

Test Report No:
2420336R-RFUSV15S-A

Test Result for Inspection

(Class II Permissive Change For FCC) (Class IV Permissive Change For ISED)

Product Name	Tightening production tool
Brand Name	rexroth
Model No.	NX_-A, NX_-P
FCC ID	2BFYU-NEXO
IC	32342-NEXO
Applicant's Name / Address	Bosch Rexroth AG Fornsbacher Str. 92, 71540 Murrhardt, Germany
Manufacturer's Name	Bosch Rexroth AG
Test Method Requested, Standard	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC CFR Title 47 Part 15 Subpart E Section 15.407 RSS-247 Issue 3 (Aug. 2023) ANSI C63.10-2013
Verdict Summary	IN COMPLIANCE
Documented By Genie Chang	<i>Genie Chang</i>
Tested By Ivan Chuang	<i>Ivan Chuang</i>
Approved By Alan Chen	<i>Alan Chen</i>
Date of Receipt	2024/02/22
Date of Issue	2024/07/17
Report Version	V1.0

INDEX

	page
Competences and Guarantees.....	3
General Conditions	3
Revision History	4
Permissive Change.....	5
Summary of Test Result.....	6
1. General Information.....	7
1.1. EUT Description	7
1.2. EUT Information	9
1.3. Testing Location Information	9
1.4. Measurement Uncertainty	10
1.5. List of Test Equipment.....	11
2. Test Configuration of EUT	12
2.1. Test Condition.....	12
2.2. Test Frequency Mode.....	12
2.3. Duty Cycle	15
2.4. Measurement Configuration	19
2.5. Tested System Details.....	20
2.6. Configuration of Tested System	20
2.7. EUT Operating Procedures	20
3. Maximum Conducted Output Power	21
3.1. Test Setup	21
3.2. Test Limit	21
3.3. Test Procedures	24
3.4. Test Result of Maximum Conducted Output Power	24
4. Radiated Emission	25
4.1. Test Setup	25
4.2. Test Limit	26
4.3. Test Procedure	27
4.4. Test Result of Radiated Emission	27
Appendix A. Test Result of Maximum Conducted Output Power	
Appendix B. Test Result of Radiated Emission	
Appendix C. Test Setup Photograph	

Competences and Guarantees

DEKRA is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA has a calibration and maintenance program for its measurement equipment.

DEKRA guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated in the report and it is based on the knowledge and technical facilities available at DEKRA at the time of performance of the test.

DEKRA is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA.

General Conditions

1. The test results relate only to the samples tested.
2. The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.
3. This report must not be used to claim product endorsement by TAF or any agency of the government.
4. The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.
5. Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Revision History

Version	Description	Issued Date
V1.0	Initial issue of report	2024/07/17

Permissive Change

Report No.	Version	Description	Issued Date
2420336R-RFUSV15S-A	V1.0	<p>This is to request a Class II permissive change for FCC and Class IV permissive change for ISED.</p> <p>The major change filed under this application is:</p> <p>Change #1: Additional chassis added, Bosch AG, Model Number NX_-A, and NX_-P.</p> <p>Change #2: Add one antenna to WLAN Module which antenna's type is PCB, and each antenna gain is lower. The original application was certified with a 2 dBi. The C2PC and C4PC is to add a lower gain -2.91 dBi for 2.4 GHz, 0.80 dBi for 5 GHz.</p> <p>Change #3: Reduce the output power through firmware, and SAR measurement were evaluated. (Only reduce Wi-Fi output power).</p> <p>Change #4: BT function is disable though firmware.</p>	2024/07/17

Summary of Test Result

Report Clause	Test Items	Result (PASS/FAIL)	Remark
3	Maximum Conducted Output Power	PASS	-
4	Radiated Emission	PASS	-

Comments and Explanations

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1. General Information

1.1. EUT Description

Frequency Range	2400 ~ 2483.5 MHz	
Operating Frequency / Channel Number	IEEE 802.11b/g/n/ax (20 MHz)	2412 ~ 2462 MHz / 11 Channels
	IEEE 802.11n/ax (40 MHz)	2422 ~ 2452 MHz / 7 Channels
Type of Modulation	IEEE 802.11b	DSSS-DBPSK, DQPSK, CCK
	IEEE 802.11g/n	OFDM-BPSK, QPSK, 16QAM, 64QAM
	IEEE 802.11ax	OFDMA-BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM

Frequency Range	5150 ~ 5250 MHz 5250 ~ 5350 MHz 5470 ~ 5725 MHz 5725 ~ 5850 MHz	
Operating Frequency / Channel Number (FCC)	IEEE 802.11a/n/ac/ax (20 MHz)	5180 ~ 5240 MHz / 4 Channels 5260 ~ 5320 MHz / 4 Channels 5500 ~ 5720 MHz / 12 Channels 5745 ~ 5825 MHz / 5 Channels
	IEEE 802.11n/ac/ax (40 MHz)	5190 ~ 5230 MHz / 2 Channels 5270 ~ 5310 MHz / 2 Channels 5510 ~ 5710 MHz / 6 Channels 5755 ~ 5795 MHz / 2 Channels
	IEEE 802.11ac/ax (80 MHz)	5210 MHz / 1 Channel 5290 MHz / 1 Channel 5530 ~ 5690 MHz / 3 Channels 5775 MHz / 1 Channel
Operating Frequency / Channel Number (ISED)	IEEE 802.11a/n/ac/ax (20 MHz)	5180 ~ 5240 MHz / 4 Channels 5260 ~ 5320 MHz / 4 Channels 5500 ~ 5720 MHz / 9 Channels 5745 ~ 5825 MHz / 5 Channels
	IEEE 802.11n/ac/ax (40 MHz)	5190 ~ 5230 MHz / 2 Channels 5270 ~ 5310 MHz / 2 Channels 5510 ~ 5710 MHz / 4 Channels 5755 ~ 5795 MHz / 2 Channels
	IEEE 802.11ac/ax (80 MHz)	5210 MHz / 1 Channel 5290 MHz / 1 Channel 5530 ~ 5690 MHz / 2 Channels 5775 MHz / 1 Channel
Type of Modulation	IEEE 802.11a/n	OFDM-BPSK, QPSK, 16QAM, 64QAM
	IEEE 802.11ac	OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM
	IEEE 802.11ax	OFDMA-BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM

The difference for each model is shown as below:

Model No.	Description
NX_-P	pistol grip nutrunner
NX_-A	angular nutrunner

The manufacturer has declared that all models are electrically identical, with different model names used for appearance variations. The test sample is identified as NX_-P.

Antenna Information				
Item.	Brand Name	Model No.	Type	Antenna Gain (dBi)
1	Synzen Precision Technology	CZ0031(BT + Wi-Fi)	PCB	-3.41 dBi for 2400 MHz
		CZ0031(Wi-Fi)		0.28 dBi for 5150~5850 MHz
				0.80 dBi for 5150~5850 MHz

2.4 GHz

For IEEE 802.11b/g/n/ax Mode: (1TX, 1RX)

Only Ant. 0 can be used as transmitting/receiving antenna.

5 GHz

For IEEE 802.11a Mode: (1TX, 1RX)

Only Ant. 0 can be used as transmitting/receiving antenna.

For IEEE 802.11n/ac/ax Mode: (2TX, 2RX)

Both Ant. 0 and Ant. 1 can be used as transmitting/receiving antennas.

1.2. EUT Information

EUT Power Type	From Battery			
EUT Function	<input checked="" type="checkbox"/>	Point-to-multipoint	<input type="checkbox"/>	Point-to-point
TPC Function	<input checked="" type="checkbox"/>	With TPC Function	<input type="checkbox"/>	Without TPC Function
Weather Band (5600 ~ 5650 MHz)	<input checked="" type="checkbox"/>	With 5600 ~ 5650 MHz	<input type="checkbox"/>	Without 5600 ~ 5650 MHz
Beamforming Function	<input type="checkbox"/>	With beamforming	<input checked="" type="checkbox"/>	Without beamforming
Resource Unit of 802.11ax	<input checked="" type="checkbox"/>	Full RU	<input type="checkbox"/>	Partial RU

Note: ISED does not support the 5600 MHz ~ 5650 MHz weather band.

1.3. Testing Location Information

USA	FCC Designation Number: TW0033
Canada	CAB Identifier Number: TW3023 / Company Number: 26930

Site Description	Accredited by TAF
	Accredited Number: 3023

Test Laboratory	DEKRA Testing and Certification Co., Ltd.
	Linkou Laboratory
Address	No.5-22, Ruishukeng Linkou District, New Taipei City, 24451, Taiwan, R.O.C.
Performed Location	No. 26, Huaya 1st Rd., Guishan Dist., Taoyuan City 333411, Taiwan, R.O.C.
Phone Number	+886-3-275-7255
Fax Number	+886-3-327-8031

Ambient conditions in the laboratory:

Performed Item	Items	Required	Actual	Test Date
Radiated Emission	Temperature (°C)	10~40 °C	22.7 °C	2024/03/24~2024/07/12
	Humidity (%RH)	10~90 %	52.5 %	
RF Conducted Emission	Temperature (°C)	10~40 °C	23.9 °C	2024/03/05~2024/07/16
	Humidity (%RH)	10~90 %	60.1 %	

1.4. Measurement Uncertainty

Uncertainties have been calculated according to the DEKRA internal document.

The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately 95%.

Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Test Item	Uncertainty
Maximum Conducted Output Power	Spectrum Analyzer: ± 2.13 dB Power Meter: ± 1.07 dB
Radiated Emission	9 kHz~30 MHz: ± 3.30 dB 30 MHz~1 GHz: ± 4.79 dB 1 GHz~18 GHz: ± 4.17 dB 18 GHz~40 GHz: ± 3.32 dB

1.5. List of Test Equipment

For Conducted Measurements / HY-SR02

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
V	Spectrum Analyzer	R&S	FSV30	103466	2024/01/05	2025/01/04
V	Spectrum Analyzer	KEYSIGHT	N9010A	MY53470892	2023/11/09	2024/11/08
V	Peak Power Analyzer	KEYSIGHT	8990B	MY51000539	2024/05/07	2025/05/06
V	Wideband Power Sensor	KEYSIGHT	N1923A	MY59240002	2024/05/08	2025/05/07
V	Wideband Power Sensor	KEYSIGHT	N1923A	MY59240003	2024/05/08	2025/05/07

Note:

1. All equipments are calibrated every one year.
2. The test instruments marked with "V" are used to measure the final test results.
3. Test Software Version: RF Conducted Test Tools R3 V3.0.1.14.

For Radiated Measurements /HY-CB02

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due. Date
V	Loop Antenna	TESEQ	HLA6121	49611	2024/02/23	2025/02/22
V	Bi-Log Antenna	SCHWARZBECK	VULB9168	9168-0675	2023/08/09	2025/08/08
V	Horn Antenna	RF SPIN	DRH18-E	210503A18ES	2024/02/29	2025/02/28
V	Horn Antenna	Com-Power	AH-840	101100	2023/10/02	2025/10/01
V	Pre-Amplifier	SGH	SGH0301-9	20211007-8	2024/01/10	2025/01/09
V	Pre-Amplifier	SGH	SGH118-HS	20211102-1	2024/01/10	2025/01/09
V	Pre-Amplifier	EMCI	EMC05820SE	980285	2024/01/10	2025/01/09
V	Pre-Amplifier	EMCI	EMC184045SE	980369	2024/01/10	2025/01/09
V	Coaxial Cable	EMCI	EMC102-KM-KM-600	1160314	2024/01/10	2025/01/09
V	Coaxial Cable	EMCI	EMC102-KM-KM-7000	170242	2024/01/10	2025/01/09
V	Filter	MICRO TRONICS	BRM50702	G249	2024/01/05	2025/01/04
V	Filter	MICRO TRONICS	BRM50716	G067	2024/01/05	2025/01/04
V	EMI Test Receiver	R&S	ESR3	102793	2023/12/11	2024/12/10
V	Spectrum Analyzer	R&S	FSV3044	101113	2024/02/05	2025/02/04
V	Coaxial Cable	SGH	HA800	GD20110223-2	2024/01/10	2025/01/09
V	Coaxial Cable	SGH	HA800	GD20110222-4	2024/01/10	2025/01/09
V	Coaxial Cable	SGH	SGH18	202108-5	2024/01/10	2025/01/09
V	Coaxial Cable	SGH	SGH18	202212-2	2023/11/27	2024/11/26

Note:

1. Bi-Log Antenna and Horn Antenna(AH-840) is calibrated every two years, the other equipments are calibrated every one year.
2. The test instruments marked with "V" are used to measure the final test results.
3. Test Software Version: e3 230303 dekra V9.

2. Test Configuration of EUT

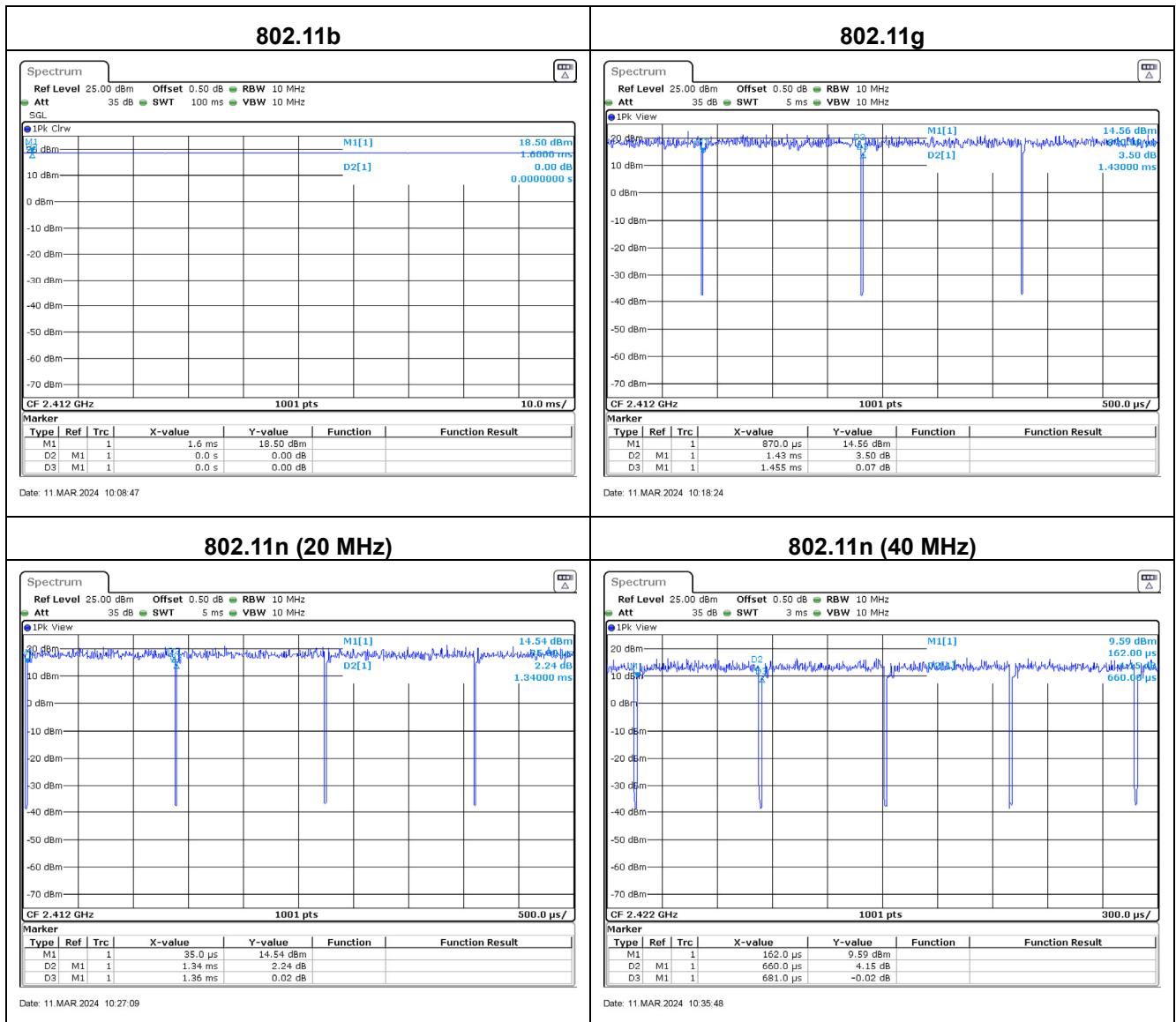
2.1. Test Condition

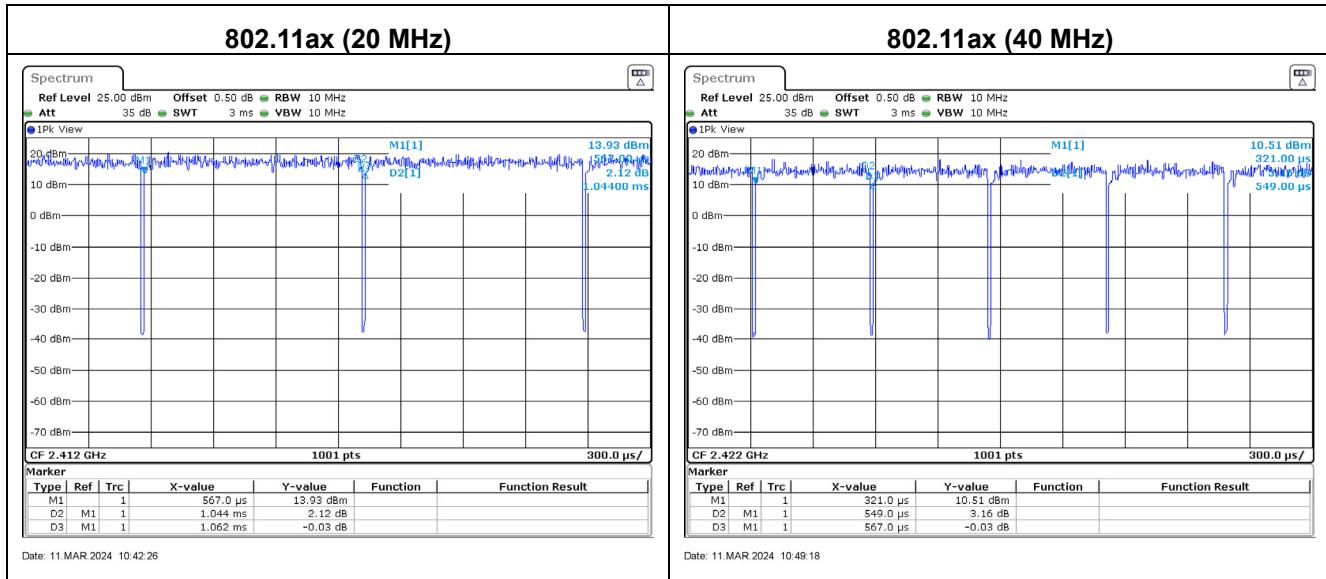
EUT Operational Condition	
Testing Voltage	DC 18V By Battery

2.2. Test Frequency Mode

Test Software Version	Dut labtool / Version: 2.0.0.89
-----------------------	---------------------------------

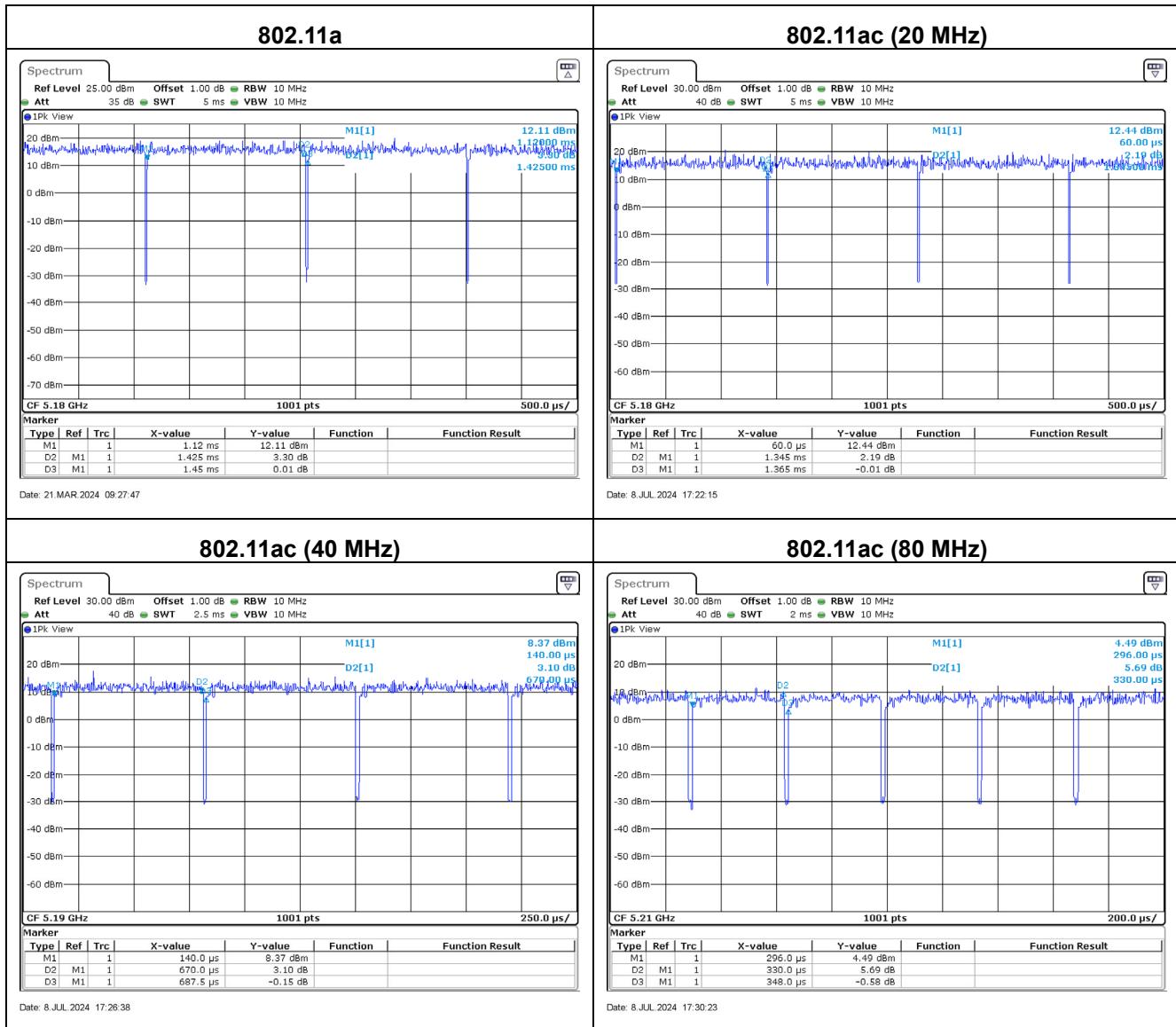
Modulation	Frequency (MHz)	Power Setting
802.11b	2412	16.5
	2437	16
	2462	18
802.11g	2412	14.5
	2437	16
	2462	12.5
802.11n (20 MHz)	2412	14
	2437	16
	2462	12.5
802.11n (40 MHz)	2422	13
	2437	13
	2452	12
802.11ax (20 MHz)	2412	13.5
	2437	16
	2462	11
802.11ax (40 MHz)	2422	13.5
	2437	13.5
	2452	13.5

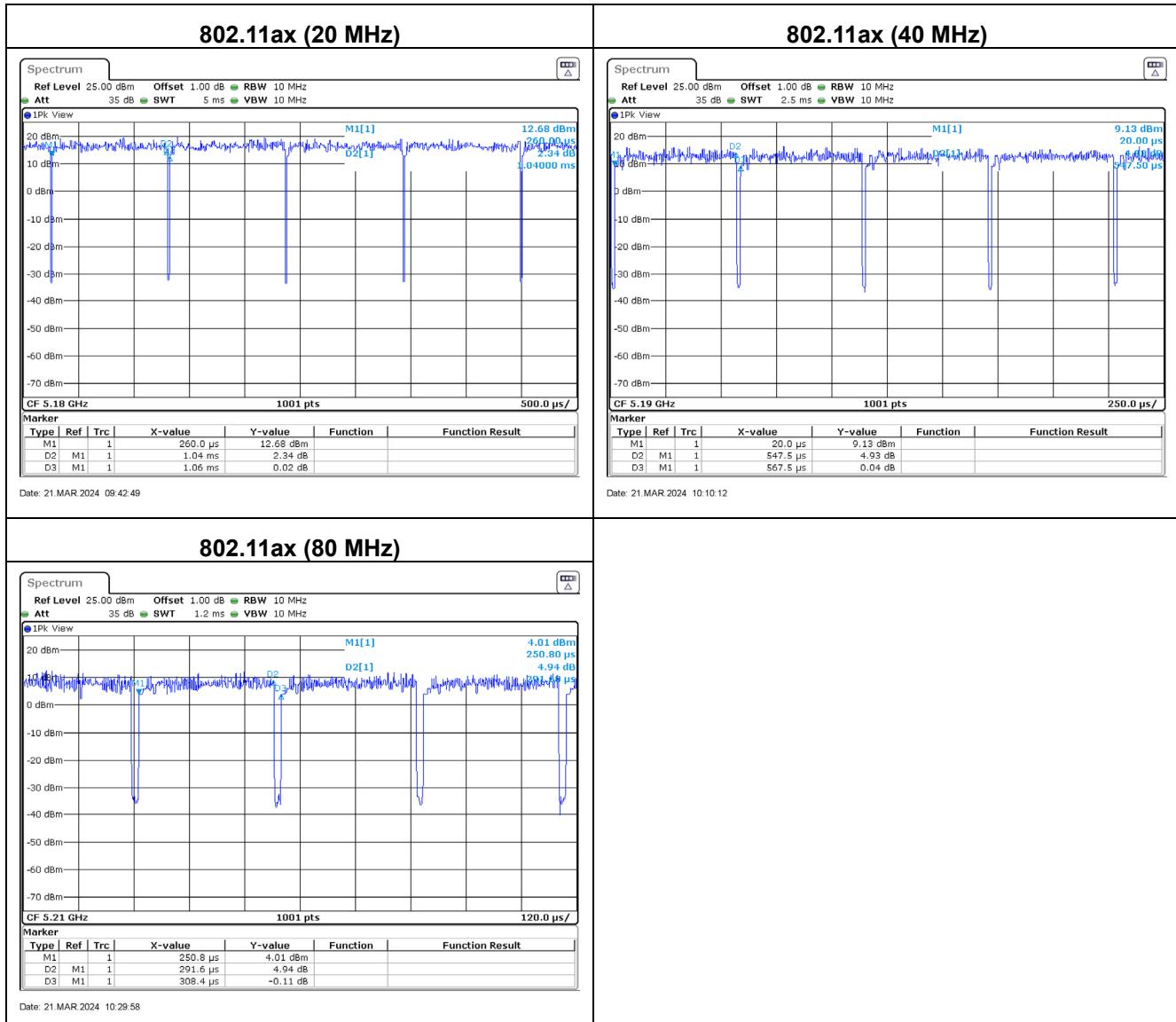

Modulation	Frequency (MHz)	Power Setting
802.11a	5180	13
	5220	13
	5240	13
	5260	13.5
	5300	13.5
	5320	13.5
	5500	14
	5580	15
	5700	14
	5720	14
	5745	14
	5785	15.5
802.11ac (20 MHz)	5825	16.5
	5180	14
	5220	14
	5240	13.75
	5260	14.25
	5300	14.25
	5320	14.25
	5500	14.75
	5580	15.75
	5700	15
	5720	15
	5745	15
	5785	16.25
	5825	17.5
802.11ac (40 MHz)	5190	13.75
	5230	13.75
	5270	14.25
	5310	14.25
	5510	14.25
	5550	14.75
	5670	15.25
	5710	15
	5755	15.25
	5795	16.5
802.11ac (80 MHz)	5210	13.75
	5290	14.25
	5530	14.75
	5610	14.75
	5690	14.75
	5775	16


802.11ax (20 MHz)	5180	14
	5220	14
	5240	13.75
	5260	14.25
	5300	14.25
	5320	14.25
	5500	14.75
	5580	15.75
	5700	15
	5720	15
	5745	15
	5785	16.25
	5825	17.5
	5190	13.75
802.11ax (40 MHz)	5230	13.75
	5270	14.25
	5310	14.25
	5510	14.25
	5550	14.75
	5670	15.25
	5710	15
	5755	15.25
	5795	16.5
	5210	13.75
802.11ax (80 MHz)	5290	14.25
	5530	14.75
	5610	14.75
	5690	14.75
	5775	16

2.3. Duty Cycle

2.4 GHz


Modulation	On Time (ms)	On+Off Time (ms)	Duty Cycle (%)	Duty Factor (dB)	VBW (Hz)
802.11 b	-	-	100.00	0.00	10
802.11 g	1.4300	1.4550	98.28	0.08	10
802.11n (20 MHz)	1.3400	1.3600	98.53	0.06	10
802.11n (40 MHz)	0.6600	0.6810	96.92	0.14	2000
802.11ax (20 MHz)	1.0440	1.0620	98.31	0.07	10
802.11ax (40 MHz)	0.5490	0.5670	96.83	0.14	2000



5 GHz

Modulation	On Time (ms)	On+Off Time (ms)	Duty Cycle (%)	Duty Factor (dB)	VBW (Hz)
802.11a	1.4250	1.4500	98.28	0.08	10
802.11ac (20 MHz)	1.3450	1.3650	98.53	0.06	10
802.11ac (40 MHz)	0.6700	0.6875	97.45	0.11	2000
802.11ac (80 MHz)	0.3300	0.3480	94.83	0.23	5000
802.11ax (20 MHz)	1.0400	1.0600	98.11	0.08	10
802.11ax (40 MHz)	0.5475	0.5675	96.48	0.16	2000
802.11ax (80 MHz)	0.2916	0.3084	94.55	0.24	5000

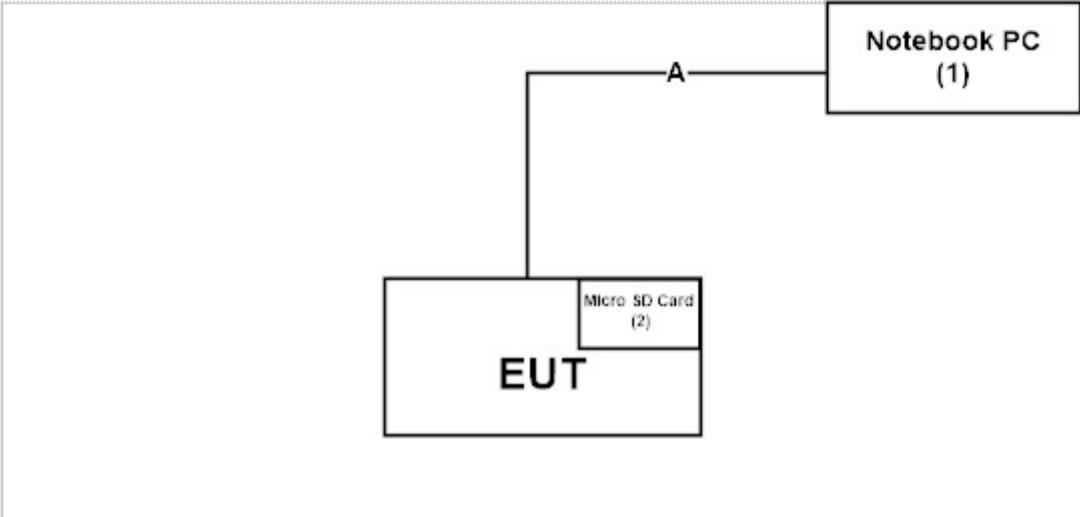
2.4. Measurement Configuration

2.4GHz

Test Mode	Mode 1 (Transmit)	802.11b
		802.11g
		802.11n-20 MHz
		802.11n-40 MHz
		802.11ax-20 MHz
		802.11ax-40 MHz
		802.11ax-80 MHz

5 GHz:

Test Mode	Mode 1 (Transmit)	802.11a
		802.11ac-20 MHz
		802.11ac-40 MHz
		802.11ac-80 MHz
		802.11ax-20 MHz
		802.11ax-40 MHz
		802.11ax-80 MHz


Note:

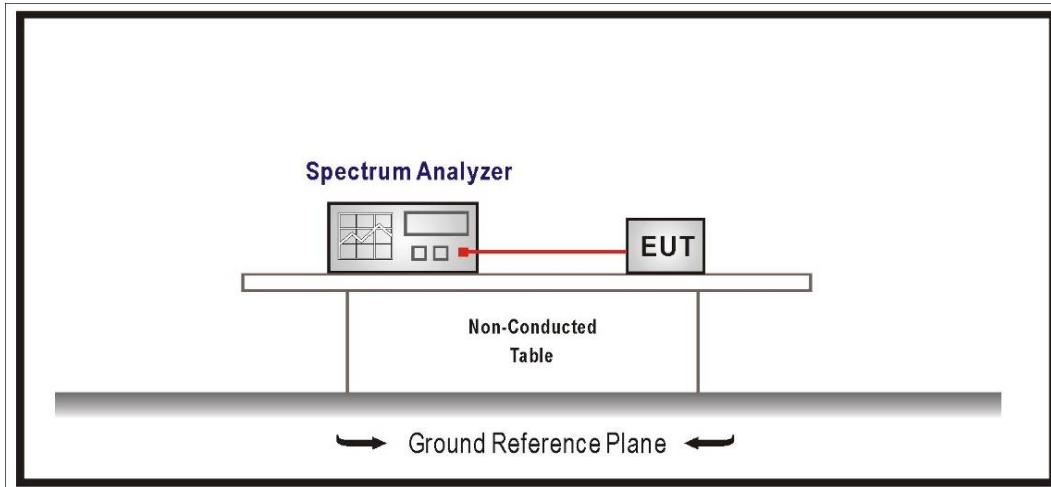
1. Determining compliance shall be based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
2. For radiated emission below 1 GHz have performed all modes of operation were investigated and the worst-case emissions are reported.
3. The spectrum plot against conducted item only shows the worst case.
4. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.
5. Lowest data rates are tested in each mode. Only worst case is shown in the report.
(802.11b is 1Mbps, 802.11a is 6Mbps, 802.11g is 6Mbps, 802.11n is HT0, 802.11ac is MCS0, 802.11ax is MCS0)
6. The modulation and bandwidth of 5 GHz are similar for the 802.11n mode for 20MHz/40MHz and the 802.11ac mode for 20MHz/40MHz/80MHz. Therefore, the worst case was investigated to represent the mode (802.11ac) in the test report.
7. The CDD mode is presented in the power output test item. For other test items, CDD mode is the worst case for the final test and shown in this report.

2.5. Tested System Details

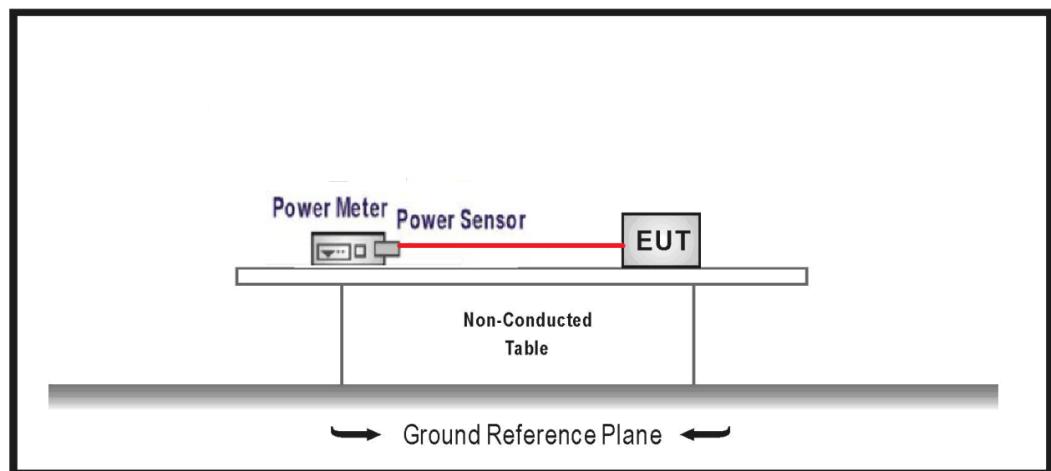
No.	Equipment	Brand Name	Model No.	Serial No.	Power Cord
1	Notebook PC	Lenovo	TP00135A	RF-3ZD0E9	N/A
2	Micro SD Card	Kingston	Kingston 16GB	N/A	N/A

2.6. Configuration of Tested System

Connection Diagram	
Signal Cable Type	Signal cable Description
A	USB Cable
	Shielded, 1.8m


2.7. EUT Operating Procedures

1	Setup the EUT as shown in Section 2.6.
2	Execute software “Dut labtool / Version: 2.0.0.89” on the Notebook PC.
3	Configure the test mode, the test channel, and the data rate.
4	Verify that the EUT works properly.


3. Maximum Conducted Output Power

3.1. Test Setup

For straddle channels:

For other channels:

3.2. Test Limit

2.4 GHz FCC:

The maximum conducted output power shall be less 30 dBm (1 Watt).

2.4 GHz ISED:

The maximum conducted output power shall be less 30 dBm (1 Watt).

The maximum e.i.r.p. power shall be less 36 dBm (4 Watt).

5 GHz FCC:

1. For an outdoor access point and an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or $11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
3. For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5 GHz ISED:

1. The frequency band 5.15 ~ 5.25 GHz:

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or $1.76 + 10 \log_{10}B$, dBm, whichever is less. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW. For other devices, the maximum e.i.r.p. shall not exceed 200 mW or $10 + 10 \log_{10}B$, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz.

2. The frequency band 5.25 ~ 5.35 GHz:

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or $1.76 + 10 \log_{10}B$, dBm, whichever is less. Devices shall implement TPC in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

Devices, other than devices installed in vehicles, shall comply with the following:

- a. The maximum conducted output power shall not exceed 250 mW or $11 + 10 \log_{10}B$, dBm, whichever is less.
- b. The maximum e.i.r.p. shall not exceed 1.0 W or $17 + 10 \log_{10}B$, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

3. The frequency band 5.47 ~ 5.6 GHz and 5.65 ~ 5.725 GHz:

The maximum conducted output power shall not exceed 250 mW or $11 + 10 \log_{10}B$, dBm, whichever is less.

The maximum e.i.r.p. shall not exceed 1.0 W or $17 + 10 \log_{10}B$, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

4. The frequency band 5.725 ~ 5.85 GHz:

The maximum conducted output power shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the output power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

However, fixed point-to-point devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power.

Fixed point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications and multiple collocated transmitters transmitting the same information.

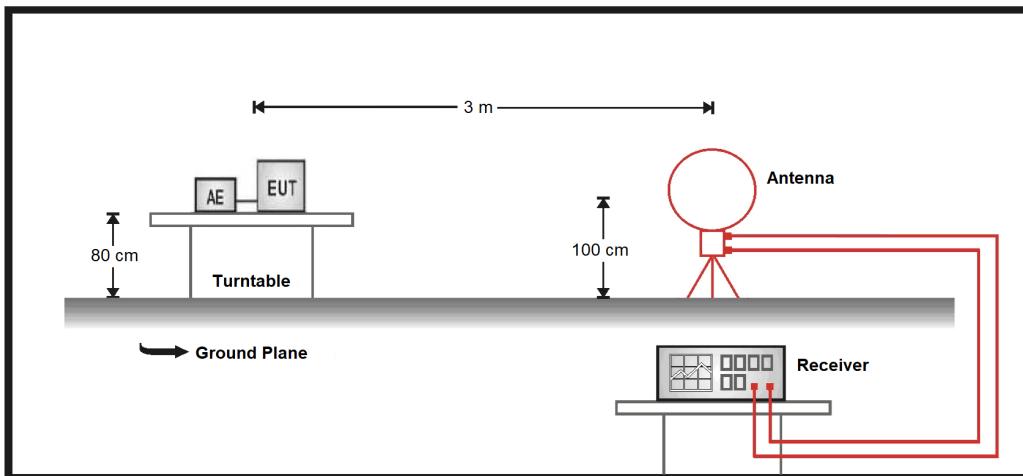
3.3. Test Procedures

2.4 GHz:

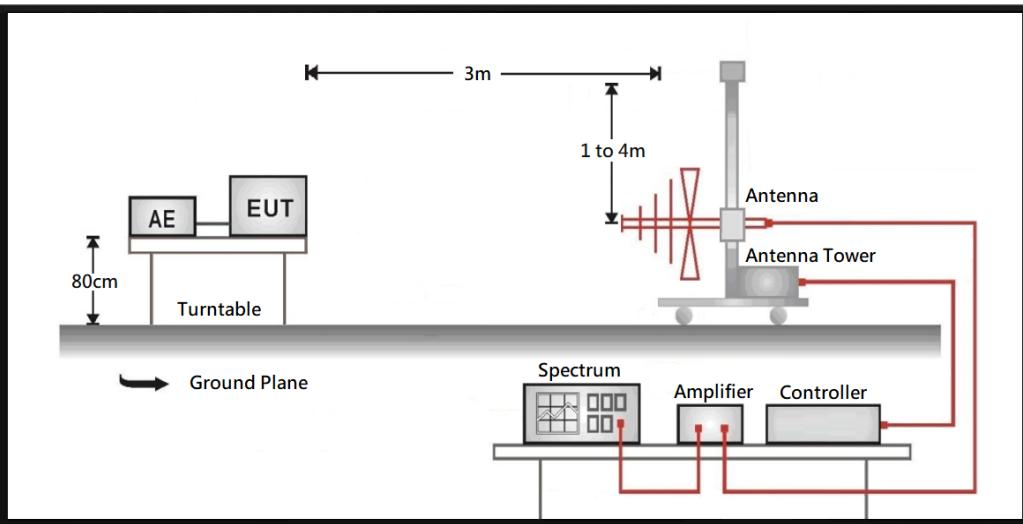
The EUT was setup according to ANSI C63.10: 2013; tested according to DTS test procedure of KDB 558074 and RSS-247 Issue 3.

5 GHz:

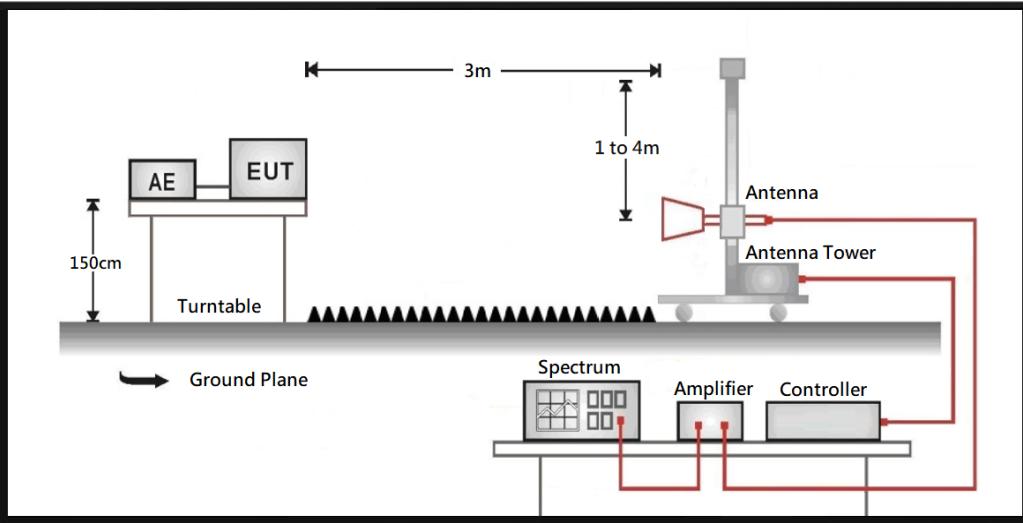
The EUT was setup according to ANSI C63.10: 2013; tested according to U-NII test procedure of 789033 and RSS-247 Issue 3.


3.4. Test Result of Maximum Conducted Output Power

Refer as Appendix A


4. Radiated Emission

4.1. Test Setup


9 kHz ~ 30 MHz

30 MHz ~ 1 GHz

Above 1 GHz

4.2. Test Limit

Frequency (MHz)	Field strength (uV/m)	Field strength (dBuV/m)	Measurement distance (m)
0.009 – 0.490	2400/F(kHz)	20 log (2400/F(kHz))	300
0.490 – 1.705	24000/F(kHz)	20 log (24000/F(kHz))	30
1.705 - 30	30	29.5	30
30 - 88	100	40	3
88 - 216	150	43.5	3
216 - 960	200	46	3
Above 960	500	54	3

Remarks:

1. Field strength (dBuV/m) = 20 log Field strength (uV/m)
2. In the Above Table, the tighter limit applies at the band edges.
3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

Unwanted Emission out of the restricted bands Test Limit

Frequency (MHz)	EIRP Limit (dBm/MHz)	Equivalent Field Strength (dBuV/m@3m)
5150 – 5250	-27	68.2
5250 – 5350	-27	68.2
5470 – 5725	-27	68.2
5725 – 5850	-27 * ¹	68.2 * ¹
	10 * ²	105.2 * ²
	15.6 * ³	110.8 * ³
	27 * ⁴	122.2 * ⁴

*¹ beyond 75 MHz or more above of the band edge.

*² below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.

*³ below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

*⁴ from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Remark:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{30} \text{ uV/m, where } P \text{ is the eirp (Watts).}$$

4.3. Test Procedure

2.4 GHz:

The EUT was setup according to ANSI C63.10: 2013 and tested according to DTS test procedure of KDB 558074 and RSS-247 Issue 3.

The EUT and its simulators are placed on a turn table which is 0.8 or 1.5 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated measurement.

On any frequency or frequencies from 9 kHz (including the lowest oscillator frequency generated within the device up to the 10th harmonic) to 1000 MHz, the limit shown are based on measuring equipment employing a quasi-peak detector function and on any frequency or frequencies above 1000 MHz the radiated limit shown are based upon the use of measurement instrumentation employing an average detector function. When average radiated emission measurement are included emission measurement below 1000 MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.

The bandwidth below 1 GHz setting on the field strength meter is 120 kHz and above 1 GHz is 1 MHz.

5 GHz:

The EUT and its simulators are placed on a turn table which is 0.8 or 1.5 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated measurement.

The additional latch filter below 1 GHz was used to measure the level of harmonics radiated emission during field strength of harmonics measurement.

The bandwidth below 1 GHz setting on the field strength meter is 120 kHz, above 1 GHz are 1 MHz.

The frequency range from 9 kHz to 10th harmonics and included The frequency range from the lowest oscillator frequency generated within the device up to the 10th harmonic was checked is checked.

4.4. Test Result of Radiated Emission

Refer as Appendix B