirement                                  |   |
| 3.2 20dB Emission Bandwidth                              |   |
| 3.3 Conducted Output Power                               |   |
| 3.4 Carrier Frequencies Separationy                      |   |
| 3.5 Dwell Time                                           |   |
| 3.6 Hopping Channel Number                               |   |
| 3.7 Band-edge for RF Conducted Emissions                 |   |
| 3.8 RF Conducted Spurious Emissions                      |   |
| 3.9 Radiated Spurious Emissions                          |   |
| 3.10 Restricted bands around fundamental frequency       |   |
| 3.11 AC Power Line Conducted Emissions                   |   |
| 4 Appendix                                               |   |
| Appendix A: 20dB Emission Bandwidth                      |   |
| Appendix B: Maximum conducted output power               |   |
| Appendix C: Carrier frequency separation                 |   |
| Appendix D: Dwell Time                                   |   |
| Appendix F: Number of hopping channels                   |   |
| Appendix F: Band edge measurements                       |   |
| Appendix F: Conducted Spurious Emission                  |   |
| 5 Test Photos                                            |   |



Date: June 14, 2024

## 2 General Information

## 2.1 Test Location

| Company:       | Dongguan DN Testing Co., Ltd                                                                                 |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------|--|--|
| Address:       | No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China |  |  |
| Test engineer: | Wayne Lin                                                                                                    |  |  |



Date: June 14, 2024

Page: 6/68

## 2.2 General Description of EUT

| Manufacturer:            | Yongkang Chuangchen Industry and Trade Co., Ltd                                                                                                                |  |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Address of Manufacturer: | 3rd Floor, No.13 Jingong Road, Jinjiang Long Village, Gushan Town,<br>Yongkang City, Jinhua City, Zhejiang Province                                            |  |  |
| Test EUT Description:    | Music boxing target                                                                                                                                            |  |  |
| Model No.:               | QJBM-01                                                                                                                                                        |  |  |
| Additional Model(s):     | QJBM-02,QJBM-03,QJBM-04,QJBM-05,QJBM-06,QJBM-07,<br>QJBM-08,QJBM-09,QJBM-10,QJFW-01,QJFW-02,QJFW-03,<br>QJFW04,QJFW-05,QJFW-06,QJFW-07,QJFW-08,QJFW-09,QJFW-10 |  |  |
| Chip Type:               | 6965E                                                                                                                                                          |  |  |
| Serial number:           | PR241189R1627                                                                                                                                                  |  |  |
| Power Supply:            | DC 4V/0.8A From Battery; DC 5V From Adapter                                                                                                                    |  |  |
| Charging Voltage:        | DC 5V                                                                                                                                                          |  |  |
| Trade Mark:              |                                                                                                                                                                |  |  |
| Hardware Version:        | V1.0                                                                                                                                                           |  |  |
| Software Version:        | V1.0                                                                                                                                                           |  |  |
| Operation Frequency:     | 2402 MHz to 2480 MHz                                                                                                                                           |  |  |
| Modulation Technique:    | Frequency Hopping Spread Spectrum(FHSS)                                                                                                                        |  |  |
| Type of Modulation:      | GFSK,π/4-DQPSK,8DPSK                                                                                                                                           |  |  |
| Sample Type:             | ☐ Portable Device, ☐ Module, ☐ Mobile Device                                                                                                                   |  |  |
| Antenna Type:            | □ External, ⊠ Integrated                                                                                                                                       |  |  |
| Antenna Ports:           | 🖂 Ant 1, 🗌 Ant 2, 🗌 Ant 3                                                                                                                                      |  |  |
| Antenna Gain*:           | ⊠ Provided by applicant                                                                                                                                        |  |  |
| Antenna Gain .           | -0.58dBi                                                                                                                                                       |  |  |
|                          | Provided by applicant                                                                                                                                          |  |  |
| RF Cable*:               | 0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz); 1.8dB(4.4~6GHz);                                                                           |  |  |

#### Remark:

\*All models are just color differences, motherboard, PCB circuit board, chip, electronic components, appearance i s all the same.

\*Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information, DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.



Date: June 14, 2024

Page: 7/68

## 2.3 Channel List

|         | Operation Frequency of each channel |         |           |         |           |         |           |
|---------|-------------------------------------|---------|-----------|---------|-----------|---------|-----------|
| Channel | Frequency                           | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 0       | 2402MHz                             | 20      | 2422MHz   | 40      | 2442MHz   | 60      | 2462MHz   |
| 1       | 2403MHz                             | 21      | 2423MHz   | 41      | 2443MHz   | 61      | 2463MHz   |
| 2       | 2404MHz                             | 22      | 2424MHz   | 42      | 2444MHz   | 62      | 2464MHz   |
| 3       | 2405MHz                             | 23      | 2425MHz   | 43      | 2445MHz   | 63      | 2465MHz   |
| 4       | 2406MHz                             | 24      | 2426MHz   | 44      | 2446MHz   | 64      | 2466MHz   |
| 5       | 2407MHz                             | 25      | 2427MHz   | 45      | 2447MHz   | 65      | 2467MHz   |
| 6       | 2408MHz                             | 26      | 2428MHz   | 46      | 2448MHz   | 66      | 2468MHz   |
| 7       | 2409MHz                             | 27      | 2429MHz   | 47      | 2449MHz   | 67      | 2469MHz   |
| 8       | 2410MHz                             | 28      | 2430MHz   | 48      | 2450MHz   | 68      | 2470MHz   |
| 9       | 2411MHz                             | 29      | 2431MHz   | 49      | 2451MHz   | 69      | 2471MHz   |
| 10      | 2412MHz                             | 30      | 2432MHz   | 50      | 2452MHz   | 70      | 2472MHz   |
| 11      | 2413MHz                             | 31      | 2433MHz   | 51      | 2453MHz   | 71      | 2473MHz   |
| _ 12    | 2414MHz                             | 32      | 2434MHz   | 52      | 2454MHz   | 72      | 2474MHz   |
| 13      | 2415MHz                             | 33      | 2435MHz   | 53      | 2455MHz   | 73      | 2475MHz   |
| 14      | 2416MHz                             | 34      | 2436MHz   | 54      | 2456MHz   | 74      | 2476MHz   |
| 15      | 2417MHz                             | 35      | 2437MHz   | 55      | 2457MHz   | 75      | 2477MHz   |
| 16      | 2418MHz                             | 36      | 2438MHz   | 56      | 2458MHz   | 76      | 2478MHz   |
| 17      | 2419MHz                             | 37      | 2439MHz   | 57      | 2459MHz   | 77      | 2479MHz   |
| 18      | 2420MHz                             | 38      | 2440MHz   | 58      | 2460MHz   | 78      | 2480MHz   |
| 19      | 2421MHz                             | 39      | 2441MHz   | 59      | 2461MHz   | )       |           |

### Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Channel             | Frequency |
|---------------------|-----------|
| The Lowest channel  | 2402MHz   |
| The Middle channel  | 2441MHz   |
| The Highest channel | 2480MHz   |



Date: June 14, 2024

Page: 8/68

## 2.4 5Test Environment and Mode

| Operating Environment: |                                                                                          |  |  |  |
|------------------------|------------------------------------------------------------------------------------------|--|--|--|
| Temperature:           | 20~25.0 °C                                                                               |  |  |  |
| Humidity:              | 45~56 % RH                                                                               |  |  |  |
| Atmospheric Pressure:  | 101.0~101.30 KPa                                                                         |  |  |  |
| Test mode:             |                                                                                          |  |  |  |
| Transmitting mode:     | Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate. |  |  |  |



## 2.5 Power Setting of Test Software

Date: June 14, 2024 Page:

### Page: 9/68

| Software Name     | $\bigcirc$ $\bigcirc$ $\bigcirc$ | BT_Tool_v1.1.2 | $O_{1} = O_{1} = O_{1}$ | Ó. |
|-------------------|----------------------------------|----------------|-------------------------|----|
| Frequency(MHz)    | 2402                             | 2441           | 2480                    |    |
| GFSK Setting      | Default                          | Default        | Default                 | 5  |
| π/4-DQPSK Setting | Default                          | Default        | Default                 |    |
| 8DPSK             | Default                          | Default        | Default                 | 7  |

## 2.6 Description of Support Units

The EUT has been tested independent unit.

## 2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

### • FCC, USA

Designation Number: CN1348

### A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

### Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

IC#: 31026.



Date: June 14, 2024

Page: 10 / 68

## 2.8 Measurement Uncertainty (95% confidence levels, k=2)

| No. | Item                            | Measurement Uncertainty                   |
|-----|---------------------------------|-------------------------------------------|
| 1   | 20dB Emission Bandwidth         | ±0.0196%                                  |
| 2   | Carrier Frequency Separation    | ±1.9%                                     |
| 3   | Number of Hopping Channel       | ±1.9%                                     |
| 4   | Time of Occupancy               | ±0.028%                                   |
| 5   | Max Peak Conducted Output Power | ±0.743 dB                                 |
| 6   | Band-edge Spurious Emission     | ±1.328 dB                                 |
| 7   | Conducted RF Spurious Emission  | 9KHz-1GHz:±0.746dB<br>1GHz-26GHz:±1.328dB |

| No.          | Item                | Measurement Uncertainty   |
|--------------|---------------------|---------------------------|
| 1            | Conduction Emission | ± 3.0dB (150kHz to 30MHz) |
| $\mathbf{O}$ |                     | ± 4.8dB (Below 1GHz)      |
| 0            | Dedicted Enviroien  | ± 4.8dB (1GHz to 6GHz)    |
| 2            | Radiated Emission   | ± 4.5dB (6GHz to 18GHz)   |
|              | and an an an        | ± 5.02dB (Above 18GHz)    |



## 2.9 Equipment List

|                                  | For Connect  | ct EUT Anteni  | na Terminal <sup>-</sup> | Test       |            |
|----------------------------------|--------------|----------------|--------------------------|------------|------------|
| Description                      | Manufacturer | Model          | Serial Number            | Cal date   | Due date   |
| Signal Generator                 | Keysight     | N5181A-6G      | MY48180415               | 2023-10-25 | 2024-10-24 |
| Signal Generator                 | Keysight     | N5182B         | MY57300617               | 2023-10-25 | 2024-10-24 |
| Power supply                     | Keysight     | E3640A         | ZB2022656                | 2023-10-25 | 2024-10-24 |
| Radio<br>Communication<br>Tester | R&S          | CMW500         | 105082                   | 2023-10-25 | 2024-10-24 |
| Spectrum<br>Analyzer             | Aglient      | N9010A         | MY52221458               | 2023-10-25 | 2024-10-24 |
| BT/WIFI Test<br>Software         | Tonscend     | JS1120 V3.1.83 | NA                       | NA         | NA         |
| RF Control Unit                  | Tonscend     | JS0806-2       | 22F8060581               | NA         | NA         |
| Power Sensor                     | Anritsu      | ML2495A        | 2129005                  | 2023-10-25 | 2024-10-24 |
| Pulse Power<br>Sensor            | Anritsu      | MA2411B        | 1911397                  | 2023-10-25 | 2024-10-24 |
| temperature and humidity box     | SCOTEK       | SCD-C40-80PRO  | 6866682020008            | 2023-10-25 | 2024-10-24 |

|             | Test Equipment for Conducted Emission |           |               |            |            |  |  |
|-------------|---------------------------------------|-----------|---------------|------------|------------|--|--|
| Description | Manufacturer                          | Model     | Serial Number | Cal Date   | Due Date   |  |  |
| Receiver    | R&S                                   | ESCI3     | 101152        | 2023-10-24 | 2024-10-23 |  |  |
| LISN        | R&S                                   | ENV216    | 102874        | 2023-10-24 | 2024-10-23 |  |  |
| ISN         | R&S                                   | ENY81-CA6 | 1309.8590.03  | 2023-10-24 | 2024-10-23 |  |  |

| Test Ec              | quipment for F | Radiated Emis              | sion(30MHz    | -1000MH    | z) 🦲       |
|----------------------|----------------|----------------------------|---------------|------------|------------|
| Description          | Manufacturer   | Model                      | Serial Number | Cal Date   | Due Date   |
| Receiver             | R&S            | ESR7                       | 102497        | 2023-10-24 | 2024-10-23 |
| Test Software        | ETS-LINDGREN   | TILE-FULL                  | NA            | NA         | NA         |
| RF Cable             | ETS-LINDGREN   | RFC-NMS-100-<br>NMS-350-IN | NA            | 2023-10-24 | 2024-10-23 |
| Log periodic antenna | ETS-LINDGREN   | VULB 9168                  | 01475         | 2023-10-24 | 2024-10-23 |
| Pre-amplifier        | Schwarzbeck    | BBV9743B                   | 00423         | 2023-10-24 | 2024-10-23 |



Date: June 14, 2024

Page: 12/68

| 🕥 Test E                           | quipment for I | Radiated Emis              | ssion(Above   | 1000MHz    | <u>z)</u>  |
|------------------------------------|----------------|----------------------------|---------------|------------|------------|
| Description                        | Manufacturer   | Model                      | Serial Number | Cal Date   | Due Date   |
| Frequency analyser                 | Keysight       | N9010A                     | MY52221458    | 2023-10-24 | 2024-10-23 |
| RF Cable                           | ETS-LINDGREN   | RFC-NMS-100-<br>NMS-350-IN | NA            | 2023-10-24 | 2024-10-23 |
| Horn Antenna                       | ETS-LINDGREN   | 3117                       | 00252567      | 2023-10-24 | 2024-10-23 |
| Double ridged<br>waveguide antenna | ETS-LINDGREN   | 3116C                      | 00251780      | 2023-10-24 | 2024-10-23 |
| Test Software                      | ETS-LINDGREN   | TiLE-FULL                  | NA            | NA         | NA         |
| Pre-amplifier                      | ETS-LINDGREN   | 3117-PA                    | 252567        | 2023-10-24 | 2024-10-23 |
| Pre-amplifier                      | ETS-LINDGREN   | 3116C-PA                   | 251780        | 2023-10-24 | 2024-10-23 |

## 2.10 Assistant equipment used for test

| Code | Equipment | Manufacturer | Model No.    | Equipment No.  |
|------|-----------|--------------|--------------|----------------|
| 1    | Computer  | acer         | N22C8        | EMC notebook01 |
| 2    | Adapter   | HUAWEI       | HW-100225C00 | NA             |



## **3** Test results and Measurement Data

## 3.1 Antenna Requirement

### Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

### 15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -0.58dBi.



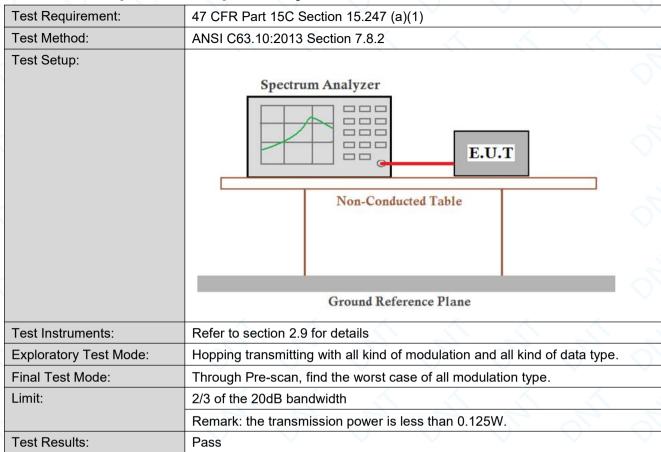
## 3.2 20dB Emission Bandwidth

| Test Requirement:      | 47 CFR Part 15C Section 15.247 (a)(1)                                           |
|------------------------|---------------------------------------------------------------------------------|
| Test Method:           | ANSI C63.10:2013 Section 7.8.7                                                  |
| Test Setup:            | Spectrum Analyzer<br>E.U.T                                                      |
|                        | Non-Conducted Table                                                             |
|                        | Ground Reference Plane                                                          |
| Instruments Used:      | Refer to section 2.9 for details                                                |
| Exploratory Test Mode: | Non-hopping transmitting with all kind of modulation and all kind of data type. |
| Final Test Mode:       | Through Pre-scan, find the worst case of all modulation type.                   |
| Limit:                 | NA                                                                              |
| Test Results:          | Pass                                                                            |

The detailed test data see: Appendix A



Date: June 14, 2024


## 3.3 Conducted Output Power

| Test Requirement:      | 47 CFR Part 15C Section 15.247 (b)(1)                                           |
|------------------------|---------------------------------------------------------------------------------|
| Test Method:           | ANSI C63.10:2013 Section 7.8.5                                                  |
| Test Setup:            | Spectrum Analyzer<br>E.U.T                                                      |
|                        | Non-Conducted Table                                                             |
|                        | Ground Reference Plane                                                          |
| Test Instruments:      | Refer to section 2.9 for details                                                |
| Exploratory Test Mode: | Non-hopping transmitting with all kind of modulation and all kind of data type. |
| Final Test Mode:       | Through Pre-scan, find the worst case of all modulation type.                   |
| Limit:                 | (20.97dBm) 125mW                                                                |
| Test Results:          | Pass                                                                            |

The detailed test data see: Appendix B



## 3.4 Carrier Frequencies Separationy



The detailed test data see: Appendix C



## 3.5 Dwell Time

| Test Requirement: | 47 CFR Part 15C Section 15.247 (a)(1)                                       |            |
|-------------------|-----------------------------------------------------------------------------|------------|
| Test Method:      | ANSI C63.10:2013 Section 7.8.4                                              |            |
| Test Setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table                           | 0, 0, 0,   |
|                   | Ground Reference Plane                                                      |            |
| Instruments Used: | Refer to section 2.9 for details                                            | $\bigcirc$ |
| Test Mode:        | Hopping transmitting with all kind of modulation and all kind of data type. |            |
| Limit:            | 0.4 Second                                                                  |            |
| Test Results:     | Pass                                                                        | 5          |

The detailed test data see: Appendix D



Date: June 14, 2024

## 3.6 Hopping Channel Number

| Test Requirement: | 47 CFR Part 15C Section 15.247 (a)(1)                                       |            |               |
|-------------------|-----------------------------------------------------------------------------|------------|---------------|
| Test Method:      | ANSI C63.10:2013 Section 7.8.3                                              | ,          |               |
| Test Setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane | my my my   | 0, 0, 0,      |
| Instruments Used: | Refer to section 2.9 for details                                            | -          | 5             |
| Test Mode:        | Hopping transmitting with all kind of modulation                            | $\bigcirc$ | $\overline{}$ |
|                   |                                                                             |            |               |
| Limit:            | At least 15 channels                                                        |            |               |
| Test Results:     | Pass                                                                        |            |               |

The detailed test data see: Appendix E



Date: June 14, 2024

## 3.7 Band-edge for RF Conducted Emissions

| Test Requirement:      | 47 CFR Part 15C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                      |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:           | ANSI C63.10:2013 Section 7.8.6                                                                                                                                                                                                                                                                                                                                                          |
| Test Setup:            | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table                                                                                                                                                                                                                                                                                                                                       |
| Instruments Used:      | Ground Reference Plane<br>Refer to section 2.9 for details                                                                                                                                                                                                                                                                                                                              |
| Exploratory Test Mode: | Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type.                                                                                                                                                                                                                                                                                             |
| Final Test Mode:       | Through Pre-scan, find the worst case of all modulation type.                                                                                                                                                                                                                                                                                                                           |
| Limit:                 | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |
| Test Results:          | Pass                                                                                                                                                                                                                                                                                                                                                                                    |

The detailed test data see: Appendix F

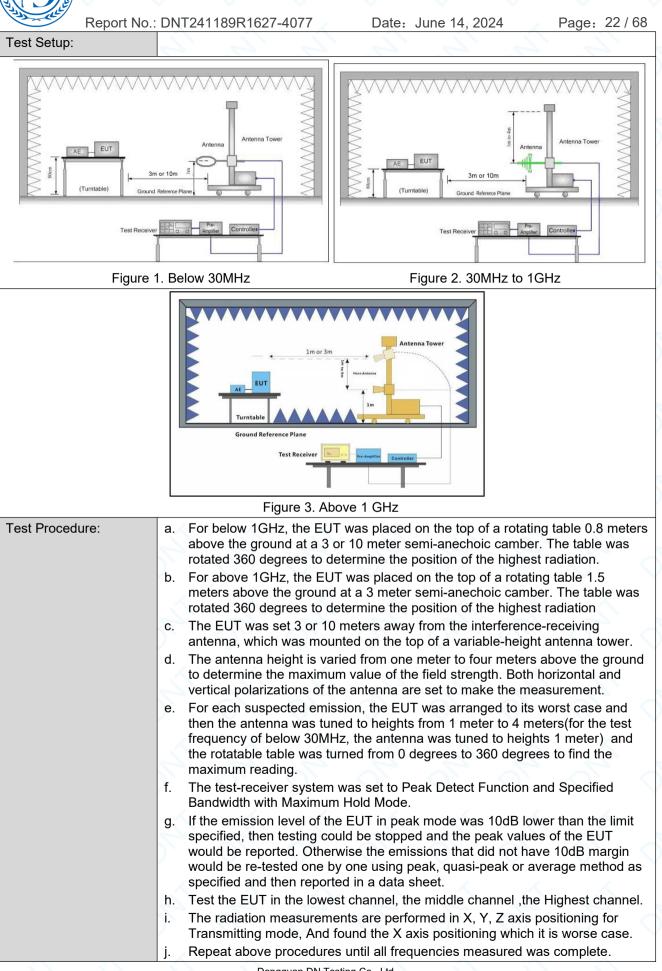


## 3.8 RF Conducted Spurious Emissions

| Test Requirement:      | 47 CFR Part 15C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                      |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:           | ANSI C63.10: 2013 Section 11.11                                                                                                                                                                                                                                                                                                                                                         |
| Test Setup:            | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane                                                                                                                                                                                                                                                                                                             |
| Instruments Used:      | Refer to section 2.9 for details                                                                                                                                                                                                                                                                                                                                                        |
| Exploratory Test Mode: | Transmitting with all kind of modulations, data rates                                                                                                                                                                                                                                                                                                                                   |
| Final Test Mode:       | Through Pre-scan, find the worst case of all modulation type.                                                                                                                                                                                                                                                                                                                           |
| Limit:                 | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |
| Test Results:          | Pass                                                                                                                                                                                                                                                                                                                                                                                    |

The detailed test data see: Appendix G




Date: June 14, 2024

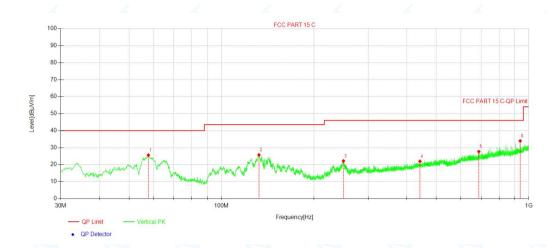
Page: 21/68

## 3.9 Radiated Spurious Emissions

| Test Requirement: | 47 CFR Part 15C Section 15.209 and 15.205 |                                                         |                   |                   |                             |  |  |
|-------------------|-------------------------------------------|---------------------------------------------------------|-------------------|-------------------|-----------------------------|--|--|
| Test Method:      | ANSI C63.10: 2013 Section 11.12           |                                                         |                   |                   |                             |  |  |
| Test Site:        | Measurement Distance:                     | Measurement Distance: 3m or 10m (Semi-Anechoic Chamber) |                   |                   |                             |  |  |
| Receiver Setup:   | Frequency                                 | Detector                                                | RBW               | VBW               | Remark                      |  |  |
|                   | 0.009MHz-0.090MHz                         | Peak                                                    | 10kHz             | 30kHz             | Peak                        |  |  |
|                   | 0.009MHz-0.090MHz                         | Average                                                 | 10kHz             | 30kHz             | Average                     |  |  |
|                   | 0.090MHz-0.110MHz                         | Quasi-peak                                              | 10kHz             | 30kHz             | Quasi-peak                  |  |  |
|                   | 0.110MHz-0.490MHz                         | Peak                                                    | 10kHz             | 30kHz             | Peak                        |  |  |
|                   | 0.110MHz-0.490MHz                         | Average                                                 | 10kHz             | 30kHz             | Average                     |  |  |
|                   | 0.490MHz -30MHz                           | Quasi-peak                                              | 10kHz             | 30kHz             | Quasi-peak                  |  |  |
|                   | 30MHz-1GHz                                | Quasi-peak                                              | 120kHz            | 300kHz            | Quasi-peak                  |  |  |
|                   |                                           | Peak                                                    | 1MHz              | 3MHz              | Peak                        |  |  |
|                   | Above 1GHz                                | Peak                                                    | 1MHz              | 10Hz<br>(DC≥0.98) | Average                     |  |  |
|                   | × ×                                       | $\langle \rangle$                                       | $\sim$            | ≥1/T<br>(DC<0.98) |                             |  |  |
| Limit:            | Frequency                                 | Field strength<br>(microvolt/meter)                     | Limit<br>(dBuV/m) | Remark            | Measurement<br>distance (m) |  |  |
|                   | 0.009MHz-0.490MHz                         | 2400/F(kHz)                                             | - 🔨               | -<                | 300                         |  |  |
|                   | 0.490MHz-1.705MHz                         | 24000/F(kHz)                                            | -                 | <->               | 30                          |  |  |
|                   | 1.705MHz-30MHz                            | 30                                                      | <u> </u>          | $\sim$ -          | 30                          |  |  |
|                   | 30MHz-88MHz                               | 100                                                     | 40.0              | Quasi-peak        | 3                           |  |  |
|                   | 88MHz-216MHz                              | 150                                                     | 43.5              | Quasi-peak        | 3                           |  |  |
|                   | 216MHz-960MHz                             | 200                                                     | 46.0              | Quasi-peak        | 3                           |  |  |
|                   | 960MHz-1GHz                               | 500                                                     | 54.0              | Quasi-peak        | 3                           |  |  |
|                   | Above 1GHz                                | 500                                                     | 54.0              | Average           | 3                           |  |  |

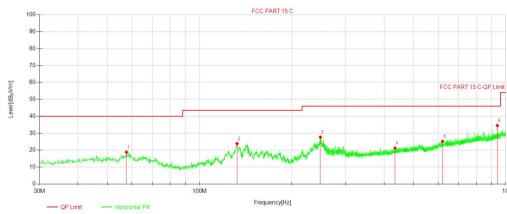







| Report No.             | : DNT241189R1627-4077 Date: June 14, 2024 Page: 23 / 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Configuration:    | Measurements Below 1000MHz $\cdot$ RBW = 120 kHz $\cdot$ VBW = 300 kHz $\cdot$ Detector = Peak $\cdot$ Trace mode = max holdPeak Measurements Above 1000 MHz $\cdot$ RBW = 1 MHz $\cdot$ VBW $\geq$ 3 MHz $\cdot$ Detector = Peak $\cdot$ Sweep time = auto $\cdot$ Trace mode = max holdAverage Measurements Above 1000MHz $\cdot$ RBW = 1 MHz $\cdot$ VBW $\geq$ 1 MHz $\cdot$ VBW $\geq$ 10 Hz, when duty cycle is no less than 98 percent. $\cdot$ VBW $\geq$ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. |
| Exploratory Test Mode: | Transmitting with all kind of modulations, data rates.<br>Charge+Transmitting mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Final Test Mode:       | Pretest the EUT at Transmitting mode.<br>Through Pre-scan, find the DH5 of data type is the worst case of All modulation type.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Instruments Used:      | Refer to section 2.9 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test Results:          | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |




### Test data For 30-1000MHz

Vertical:



| NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result<br>Level<br>[dBµV/m] | Limit<br>[dBµV/<br>m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|-----|----------------|----------------------------|-----------------------------|-----------------------------|-----------------------|----------------|----------------|--------------|--------|
| 1   | 57.84          | 34.14                      | -8.54                       | 25.60                       | 40.00                 | 14.40          | 100            | 105          | QP     |
| 2   | 132.44         | 34.93                      | -9.20                       | 25.73                       | 43.50                 | 17.77          | 100            | 352          | QP     |
| 3   | 249.53         | 31.10                      | -8.95                       | 22.15                       | 46.00                 | 23.85          | 200            | 241          | QP     |
| 4   | 442.38         | 24.94                      | -2.99                       | 21.95                       | 46.00                 | 24.05          | 200            | 267          | QP     |
| 5   | 687.62         | 25.50                      | 2.16                        | 27.66                       | 46.00                 | 18.34          | 100            | 12           | QP     |
| 6   | 937.62         | 27.78                      | 6.15                        | 33.93                       | 46.00                 | 12.07          | 100            | 295          | QP     |

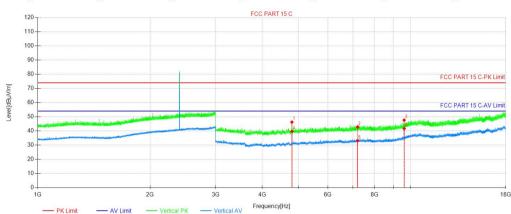
#### Horizontal :



#### QP Detector

| NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result<br>Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|-----|----------------|----------------------------|-----------------------------|-----------------------------|-------------------|----------------|----------------|--------------|--------|
| 1   | 57.64          | 27.33                      | -8.52                       | 18.81                       | 40.00             | 21.19          | 200            | 42           | QP     |
| 2   | 132.44         | 33.07                      | -9.20                       | 23.87                       | 43.50             | 19.63          | 200            | 319          | QP     |
| 3   | 247.88         | 36.65                      | -8.97                       | 27.68                       | 46.00             | 18.32          | 100            | 128          | QP     |
| 4   | 434.43         | 24.43                      | -3.20                       | 21.23                       | 46.00             | 24.77          | 200            | 243          | QP     |
| 5   | 620.98         | 24.17                      | 1.02                        | 25.19                       | 46.00             | 20.81          | 100            | 310          | QP     |
| 6   | 937.62         | 28.42                      | 6.15                        | 34.57                       | 46.00             | 11.43          | 200            | 116          | QP     |

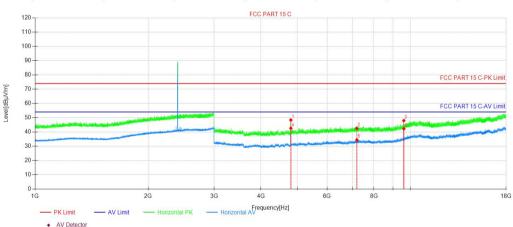
#### Dongguan DN Testing Co., Ltd.


 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: <a href="mailto:service@dn-testing.com">service@dn-testing.com</a>



## For above 1GHz DH5 2402MHz


## Vertical:



AV Detector

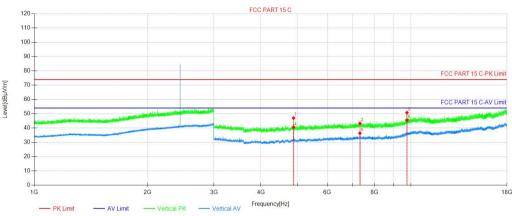
|                | NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result<br>Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Heigh<br>t<br>[cm] | Angle<br>[°] | Remark |
|----------------|-----|----------------|----------------------------|-----------------------------|-----------------------------|-------------------|----------------|--------------------|--------------|--------|
|                | 1   | 4803.84        | 50.85                      | -4.61                       | 46.24                       | 74.00             | 27.76          | 150                | 144          | Peak   |
| $\overline{\}$ | 2   | 7206.21        | 44.55                      | -1.76                       | 42.79                       | 74.00             | 31.21          | 150                | 130          | Peak   |
|                | 3   | 9608.58        | 46.76                      | 0.88                        | 47.64                       | 74.00             | 26.36          | 150                | 211          | Peak   |
|                | 4   | 4804.59        | 44.29                      | -4.61                       | 39.68                       | 54.00             | 14.32          | 150                | 157          | AV     |
| ~              | 5   | 7206.21        | 34.90                      | -1.76                       | 33.14                       | 54.00             | 20.86          | 150                | 239          | AV     |
|                | 6   | 9608.58        | 40.77                      | 0.88                        | 41.65                       | 54.00             | 12.35          | 150                | 199          | AV     |

Horizontal:



| AV | Detector |
|----|----------|

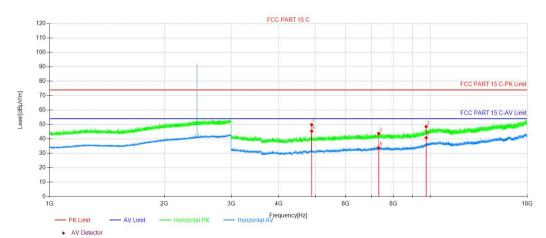
| NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result<br>Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|-----|----------------|----------------------------|-----------------------------|-----------------------------|-------------------|----------------|----------------|--------------|--------|
| 1   | 4803.84        | 53.01                      | -4.61                       | 48.40                       | 74.00             | 25.60          | 150            | 145          | Peak   |
| 2   | 7206.21        | 44.27                      | -1.76                       | 42.51                       | 74.00             | 31.49          | 150            | 332          | Peak   |
| 3   | 9607.83        | 47.11                      | 0.87                        | 47.98                       | 74.00             | 26.02          | 150            | 211          | Peak   |
| 4   | 4804.59        | 47.24                      | -4.61                       | 42.63                       | 54.00             | 11.37          | 150            | 52           | AV     |
| 5   | 7206.21        | 36.22                      | -1.76                       | 34.46                       | 54.00             | 19.54          | 150            | 145          | AV     |
| 6   | 9608.58        | 41.38                      | 0.88                        | 42.26                       | 54.00             | 11.74          | 150            | 211          | AV     |


Dongguan DN Testing Co., Ltd.

Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China E-mail: service@dn-testing.com



### DH5 2441MHz


Vertical:



AV Detector

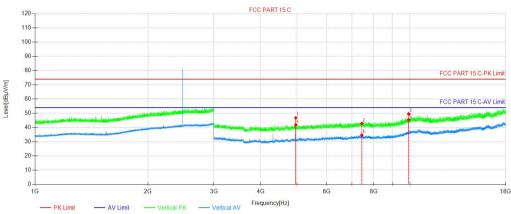
|              | NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result<br>Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|--------------|-----|----------------|----------------------------|-----------------------------|-----------------------------|-------------------|----------------|----------------|--------------|--------|
|              | 1   | 4881.84        | 51.78                      | -4.72                       | 47.06                       | 74.00             | 26.94          | 150            | 221          | Peak   |
|              | 2   | 7323.21        | 44.72                      | -1.49                       | 43.23                       | 74.00             | 30.77          | 150            | 46           | Peak   |
|              | 3   | 9763.83        | 49.14                      | 1.64                        | 50.78                       | 74.00             | 23.22          | 150            | 207          | Peak   |
| $\checkmark$ | 4   | 4882.59        | 45.28                      | -4.72                       | 40.56                       | 54.00             | 13.44          | 150            | 260          | AV     |
|              | 5   | 7323.21        | 37.87                      | -1.49                       | 36.38                       | 54.00             | 17.62          | 150            | 260          | AV     |
|              | 6   | 9764.58        | 44.00                      | 1.64                        | 45.64                       | 54.00             | 8.36           | 150            | 207          | AV     |
|              |     |                |                            |                             |                             |                   |                |                |              |        |

Horizontal:



|   | NO. | Freq.<br>[MHz] | Reading<br>Level | Correct<br>Factor | Result<br>Level | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|---|-----|----------------|------------------|-------------------|-----------------|-------------------|----------------|----------------|--------------|--------|
| - |     |                | [dBµV]           | [dB/m]            | [dBµV/m]        |                   |                |                |              | - ·    |
|   | 1   | 4881.84        | 54.54            | -4.72             | 49.82           | 74.00             | 24.18          | 150            | 40           | Peak   |
|   | 2   | 7323.21        | 45.18            | -1.49             | 43.69           | 74.00             | 30.31          | 150            | 136          | Peak   |
|   | 3   | 9763.83        | 46.89            | 1.64              | 48.53           | 74.00             | 25.47          | 150            | 193          | Peak   |
|   | 4   | 4882.59        | 50.06            | -4.72             | 45.34           | 54.00             | 8.66           | 150            | 54           | AV     |
|   | 5   | 7323.21        | 35.30            | -1.49             | 33.81           | 54.00             | 20.19          | 150            | 150          | AV     |
|   | 6   | 9764.58        | 39.21            | 1.64              | 40.85           | 54.00             | 13.15          | 150            | 227          | AV     |
|   |     |                |                  |                   |                 |                   |                |                |              |        |

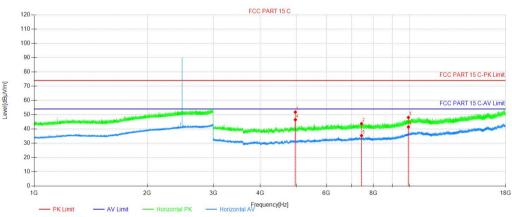
Dongguan DN Testing Co., Ltd.


 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: <a href="mailto:service@dn-testing.com">service@dn-testing.com</a>



### DH5 2480MHz


Vertical:



AV Detector

| N | 0. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result<br>Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|---|----|----------------|----------------------------|-----------------------------|-----------------------------|-------------------|----------------|----------------|--------------|--------|
| 1 | 1  | 4959.84        | 51.62                      | -4.86                       | 46.76                       | 74.00             | 27.24          | 150            | 270          | Peak   |
| 2 | 2  | 7440.22        | 44.14                      | -1.34                       | 42.80                       | 74.00             | 31.20          | 150            | 257          | Peak   |
| 3 | 3  | 9919.84        | 47.30                      | 2.26                        | 49.56                       | 74.00             | 24.44          | 150            | 303          | Peak   |
| 4 | 4  | 4960.59        | 46.69                      | -4.86                       | 41.83                       | 54.00             | 12.17          | 150            | 169          | AV     |
| 5 | 5  | 7440.22        | 36.00                      | -1.34                       | 34.66                       | 54.00             | 19.34          | 150            | 169          | AV     |
| 6 | 6  | 9920.59        | 43.17                      | 2.27                        | 45.44                       | 54.00             | 8.56           | 150            | 257          | AV     |

Horizontal:



AV Detector

| NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result<br>Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|-----|----------------|----------------------------|-----------------------------|-----------------------------|-------------------|----------------|----------------|--------------|--------|
| 1   | 4959.84        | 56.66                      | -4.86                       | 51.80                       | 74.00             | 22.20          | 150            | 113          | Peak   |
| 2   | 7440.22        | 45.08                      | -1.34                       | 43.74                       | 74.00             | 30.26          | 150            | 333          | Peak   |
| 3   | 9919.84        | 45.80                      | 2.26                        | 48.06                       | 74.00             | 25.94          | 150            | 333          | Peak   |
| 4   | 4960.59        | 51.36                      | -4.86                       | 46.50                       | 54.00             | 7.50           | 150            | 113          | AV     |
| 5   | 7440.22        | 36.67                      | -1.34                       | 35.33                       | 54.00             | 18.67          | 150            | 208          | AV     |
| 6   | 9920.59        | 39.16                      | 2.27                        | 41.43                       | 54.00             | 12.57          | 150            | 357          | AV     |



#### Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

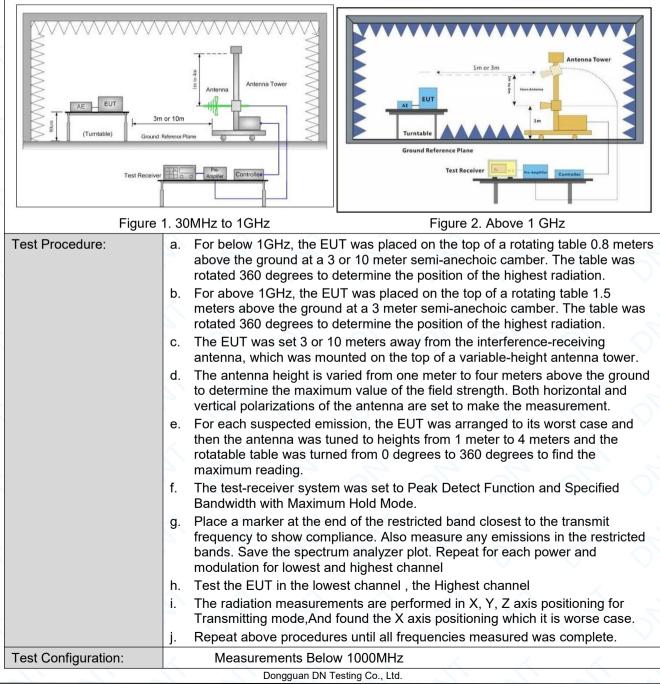
Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)

2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.

4. All channels had been pre-test,DH5 is the worst case. only the worst case was reported.




Date: June 14, 2024 Page: 29 / 68

## 3.10 Restricted bands around fundamental frequency

Report No.: DNT241189R1627-4077

| Test Requirement: | 47 CFR Part 15C Section 1 | 5.209 and 15.205 | O, $O$ , $i$  |
|-------------------|---------------------------|------------------|---------------|
| Test Method:      | ANSI C63.10: 2013 Section | n 11.12          | , ,           |
| Test Site:        | Measurement Distance: 3m  | Chamber)         |               |
| Limit:            | Frequency                 | Limit (dBuV/m)   | Remark        |
|                   | 30MHz-88MHz               | 40.0             | Quasi-peak    |
|                   | 88MHz-216MHz              | 43.5             | Quasi-peak    |
|                   | 216MHz-960MHz             | 46.0             | Quasi-peak    |
|                   | 960MHz-1GHz               | 54.0             | Quasi-peak    |
|                   |                           | 54.0             | Average Value |
|                   | Above 1GHz                | 74.0             | Peak Value    |
|                   |                           |                  |               |

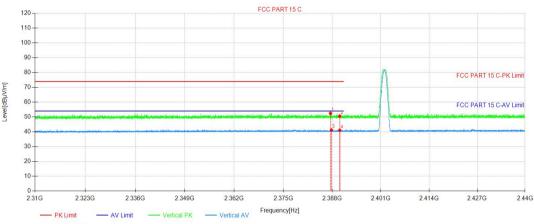
### Test Setup:



 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383

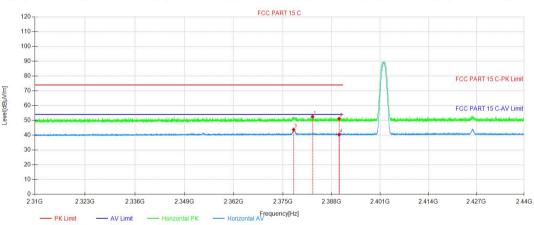
 E-mail: <a href="mailto:service@dn-testing.com">service@dn-testing.com</a>




| Re             | port No.: DNT2 | 41189R1627-4077                                                                                                                                                                                                                                                                                                                                                                                     | Date: J                                                               | lune 14, 2024                                               | Page: 30 / 68                             |
|----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|
| Ke             |                | <ul> <li>RBW = 120 kHz</li> <li>RBW = 300 kHz</li> <li>Detector = Peak</li> <li>Trace mode = max h<br/>Peak Measurements A</li> <li>RBW = 1 MHz</li> <li>VBW ≥ 3 MHz</li> <li>Detector = Peak</li> <li>Sweep time = auto</li> <li>Trace mode = max h<br/>Average Measurement</li> <li>RBW = 1 MHz</li> <li>VBW = 1 MHz</li> <li>VBW = 10 Hz, when</li> <li>VBW ≥ 1/T, when d<br/>minimum</li> </ul> | old<br>bove 1000<br>old<br>s Above 10<br>duty cycle i<br>uty cycle is | MHz<br>100MHz<br>is no less than 98 p<br>less than 98 perce | percent.<br>nt where T is the             |
| Exploratory Te | est Mode: Tra  | ximum power control level<br>nsmitting with all kind of m                                                                                                                                                                                                                                                                                                                                           |                                                                       |                                                             | <u>)n.</u>                                |
|                |                | insmitting mode.                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                     | * *                                                         | · ·                                       |
| Final Test Mo  | Thi<br>typ     | etest the EUT Transmitting<br>rough Pre-scan, find the DI<br>e.<br>ly the worst case is recorde                                                                                                                                                                                                                                                                                                     | H5 of data t                                                          |                                                             | se of all modulation                      |
| Instruments U  | sed: Re        | fer to section 2.9 for details                                                                                                                                                                                                                                                                                                                                                                      | ;                                                                     |                                                             | $\langle \langle \langle \rangle \rangle$ |
| Test Results:  | Pa             | ss                                                                                                                                                                                                                                                                                                                                                                                                  | ~~                                                                    | 2 2                                                         |                                           |



### Test Date DH5 2402MHz


#### Vertical:



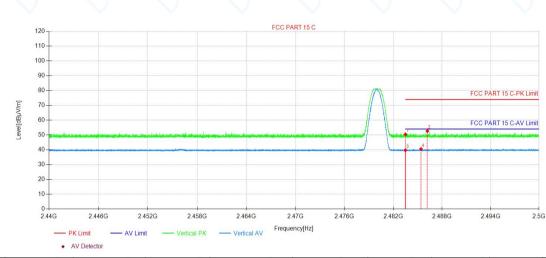
AV Detector

| NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result<br>Level<br>[dBµV/m] | AV Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|-----|----------------|----------------------------|-----------------------------|-----------------------------|----------------------|----------------|----------------|--------------|--------|
| 1   | 2387.55        | 53.26                      | -0.80                       | 52.46                       | 74.00                | 21.54          | 150            | 212          | Peak   |
| 2   | 2390.01        | 51.35                      | -0.80                       | 50.55                       | 74.00                | 23.45          | 150            | 212          | Peak   |
| 3   | 2387.81        | 41.98                      | -0.80                       | 41.18                       | 54.00                | 12.82          | 150            | 212          | AV     |
| 4   | 2390.01        | 41.85                      | -0.80                       | 41.05                       | 54.00                | 12.95          | 150            | 36           | AV     |

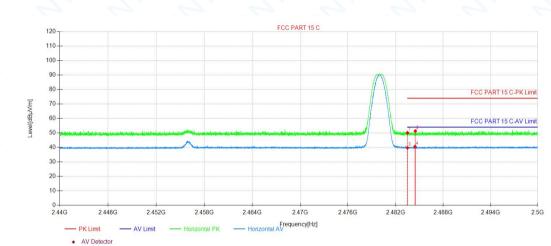
Horizontal:



AV Detector


| NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result<br>Level<br>[dBµV/m] | AV Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|-----|----------------|----------------------------|-----------------------------|-----------------------------|----------------------|----------------|----------------|--------------|--------|
| 1   | 2382.92        | 53.39                      | -0.83                       | 52.56                       | 74.00                | 21.44          | 150            | 348          | Peak   |
| 2   | 2390.01        | 52.02                      | -0.80                       | 51.22                       | 74.00                | 22.78          | 150            | 186          | Peak   |
| 3   | 2377.87        | 44.66                      | -0.84                       | 43.82                       | 54.00                | 10.18          | 150            | 91           | AV     |
| 4   | 2390.01        | 41.13                      | -0.80                       | 40.33                       | 54.00                | 13.67          | 150            | 145          | AV     |




### DH5 2480MHz

Vertical:

Horizontal:



| NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result<br>Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|-----|----------------|----------------------------|-----------------------------|-----------------------------|-------------------|----------------|----------------|--------------|--------|
| 1   | 2483.50        | 50.69                      | -0.29                       | 50.40                       | 74.00             | 23.60          | 150            | 199          | Peak   |
| 2   | 2486.20        | 52.94                      | -0.27                       | 52.67                       | 74.00             | 21.33          | 150            | 180          | Peak   |
| 3   | 2483.50        | 39.94                      | -0.29                       | 39.65                       | 54.00             | 14.35          | 150            | 180          | AV     |
| 4   | 2485.41        | 40.82                      | -0.27                       | 40.55                       | 54.00             | 13.45          | 150            | 150          | AV     |



| NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result<br>Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|-----|----------------|----------------------------|-----------------------------|-----------------------------|-------------------|----------------|----------------|--------------|--------|
| 1   | 2483.50        | 50.40                      | -0.29                       | 50.11                       | 74.00             | 23.89          | 150            | 212          | Peak   |
| 2   | 2484.49        | 51.57                      | -0.28                       | 51.29                       | 74.00             | 22.71          | 150            | 43           | Peak   |
| 3   | 2483.50        | 40.00                      | -0.29                       | 39.71                       | 54.00             | 14.29          | 150            | 31           | AV     |
| 4   | 2484.45        | 40.83                      | -0.28                       | 40.55                       | 54.00             | 13.45          | 150            | 174          | AV     |

### Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe

including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.

2.All channels had been pre-test,DH5 is the worst case. only the worst case was reported.



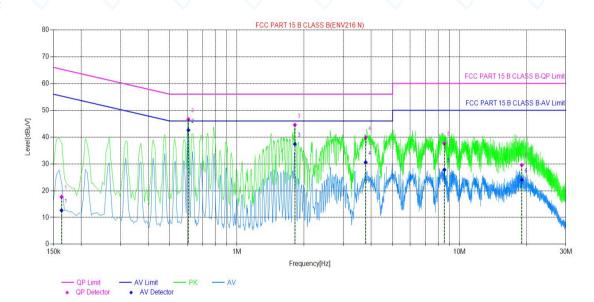
| Test Requirement:      | 47 CFR Part 15C Section 15.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Test Method:           | ANSI C63.10: 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 1 1 N                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Test Frequency Range:  | 150kHz to 30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Limit:                 | - (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 🖌 🔪 Limit (dl                                                                                                                                                                                                                                                                                                                                      | BuV)                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|                        | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Quasi-peak                                                                                                                                                                                                                                                                                                                                         | Average                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|                        | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66 to 56*                                                                                                                                                                                                                                                                                                                                          | 56 to 46*                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|                        | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 56                                                                                                                                                                                                                                                                                                                                                 | 46                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|                        | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60                                                                                                                                                                                                                                                                                                                                                 | 50                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|                        | * Decreases with the loga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rithm of the frequency.                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Test Procedure:        | <ul> <li>room.</li> <li>2) The EUT was connected Impedance Stabilization N impedance. The power case a second LISN 2, which we plane in the same way as multiple socket outlet stript single LISN provided the 3) The tabletop EUT was ground reference plane. A placed on the horizontal gevent of the EUT shall be 0.4 m vertical ground reference reference plane. The LISH unit under test and bonder mounted on top of the ground the EUT and associated ereference for the top find the maximal structure in the maximal structure is the maximal structure is the maximal structure in the maximal structure is the maximal structure</li></ul> | ed with a vertical ground reference<br>from the vertical ground reference<br>plane was bonded to the hour<br>N 1 was placed 0.8 m from the<br>ed to a ground reference plane.<br>Found reference plane. This dis<br>sof the LISN 1 and the EUT<br>equipment was at least 0.8 m<br>num emission, the relative pointerface cables must be character. | ugh a LISN 1 (Line<br>$\Omega / 50 \mu$ H + 5Ω linear<br>EUT were connected<br>ference<br>g measured. A<br>le power cables to a<br>kceeded.<br>table 0.8m above the<br>ement, the EUT was<br>rence plane. The rear<br>erence plane. The rear<br>erence plane. The<br>rizontal ground<br>he boundary of the<br>he for LISNs<br>istance was<br>All other units of<br>h from the LISN 2.<br>sitions of |  |  |  |  |  |  |
| Test Setup:            | Shielding Room                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AE                                                                                                                                                                                                                                                                                                                                                 | Test Receiver                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Exploratory Test Mode: | Transmitting with all kind<br>highest channel.<br>Charge + Transmitting me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of modulations, data rates at                                                                                                                                                                                                                                                                                                                      | lowest, middle and                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |

## 3.11 AC Power Line Conducted Emissions

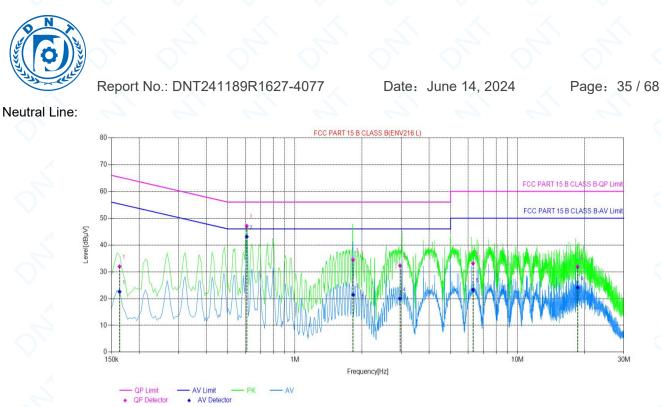
 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: <a href="mailto:service@dn-testing.com">service@dn-testing.com</a>




Page: 34 / 68

|           | Final Test Mode:  | Through Pre-scan, find the the worst case. |
|-----------|-------------------|--------------------------------------------|
| $\langle$ | Instruments Used: | Refer to section 2.9 for details           |
|           | Test Results:     | PASS                                       |


### Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:



| NO. | Freq.<br>[MHz] | Correct<br>Factor<br>[dB] | QP<br>Reading<br>Level<br>[dBµV] | QP<br>Result<br>Level<br>[dBµV] | QP<br>Limit<br>[dBµV] | QP<br>Margin<br>[dB] | AV<br>Reading<br>Level<br>[dBµV] | AV<br>Result<br>Level<br>[dBµV] | AV Limit<br>[dBµV] | AV<br>Margin<br>[dB] |
|-----|----------------|---------------------------|----------------------------------|---------------------------------|-----------------------|----------------------|----------------------------------|---------------------------------|--------------------|----------------------|
| 1   | 0.163          | 9.81                      | 7.87                             | 17.68                           | 65.31                 | 47.63                | 2.83                             | 12.64                           | 55.31              | 42.67                |
| 2   | 0.605          | 9.79                      | 36.86                            | 46.65                           | 56.00                 | 9.35                 | 32.79                            | 42.58                           | 46.00              | 3.42                 |
| 3   | 1.820          | 9.76                      | 34.8                             | 44.56                           | 56.00                 | 11.44                | 27.64                            | 37.40                           | 46.00              | 8.60                 |
| 4   | 3.785          | 9.94                      | 29.94                            | 39.88                           | 56.00                 | 16.12                | 20.62                            | 30.56                           | 46.00              | 15.44                |
| 5   | 8.543          | 9.89                      | 27.75                            | 37.64                           | 60.00                 | 22.36                | 17.91                            | 27.80                           | 50.00              | 22.20                |
| 6   | 19.019         | 10.05                     | 19.56                            | 29.61                           | 60.00                 | 30.39                | 13.98                            | 24.03                           | 50.00              | 25.97                |
|     |                |                           |                                  |                                 |                       |                      |                                  |                                 |                    |                      |



|   | NO. | Freq.<br>[MHz] | Correct<br>Factor<br>[dB] | QP<br>Reading<br>Level<br>[dBµV] | QP<br>Result<br>Level<br>[dBµV] | QP<br>Limit<br>[dBµV] | QP<br>Margin<br>[dB] | AV<br>Reading<br>Level<br>[dBµV] | AV<br>Result<br>Level<br>[dBµV] | AV Limit<br>[dBµV] | AV<br>Margin<br>[dB] |
|---|-----|----------------|---------------------------|----------------------------------|---------------------------------|-----------------------|----------------------|----------------------------------|---------------------------------|--------------------|----------------------|
|   | 1   | 0.163          | 9.90                      | 22.11                            | 32.01                           | 65.31                 | 33.30                | 12.68                            | 22.58                           | 55.31              | 32.73                |
|   | 2   | 0.607          | 9.82                      | 37.29                            | 47.11                           | 56.00                 | 8.89                 | 33.28                            | 43.10                           | 46.00              | 2.90                 |
| ſ | 3   | 1.824          | 9.73                      | 24.79                            | 34.52                           | 56.00                 | 21.48                | 11.68                            | 21.41                           | 46.00              | 24.59                |
|   | 4   | 2.963          | 9.74                      | 22.61                            | 32.35                           | 56.00                 | 23.65                | 10.28                            | 20.02                           | 46.00              | 25.98                |
|   | 5   | 6.302          | 9.84                      | 23.31                            | 33.15                           | 60.00                 | 26.85                | 13.52                            | 23.36                           | 50.00              | 26.64                |
| [ | 6   | 18.592         | 10.08                     | 21.85                            | 31.93                           | 60.00                 | 28.07                | 14.01                            | 24.09                           | 50.00              | 25.91                |

### Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe
- including LISN Factor and the Cable Factor etc.), The basic equation is as follows:
  - Result Level= Reading Level + Correct Factor(including LISN Factor, Cable Factor etc



## 4 Appendix

## Appendix A: 20dB Emission Bandwidth

| <b>Test Result</b> | $\mathbf{O}$ | $\bigcirc$ |               | $\circ$  |          |            |         |
|--------------------|--------------|------------|---------------|----------|----------|------------|---------|
| Test Mode          | Antenna      | Freq(MHz)  | 20dB EBW[MHz] | FL[MHz]  | FH[MHz]  | Limit[MHz] | Verdict |
|                    |              | 2402       | 1.047         | 2401.478 | 2402.525 | 🔨          |         |
| DH5                | Ant1         | 2441       | 1.068         | 2440.460 | 2441.528 |            |         |
|                    |              | 2480       | 1.074         | 2479.457 | 2480.531 |            |         |
|                    | $\sim$       | 2402       | 1.374         | 2401.322 | 2402.696 |            |         |
| 2DH5               | Ant1         | 2441       | 1.341         | 2440.343 | 2441.684 |            |         |
|                    |              | 2480       | 1.335         | 2479.340 | 2480.675 | 🔨          |         |
|                    | $\sim$       | 2402       | 1.341         | 2401.328 | 2402.669 |            |         |
| 3DH5               | Ant1         | 2441       | 1.377         | 2440.304 | 2441.681 |            |         |
|                    |              | 2480       | 1.302         | 2479.352 | 2480.654 |            |         |



#### **Test Graphs**

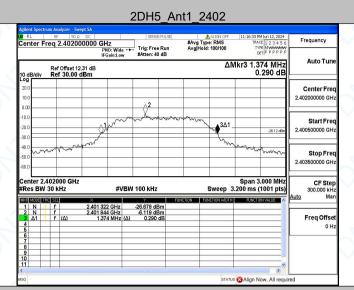


Dongguan DN Testing Co., Ltd.

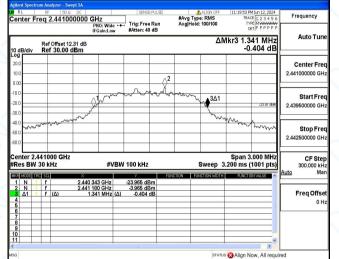
STATUS 🐼 Align Now, All required

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383


 E-mail: <a href="mailto:service@dn-testing.com">service@dn-testing.com</a>




### Report No.: DNT241189R1627-4077 D

### Date: June 14, 2024

Page: 38 / 68



#### 2DH5\_Ant1\_2441



#### 2DH5\_Ant1\_2480

|                                                                                                                                                                                              | rum Analyzer - Sv          |                               |                  |                                     |          |                      |              |             |                          |                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|------------------|-------------------------------------|----------|----------------------|--------------|-------------|--------------------------|-------------------------------------|
| Center F                                                                                                                                                                                     | req 2.4800                 | 00000 GH                      | lz<br>IO: Wide ↔ |                                     | Run      | #Avg Typ<br>Avg Hold | ALIGN OFF    | TRAC<br>TY  | 1 2 3 4 5 6<br>E M WWWWW | Frequency                           |
| 10 dB/div                                                                                                                                                                                    | Ref Offset 1:<br>Ref 30.00 | 1FC<br>2.31 dB                | Gain:Low         | #Atten: 40                          | dB       |                      |              | /kr3 1.3    | 35 MHz<br>104 dB         | Auto Tune                           |
| 20.0<br>10.0                                                                                                                                                                                 |                            |                               |                  |                                     | 2        |                      |              |             |                          | Center Freq<br>2.480000000 GHz      |
| -10.0                                                                                                                                                                                        |                            | X                             | w                | ~~~                                 | ham      | many                 |              |             | -23.55 oBm               | Start Freq<br>2.478500000 GHz       |
| -40.0<br>-50.0<br>-60.0                                                                                                                                                                      | Non Norm                   |                               |                  |                                     |          |                      |              | man         | un m                     | <b>Stop Freq</b><br>2.481500000 GHz |
| #Res BW                                                                                                                                                                                      |                            |                               | #VBW             | / 100 kHz                           |          |                      |              | 1.200 ms (  |                          | CF Step<br>300.000 kHz<br>Auto Man  |
| XXE         XIODE         1           1         N         2           2         N         3           3         Δ1         4           5         6         7           7         7         7 | f f<br>f<br>f (Δ)          | 2.479 344<br>2.479 99<br>1.33 |                  | -23.868 dE<br>-3.550 dE<br>-0.104 d | im<br>im | NCTION               | NCTION WIDTH | FUNCTIO     |                          | Freq Offset<br>0 Hz                 |
| 8<br>9<br>10<br>11<br><<br>MSG                                                                                                                                                               |                            |                               |                  | 3                                   |          |                      | STATU        | s 🔀 Align N | ow, All requi            | red                                 |



Date: June 14, 2024

Page: 39/68

| Frequency                      | M Jun 14, 2024<br>CE 1 2 3 4 5 6<br>(PE M WWWWWW<br>DET P P P P P P | TR       |         | #Avg Typ<br>Avg Hold | un | SENSE:                                | Z<br>0:Wide ↔ | DC 0000 GH                   |           | RF         | L       | RI                   |
|--------------------------------|---------------------------------------------------------------------|----------|---------|----------------------|----|---------------------------------------|---------------|------------------------------|-----------|------------|---------|----------------------|
| Auto Tu                        | 841 MHz<br>0.147 dB                                                 | /lkr3 1. | ΔΝ      |                      | В  | #Atten: 40                            | iain:Low      | 31 dB                        | Offset 12 |            | B/div   | D d                  |
| Center Fre<br>2.402000000 GI   |                                                                     |          |         |                      | 2  |                                       |               |                              |           |            |         | og<br>20.0<br>10.0   |
| Start Fro<br>2.400500000 GI    | -25.23 dBm                                                          |          | 3∆1     | ww.                  |    | mara                                  | s             | 1                            |           |            |         | 0.0<br>0.0<br>0.0    |
| Stop Fro<br>2.403500000 GI     | mon -                                                               | www.wn   | ~~~·    |                      |    |                                       |               |                              | winding   | ww         |         | 10.0<br>10.0<br>10.0 |
| CF Ste<br>300.000 kl<br>Auto M | 8.000 MHz<br>(1001 pts)                                             | .200 ms  | Sweep 3 |                      |    | 100 kHz                               |               | ×                            |           | W 30 H     | s B     | Re                   |
| Freq Offs<br>01                |                                                                     |          |         |                      | 1  | -25.308 dBi<br>-5.232 dBi<br>-0.147 d |               | 2.401 32<br>2.402 00<br>1.34 | (Δ)       | 1 f<br>1 f | Ν<br>Δ1 | 4<br>5<br>6          |
|                                | =                                                                   |          |         |                      |    |                                       |               |                              |           |            | _       | 7<br>8<br>9<br>0     |

### 3DH5\_Ant1\_2441

| RL                                 | RF 50 Ω D                         | c                                             | SENSE:PL                                  |                                         | ALIGN OFF                  |                | M Jun 14, 2024                                      | -                                |
|------------------------------------|-----------------------------------|-----------------------------------------------|-------------------------------------------|-----------------------------------------|----------------------------|----------------|-----------------------------------------------------|----------------------------------|
| Center Fro                         | eq 2.4410000                      | PNO: Wide<br>IFGain:Low                       | Trig: Free R                              | un Avgli                                | Type: RMS<br>Iold: 100/100 | TY             | СЕ 123456<br>РЕМ <del>ИЛИИИ</del><br>ЕТ Р Р Р Р Р Р | Frequency                        |
| I0 dB/div                          | Ref Offset 12.31<br>Ref 30.00 dBr | dB                                            |                                           |                                         | Δ                          | Mkr3 1.3<br>-0 | 77 MHz<br>.076 dB                                   | Auto Tune                        |
| -og<br>20.0<br>10.0<br>0.00        |                                   |                                               |                                           |                                         |                            |                |                                                     | Center Free<br>2.441000000 GH:   |
| 20.0                               |                                   | 21 / ~~~                                      | - lon                                     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ₩ 3Δ1.                     |                | -26.61 dBm                                          | Start Free<br>2.439500000 GH;    |
| 40.0<br>50.0<br>60.0               | whenever                          |                                               |                                           |                                         | ~ ~                        | Anno anno      | mar M                                               | Stop Fred<br>2.442500000 GH:     |
| Center 2.4<br>Res BW 3             |                                   | #VE                                           | 3W 100 kHz                                | FUNCTION                                | Sweep :                    | 3.200 ms (     |                                                     | CF Stej<br>300.000 kH<br>Auto Ma |
| 1 N 1<br>2 N 1<br>3 Δ1 1<br>4<br>5 | f 2                               | 2.440 304 GHz<br>2.440 829 GHz<br>1.377 MHz ( | -27.147 dBm<br>-6.612 dBm<br>∆) -0.076 dB |                                         |                            |                |                                                     | Freq Offse                       |
|                                    |                                   |                                               |                                           |                                         |                            |                |                                                     |                                  |
| 6<br>7<br>8<br>9<br>10<br>11       |                                   |                                               |                                           |                                         |                            |                | _                                                   |                                  |

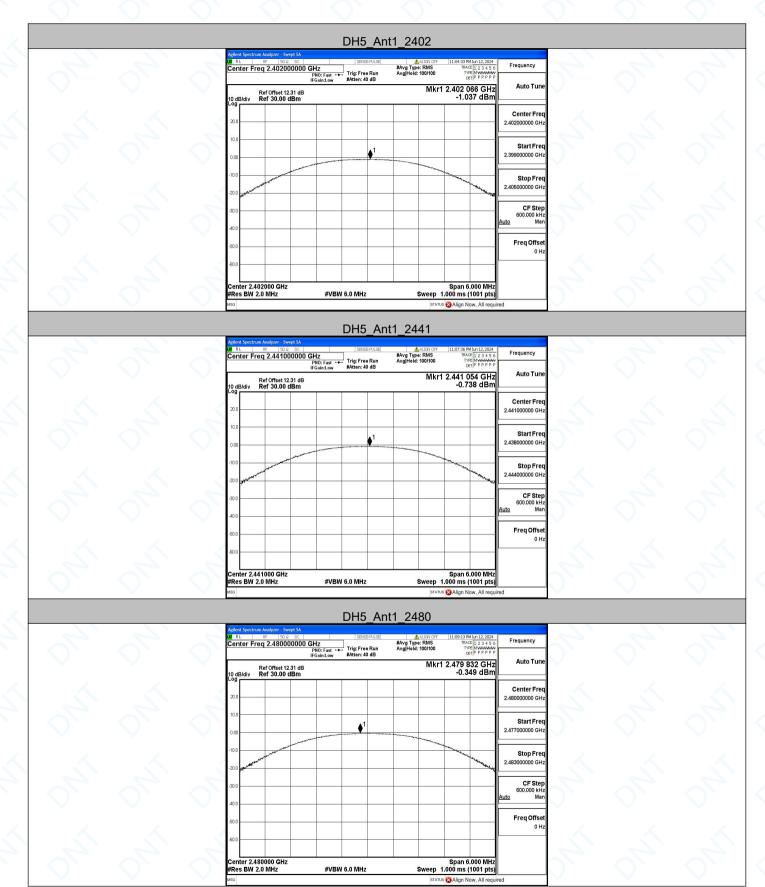
#### 3DH5\_Ant1\_2480

|                                                                                                                                                                                                                               | rum Analyzer - S                                                                            |                                   |                        |                                  |          |                                                                                                                 |                         |           |                                               |                                 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------|------------------------|----------------------------------|----------|-----------------------------------------------------------------------------------------------------------------|-------------------------|-----------|-----------------------------------------------|---------------------------------|--|
| Center F                                                                                                                                                                                                                      |                                                                                             | 000000 GH                         | IZ<br>0:Wide ↔         |                                  | EPULSE   | #Avg Typ<br>AvgHold                                                                                             |                         | TRA<br>TY | M Jun 14, 2024<br>CE 1 2 3 4 5 6<br>PE MWWWWW | Frequency                       |  |
| 10 dB/div                                                                                                                                                                                                                     | Ref Offset<br>Ref 30.00                                                                     | 12.31 dB                          | io: wide 🕶<br>Jain:Low | #Atten: 4                        |          | ΔMkr3 1.302 MHz<br>0.358 dB                                                                                     |                         |           |                                               | Auto Tune                       |  |
| 20.0<br>10.0                                                                                                                                                                                                                  |                                                                                             |                                   |                        | ്റ <sup>2</sup>                  |          |                                                                                                                 |                         |           |                                               | Center Freq<br>2.480000000 GHz  |  |
| -10.0<br>-20.0<br>-30.0                                                                                                                                                                                                       |                                                                                             | a marmar                          | ,<br>Marina<br>Marina  | - An                             | ~~^A~    | - Marine Contraction of the second | <b>4</b> <sup>3∆1</sup> |           | -2325 uBm                                     | Start Freq<br>2.478500000 GHz   |  |
| -40.0<br>-50.0<br>-60.0                                                                                                                                                                                                       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                     |                                   |                        |                                  |          |                                                                                                                 |                         | W W Um    | Wernen                                        | Stop Freq<br>2.481500000 GHz    |  |
| #Res BW                                                                                                                                                                                                                       | Center 2.480000 GHz Span 3.000 MHz<br>#Res BW 30 kHz #VBW 100 kHz Sweep 3.200 ms (1001 pts) |                                   |                        |                                  |          |                                                                                                                 |                         |           |                                               |                                 |  |
| M33         M000         T           1         N         1           2         N         1           3         Δ1         4           5         6         7           7         8         9           10         11         1 | RC 501<br>f<br>f<br>f (Δ)                                                                   | ×<br>2.479 35<br>2.479 84<br>1.30 |                        | -24.026 df<br>-3.251 df<br>0.358 | 3m<br>3m |                                                                                                                 | NCTION WIDTH            | FUNCTI    |                                               | Auto Man<br>Freq Offset<br>0 Hz |  |
| MSG                                                                                                                                                                                                                           | status 🔇 Align Now, All required                                                            |                                   |                        |                                  |          |                                                                                                                 |                         |           |                                               |                                 |  |



Report No.: DNT241189R1627-4077 🧹

Date: June 14, 2024


Page: 40/68

## Appendix B: Maximum conducted output power

| Test Result  |         |           |                               |                      |         |
|--------------|---------|-----------|-------------------------------|----------------------|---------|
| Test<br>Mode | Antenna | Freq(MHz) | Conducted Peak<br>Powert[dBm] | Conducted Limit[dBm] | Verdict |
|              | Ant1    | 2402      | -1.04                         | ≤20.97               | PASS    |
| DH5          |         | 2441      | -0.74                         | ≤20.97               | PASS    |
|              |         | 2480      | -0.35                         | ≤20.97               | PASS    |
|              | Ant1    | 2402      | 0.06                          | ≤20.97               | PASS    |
| 2DH5         |         | 2441      | 0.50                          | ≤20.97               | PASS    |
|              |         | 2480      | 0.61                          | ≤20.97               | PASS    |
|              | $\sim$  | 2402      | 0.24                          | ≤20.97               | PASS    |
| 3DH5         | Ant1    | 2441      | 0.85                          | ≤20.97               | PASS    |
|              |         | 2480      | 0.99                          | ≤20.97               | PASS    |



#### **Test Graphs**



Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: <a href="mailto:service@dn-testing.com">service@dn-testing.com</a>