FCC ID: 2BFZA-DCU150

Portable device

According to §15.247(e)(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to KDB447498 D01 General RF Exposure Guidance V06

The 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHZ)}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where:

- f(GHZ) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

MPE Calculation Method

(ii) Limits for General Population/Uncontrolled Exposure							
0.3-1.34	614	1.63	*(100)	<30			
1.34-30	824/f	2.19/f	*(180/f ²)	<30			
30-300	27.5	0.073	0.2	<30			
300-1,500			f/1500	<30			
1,500- 100,000			1.0	<30			

f = frequency in MHz. * = Plane-wave equivalent power density.

$$E (V/m) = \frac{\sqrt{30*P*G}}{d}$$
 Power Density: $Pd (W/m^2) = \frac{E^2}{377}$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30*P*G}{377*D^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.005m, as well as the gain of the used antenna, the RF power density can be obtained.

UWB

Antenna Type: On Board PCB Patch Antenna 6.5GHz:5.3dbi, 8GHz:5.8dBi

Modulation	Channel Freq. (GHz)	Conduct ed power (dBm)	Conducte d power (mW)	Tune-up power (dBm)	Max tune-up power (dBm)	Max tune-up power (mW)	Limit(mW)
UWB -	6500	-39.48	0.00011	-39±1	-38	0.00016	1.00
	8000	-43.53	0.00004	-43±1	-42	0.00006	1.00

Conclusion:

For the max result : 0.00016≤ 1mW, No SAR is required.

Signature: Alex Li

Date: 2024-06-03

NAME AND TITLE (Please print or type): Alex /Manager

COMPANY (Please print or type): Shenzhen NTEK Testing Technology Co., Ltd./ 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China