

TEST REPORT

Client Information:

Applicant: ZHEJIANG KUANTU INDUSTRY AND TRADE CO.,LTD

Applicant add.: Floor 2, Workshop 1, No. 18, XinZhong East Road, Xinbi Street, Jinyun

County, Lishui City, Zhejiang Province China

Manufacturer: Kingsong Intell Co.,Ltd

shenz Bldg 7 No 71 Xinghu Rd Hongxing 8th Ind-park Yutang Guangming

Report No.: AITSZ24061902FW1

Manufacturer add.: Shenzhen China 518132

Product Information:

Product Name: Electric Scooter

Model No.: A1
Brand Name: N/A

Test samples.: AITSZ24061902-1

FCC ID: 2BFXX-A1

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Prepared By:

Guangdong Asia Hongke Test Technology Limited

B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Tel.: +86 0755-230967639 Fax.: +86 0755-230967639

Date of Receipt: Jun. 20, 2024 Date of Test: Jun. 20, 2024~ Jun. 26, 2024

Date of Issue: Jun. 26, 2024 Test Result: Pass

This device described above has been tested by Guangdong Asia Hongke Test Technology Limited and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

Note: This report shall not be reproduced except in full, without the written approval of Guangdong Asia Hongke Test Technology Limited, this document may be altered or revised by Guangdong Asia Hongke Test Technology Limited, personal only, and shall be noted in the revision of the document. This test report must not be used by the client to claim product endorsement.

Reviewed by:

Leon.yi

Approved by:

Sean She

Sean She

1 Contents

CC	OVER F	PAGE	Page		
1	CON	TENTS	2		
2	TEST	SUMMARY	4		
	2.1	Statement of the Measurement Uncertainty			
3	2.2 TEST	Measurement Uncertainty FACILITY			
	3.1	Deviation from standard	5		
	3.2	Abnormalities from standard conditions	5		
	3.3	Test Location	5		
4	GENI	ERAL INFORMATION	6		
	4.1	Test frequencies	7		
	4.2	EUT Peripheral List			
	4.3	Test Peripheral List			
	4.4	TEST METHODOLOGY			
		EUT Configuration			
		EUT Exercise			
		General Test Procedures			
	4.5	Description of Test Modes	9		
5	EQUI	PMENT USED DURING TEST	10		
6	TEST	RESULTS AND MEASUREMENT DATA	11		
	6.1	Antenna requirement	11		
	6.2	On Time and Duty Cycle	13		
	6.3	Maximum Conducted Output Power Measurement	14		
	6.4	6 dB Spectrum Bandwidth Measurement	16		
	6.5	Power Spectral Density	17		
	6.6	Conducted Spurious Emissions and Band Edges Test	18		
	6.7	Radiated Emissions and Radiation Restricted band Measurement	19		
	6.8	Conducted Emissions	31		
7	TEST	SETUP PHOTOGRAPHS OF EUT	34		
8	EXTE	RNAL PHOTOGRAPHS OF EUT	34		
9	INTERNAL PHOTOGRAPHS OF EUT34				

Page 3 of 34

Revision History

Revision	Issue Date	Revisions	Revised By
000	Jun. 26, 2024	Initial Issue	Sean She

2 Test Summary

Test Item	Section in RSS-47	Result
Antenna requirement	§15.203	Pass
On Time and Duty Cycle	1	/
AC Power Line Conducted Emission	§ 15.207(a)	Pass
Conducted Peak Output Power	§15.247 (b)(3)	Pass
Channel Bandwidth	§15.247 (a)(2)	Pass
Power Spectral Density	§15.247 (e)	Pass
Transmitter Radiated Spurious Emission	§15.205/15.209	Pass
Restricted Bands	§15.205/15.209	PASS
Conducted Unwanted emissions and Bandedge	§15.205, §15.247(d)	Pass

Note

- 1. Test according to ANSI C63.10:2013.
- 2. The measurement uncertainty is not included in the test result.

2.1 Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16-4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the AiT quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

2.2 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	0.009MHz-30MHz	3.10dB	(1)
Radiated Emission	30MHz-1GHz	3.75dB	(1)
Radiated Emission	1GHz-18GHz	3.88dB	(1)
Radiated Emission	18GHz-40GHz	3.88dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	1.20dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

3 Test Facility

The test facility is recognized, certified or accredited by the following organizations: FCC-Registration No.: 251906 Designation Number: CN1376

Guangdong Asia Hongke Test Technology Limited has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC —Registration No.: 31737 CAB identifier: CN0165

The 3m Semi-anechoic chamber of Guangdong Asia Hongke Test Technology Limited has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 31737

A2LA-Lab Cert. No.: 7133.01

Guangdong Asia Hongke Test Technology Limited has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

3.1 Deviation from standard

None

3.2 Abnormalities from standard conditions

None

3.3 Test Location

Guangdong Asia Hongke Test Technology Limited

Address: B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Tel.: +86 0755-230967639 Fax.: +86 0755-230967639

4 General Information

EUT Name:	Electric Scooter
Model No:	A1
Serial Model:	E5,E6,EV06C PRO,EV05C,H85F,H10K PRO,H10G,H06C,A2,A3,B1,B2,B3,C1,C2,C3,A1 PRO,A2 PRO,A3 PRO,B1 PRO,B2 PRO, B3 PRO,C1 PRO,C2 PRO,C3 PRO,A1 DUAL,A2 DUAL,A3 DUAL,B1 DUAL,B2 DUAL,B3 DUAL,C1 DUAL,C2 DUAL,C3 DUAL,A1 MAX,A2 MAX,A3 MAX,B1 MAX,B2 MAX,B3 MAX,C1 MAX,C2 MAX,C3MAX,A1L,A2L,A3L,B1L,B2L,B3L,C1L,C2L,C3L,R11,E8,ET1
Test sample(s) ID:	AITSZ24061902-1
Sample(s) Status:	Engineer sample
Operation frequency:	2402MHz-2480MHz
Channel Number:	40 channels
Channel separation:	2MHz
Modulation Technology:	GFSK
Antenna Type:	PCB Antenna;
Antenna gain:	2.50dBi
H/W No.:	N/A
S/W No.:	N/A
Adapter:	Input:100-240V~50/60HZ 2A Max Output:54.6V=2.0A 109.2W
Model different:	N/A
Note:	
1.	For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

4.1 Test frequencies

EUT channels and frequencies list:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

4.2 EUT Peripheral List

No.	Equipment	Manufacturer	EMC Compliance	Model No.	Serial No.	Power cord	Signal cord
1	Adapter	Shenzhen Hyleton Technology Co Ltd	N/A	HLT-180I -5462000	N/A	N/A	N/A

4.3 Test Peripheral List

No.	Equipment	Manufacturer	EMC Compliance	Model No.	Serial No.	Power cord	Signal cord
1	Notebook	DELL	N/A	VOSTRO. 3800	N/A	N/A	N/A
2	USB cable	N/A	N/A	1.5m	N/A	N/A	N/A

Guangdong Asia Hongke Test Technology Limited B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.

4.4 TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

Report No.: AITSZ24061902FW1

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Guangdong Asia Hongke Test Technology Limited

4.4.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

4.4.2 EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209, 15.247 under the FCC Rules Part 15 Subpart C and RSS-247 Issue 2, RSS-Gen Issue 5.

4.4.3 General Test Procedures

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013.

4.5 Description of Test Modes

The EUT has been tested under operating condition.

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position.

AC conducted emission pre-test at both at AC 120V/60Hz and AC 240V/50Hz modes, recorded worst case.

Worst-case mode and channel used for 150 KHz-30 MHz power line conducted emissions was the mode and channel with the highest output power, which was determined to be BT LE mode (Low Channel).

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be BT LE mode (Low Channel).

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

BT LE: 1 Mbps, GFSK.

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Transmitting mode	Keep the EUT in continuously transmitting mode.			
Test software:	FCC_assist_1.0.2.2			
Frequency	2402 MHz 2440 MHz 2480 MHz			
Parameters(1 Mbps)	Default Default		Default	
Parameters(2 Mbps)	Default Default Default			

5 Equipment Used during Test

No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date
1	Spectrum Analyzer	R&S	FSV40	101470	2023.09.08	2024.09.07
2	Spectrum Analyzer	Keysight	N9020A	MY51280643	2023.09.08	2024.09.07
3	EMI Measuring Receiver	R&S	ESR	101660	2023.09.08	2024.09.07
4	Low Noise Pre-Amplifier	HP	HP8447E	1937A01855	2023.09.08	2024.09.07
5	Low Noise Pre-Amplifier	Tsj	MLA-0120-A02- 34	2648A04738	2023.09.08	2024.09.07
6	Passive Loop	ETS	6512	00165355	2022.09.04	2024.09.03
7	TRILOG Super Broadband test Antenna	SCHWARZBECK	VULB9160	9160-3206	2021.08.29	2024.08.28
8	Broadband Horn Antenna	SCHWARZBECK	BBHA9120D	452	2021.08.29	2024.08.28
9	SHF-EHF Horn Antenna 15-40GHz	SCHWARZBECK	BBHA9170	BBHA9170367d	2021.08.29	2024.08.28
10	EMI Measuring Receiver	R&S	ESR	101160	2023.09.13	2024.09.12
11	LISN	SCHWARZBECK	NNLK 8129	8130179	2023.10.29	2024.10.28
12	Pulse Limiter	R&S	ESH3-Z2	102789	2023.09.13	2024.09.12
13	Pro.Temp&Humi.chamber	MENTEK	MHP-150-1C	MAA08112501	2023.09.08	2024.09.07
14	RF Automatic Test system	MW	MW100-RFCB	21033016	2023.09.08	2024.09.07
15	Signal Generator	Agilent	N5182A	MY50143009	2023.09.08	2024.09.07
16	Wideband Radio communication tester	R&S	CMW500	1201.0002K50	2023.09.08	2024.09.07
17	RF Automatic Test system	MW	MW100-RFCB	21033016	2023.09.08	2024.09.07
18	DC power supply	ZHAOXIN	RXN-305D-2	28070002559	N/A	N/A
19	RE Software	EZ	EZ-EMC_RE	Ver.AIT-03A	N/A	N/A
20	CE Software	EZ	EZ-EMC_CE	Ver.AIT-03A	N/A	N/A
21	RF Software	MW	MTS 8310	2.0.0.0	N/A	N/A
22	temporary antenna connector(Note)	NTS	R001	N/A	N/A	N/A

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

RSS-Gen Section 6.8

The applicant for equipment certification, as per RSP-100, must provide a list of all antenna types that may be used with the licence-exempt transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna.

Licence-exempt transmitters that have received equipment certification may operate with different types of antennas. However, it is not permissible to exceed the maximum equivalent isotropically radiated power (e.i.r.p.) limits specified in the applicable standard (RSS) for the licence-exempt apparatus.

Testing shall be performed using the highest gain antenna of each combination of licence-exempt transmitter and antenna type, with the transmitter output power set at the maximum level.9 When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna manufacturer. The applicant for equipment certification, as per RSP-100, must provide a list of all antenna types that may be used with the licence-exempt transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna.

Licence-exempt transmitters that have received equipment certification may operate with different types of antennas. However, it is not permissible to exceed the maximum equivalent isotropically radiated power (e.i.r.p.) limits specified in the applicable standard (RSS) for the licence-exempt apparatus.

FCC §15.203:Testing shall be performed using the highest gain antenna of each combination of licence-exempt transmitter and antenna type, with the transmitter output power set at the maximum level.9 When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna manufacturer.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Page 12 of 34 Report No.: AITSZ24061902FW1

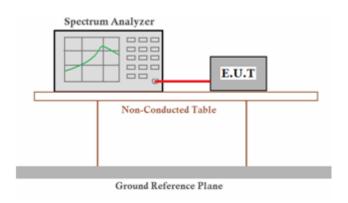
EUT Antenna:

The antenna is PCB Antenna, the best case gain of the antenna is 2.5dBi, reference to the appendix II for details

6.2 On Time and Duty Cycle

Standard requirement:

None; for reporting purpose only


Measuring Instruments and Setting:

Please refer to equipments list in this report. The following table is the setting of the spectrum analyser.

Test Procedures

- 1. Set the centre frequency of the spectrum analyser to the transmitting frequency;
- 2. Set the span=0MHz, RBW=8MHz, VBW=50MHz, Sweep time=20.27ms;
- 3. Detector = peak;
- 4. Trace mode = Single hold

Test Setup Layout

EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Test result

For reporting purpose only.

Please refer to Appendix A

6.3 Maximum Conducted Output Power Measurement

Standard requirement:

According to §15.247(b): For systems using digital modulation in the 2400-2483.5 MHz and 5725-5850 MHz band, the limit for maximum peak conducted output power is 30dBm. The limited has to be reduced by the amount in dB that the gain of the antenna exceeds 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

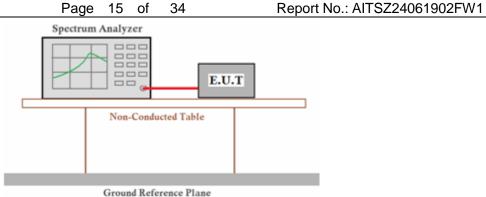
Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi without any corresponding reduction in transmitter peak output power.RSS-247 section 5.4 d): For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

Measuring Instruments:

Please refer to equipment's list in this report.

Test Procedures


The transmitter output (antenna port) was connected to the spectrum analyzer.

According to KDB558074 D01 DTS Measurement Guidance Section 9.1 Maximum peak conducted output power 9.1.1.

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- a) Set the RBW ≥ DTS bandwidth.
- b) Set VBW $\geq 3 \times RBW$. Set span $\geq 3 \times RBW$.
- c) Sweep time = auto couple.
- d) Detector = peak.
- e) Trace mode = max hold.
- f) Allow trace to fully stabilize.
- g) Use peak marker function to determine the peak amplitude level.

Test Setup Layout

EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Test result

PASS. Please refer to Appendix A

Remark: 1) Test results including cable loss.

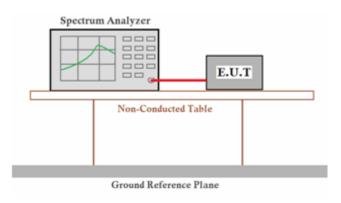
6.4 6 dB Spectrum Bandwidth Measurement

Standard requirement:

According to FCC Part15 C Section 15.247 (a)(2)/ RSS 247 section 5.2(a): DTSs include systems that employ digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to the bands 902-928 MHz and 2400- 2483.5 MHz:

a). The minimum 6 dB bandwidth shall be 500 kHz.

Measuring Instruments and Setting:


Please refer to equipment's list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto Sweep

Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. Set RBW/VBW = 100 KHz/300KHz.
- 3. Measured the 6dB bandwidth by related function of the spectrum analyzer.

Test Setup Layout

EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Test result

PASS

Please refer to Appendix A

Remark:

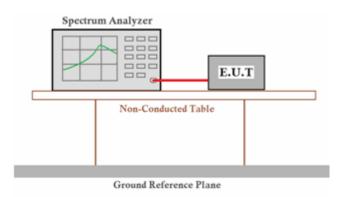
- 1). Measured 6dB Bandwidth at difference data rate for each mode and recorded worst case for each mode.
- 2). Test results including cable loss;

Guangdong Asia Hongke Test Technology Limited B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.

6.5 Power Spectral Density

Standard requirement:

According to FCC §15.247(e)/RSS-247 section 5.2 b): The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).


Measuring Instruments:

Please refer to equipment's list in this report.

Test Procedures

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.
- 3. Set the RBW = 3 kHz.
- 4. Set the VBW ≥ 3*RBW
- 5. Set the span to 1.5 times the DTS channel bandwidth.
- 6. Detector = peak.
- 7. Sweep time = auto couple.
- 8. Trace mode = max hold.
- 9. Allow trace to fully stabilize.
- 10. Use the peak marker function to determine the maximum power level.
- 11. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 12. The resulting peak PSD level must be 8 dBm.

Test Setup Layout

EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Test result

PASS

Please refer to Appendix A

Remark: 1). Test results including cable loss;

6.6 Conducted Spurious Emissions and Band Edges Test

Standard requirement:

According to FCC §15.247 (d)/ RSS 247 section 5.5: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Measuring Instruments and Setting:

Please refer to equipment list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Detector	Peak
Attenuation	Auto
RB / VB (Emission in restricted band)	100KHz/300KHz
RB / VB (Emission in non-restricted band)	100KHz/300KHz

Test Procedures

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz

The spectrum from 9 kHz to 26.5GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

Test Setup Layout

This test setup layout is the same as that shown in section 5.4.4.

EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Test result

PASS

Please refer to Appendix A for conducted spurious emissions;

Please refer to Appendix A for conducted band edge emission.

Remark:

- 1). Test results including cable loss;
- 2). "---"means that the fundamental frequency not for RSS-Gen limits requirement.
- 3). Not recorded emission from 9 KHz to 30 MHz as emission level at least 20dBc lower than emission limit.

6.7 Radiated Emissions and Radiation Restricted band Measurement

Standard requirement:

According to FCC §15.247 (d)/section 5.5 of RSS-247: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen Issue 4 is not required.

In case the emission fall within the restricted band specified on RSS-Gen Issue 4, then the RSS-Gen Issue 4 limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
,	,	, ,
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Measuring Instruments and Setting:

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 1.5 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

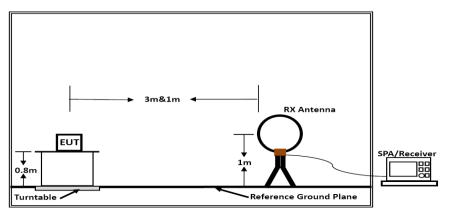
Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

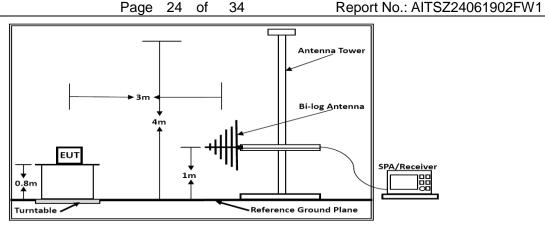
Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

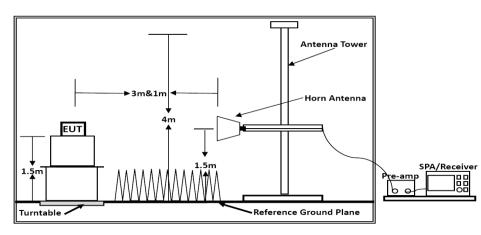

Premeasurement:

--- The antenna is moved spherical over the EUT in different polarisations of the antenna.

Final measurement:


- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

Test Setup Layout



Below 30MHz

Below 1GHz

Above 1GHz

Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Test result

Temperature	26℃	Humidity	54%
Configurations	BLE		

Remarks:

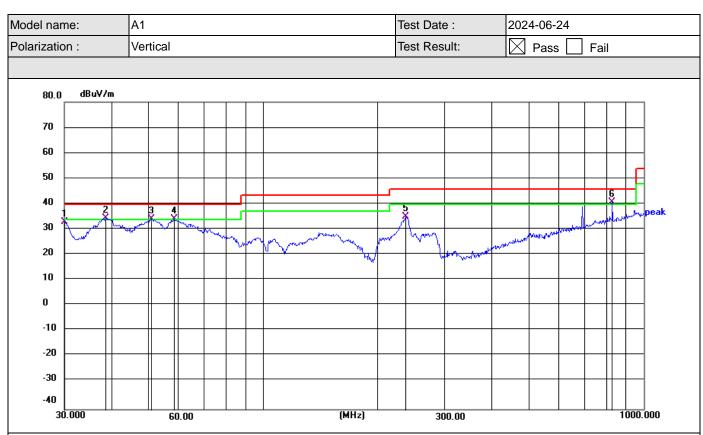
- 1. Only the worst case Main Antenna test data.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Report No.: AITSZ24061902FW1

■ Results of Radiated Emissions (9 KHz~30MHz)

Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:


The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor.

■ Results of Radiated Emissions (30MHz~1GHz)

Pre-scan all test modes, found worst case at GFSK (LCH), and so only show the test result of GFSK (LCH).

Remark:

Emission Level = Reading + Factor;

Factor = Antenna Factor + Cable Loss - Pre-amplifier;

Margin= Emission Level - Limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.
1	30.1053	48.78	-15.66	33.12	40.00	-6.88	QP
2!	38.4810	47.21	-12.38	34.83	40.00	-5.17	QP
3!	50.7636	48.57	-14.15	34.42	40.00	-5.58	QP
4!	58.4074	49.22	-14.88	34.34	40.00	-5.66	QP
5	237.4760	51.17	-15.92	35.25	46.00	-10.75	QP
6 *	827.4934	41.53	-0.65	40.88	46.00	-5.12	QP

el name:	A1				Test Date : 2024-06-24				
rization :	Horizont	al			Test Result:		Pass	Fai	il
80.0 dBuV/m									
70									
60									
50									
40	£ .				-				<u> </u>
30	2			4 X	5			Married Marriage	peak
20	May Survey	The same of the sa		Marine Marine	many product	٧٠٠٠	الميها المراجع الميانية		
wwwh			**	7	Christian sources	A CAPPA			
10									HH
0									HHH
-10									
-20									
-30									
-40 30.000		 D.00		(MHz)	300.00				1000.000

Remark:

Emission Level = Reading + Factor;

Factor = Antenna Factor + Cable Loss - Pre-amplifier;

Margin= Emission Level - Limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.
1!	43.4497	48.98	-13.41	35.57	40.00	-4.43	QP
2	49.0145	44.76	-13.13	31.63	40.00	-8.37	QP
3	98.1419	43.78	-15.72	28.06	43.50	-15.44	QP
4	180.6488	42.14	-11.53	30.61	43.50	-12.89	QP
5	247.6819	46.29	-12.34	33.95	46.00	-12.05	QP
6 *	836.2443	42.07	0.46	42.53	46.00	-3.47	QP

Page 28 of 34 Report No.: AITSZ24061902FW1

Results for Radiated Emissions (1- 26 GHz)

Note: All the modes have been tested and recorded worst mode in the report.

Test channel:	Lowest channel
---------------	----------------

Н

Frequ	ency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Tupo
(MH	Hz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
480	04	47.03	5.06	52.09	74	-21.91	PEAK
480	04	36.36	5.06	41.42	54	-12.58	AVG
720	06	44.82	7.03	51.85	74	-22.15	PEAK
720	06	31.04	7.03	38.07	54	-15.93	AVG

V

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	46.34	5.06	51.40	74	-22.60	PEAK
4804	36.26	5.06	41.32	54	-12.68	AVG
7206	45.93	7.03	52.96	74	-21.04	PEAK
7206	31.31	7.03	38.34	54	-15.66	AVG

hannel:	Middle channel
---------	----------------

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4880	45.99	5.14	51.13	74	-22.87	PEAK
4880	35.84	5.14	40.98	54	-13.02	AVG
7320	45.10	7.52	52.62	74	-21.38	PEAK
7320	31.05	7.52	38.57	54	-15.43	AVG

٧

-						
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4880	47.02	5.14	52.16	74	-21.84	PEAK
4880	36.27	5.14	41.41	54	-12.59	AVG
7320	45.44	7.52	52.96	74	-21.04	PEAK
7320	30.07	7.52	37.59	54	-16.41	AVG

Guangdong Asia Hongke Test Technology Limited B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.

Test channel: Highest channel

Н

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type	
(MHz)	(MHz) (dBµV)		(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
4960	47.24	5.22	52.46	74	-21.54	PEAK	
4960	35.57	5.22	40.79	54	-13.21	AVG	
7440	44.66	8.06	52.72	74	-21.28	PEAK	
7440	30.75	8.06	38.81	54	-15.19	AVG	

V

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960	45.75	5.22	50.97	74	-23.03	PEAK
4960	37.33	5.22	42.55	54	-11.45	AVG
7440	45.48	8.06	53.54	74	-20.46	PEAK
7440	29.97	8.06	38.03	54	-15.97	AVG

Notes:

- 1). Measuring frequencies from 9 KHz 10th harmonic or 26.5GHz (which is less), No emission found between lowest internal used/generated frequency to 30MHz.
- 2). Radiated emissions measured in frequency range from 9 KHz~10th harmonic or 26.5GHz (which is less) were made with an instrument using Peak detector mode.
- 3). Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4). Margin= Emission Level Limit
- 5). Emission Level = Reading + Factor
- 6). Factor = Antenna Factor + Cable Loss Pre-amplifier

Radiation Restricted band

GFSK-Low

Report No.: AITSZ24061902FW1

н	\cap r	17	∩r	าta	ı
	U I		•	ILL	

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2386.53	42.87	-5.61	37.26	74	-36.74	peak
2	2390	38.96	-5.72	33.24	74	-40.76	peak
3	2400	42	-5.61	36.39	74	-37.61	peak

Vertical

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	nook
1	2385.79	41.63	-5.59	36.04	74	-37.96	peak
2	2390	39.64	-5.94	33.7	74	-40.3	peak
3	2400	41.95	-5.65	36.3	74	-37.7	peak

GFSK-High

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.
1	2483.5	37.54	-5.29	32.25	74	-41.75	peak
2	2486.19	37.95	-4.71	33.24	74	-40.76	peak

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.
1	2483.5	35.34	-5.15	30.19	74	-43.81	peak
2	2484.23	39.46	-4.66	34.8	74	-39.2	peak

Remarks:

- 1). Margin= Emission Level Limit
- 2). Emission Level = Reading + Factor
- 3). Factor = Antenna Factor + Cable Loss Pre-amplifie
- 4). All the modes have been tested and the only shows the worst case GFSK mode.
- 5). The PEAK value is less than the AVG limit, the AVG result no need be show in this report.

6.8 Conducted Emissions

Standard requirement:

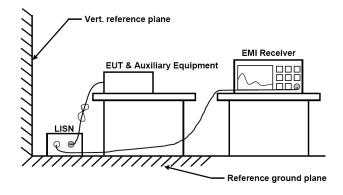
According to FCC§15.207 (a)/ RSS-Gen Issue 5: For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Limits (dBµV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		

^{*} Decreasing linearly with the logarithm of the frequency

Measuring Instruments and Setting:

Please refer to equipment list in this report. The following table is the setting of the spectrum analyzer.


Spectrum Parameter	Setting
Detector	Peak
Attenuation	Auto
RB / VB (Emission in restricted band)	100KHz/300KHz
RB / VB (Emission in non-restricted band)	100KHz/300KHz

Test Procedures

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz

The spectrum from 9 kHz to 26.5GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

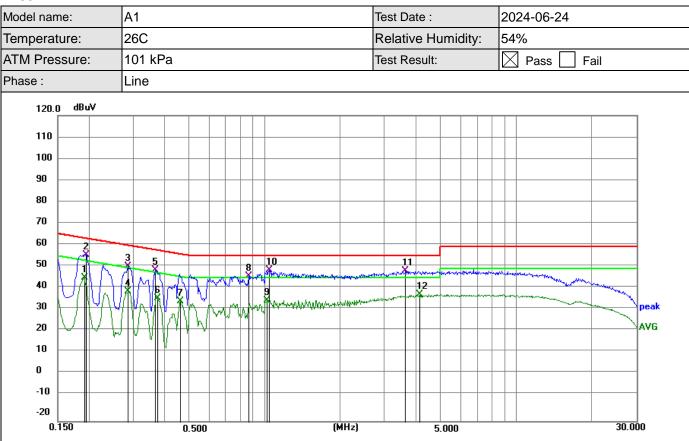
Test Setup Layout

EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Test result

PASS


The test data please refer to following page.

Guangdong Asia Hongke Test Technology Limited B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.

Measurement data:

Pre-scan all test modes, found worst case at GFSK 2480MHz, and so only show the test result of GFSK 2480MHz

Remark: Correct Factor = Insertion loss of LISN + Cable loss + Insertion loss of Pulse Limiter; Measurement Result = Reading Level +Correct Factor; Margin = Measurement Result- Limit;

ı	No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
		(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
	1	0.1905	35.17	10.69	45.86	54.01	-8.15	AVG
	2	0.1949	45.64	10.70	56.34	63.83	-7.49	QP
	3	0.2850	40.21	10.70	50.91	60.67	-9.76	QP
	4	0.2850	28.76	10.70	39.46	50.67	-11.21	AVG
	5	0.3653	38.53	10.69	49.22	58.61	-9.39	QP
	6	0.3750	25.63	10.69	36.32	48.39	-12.07	AVG
	7	0.4605	24.29	10.69	34.98	46.68	-11.70	AVG
	8	0.8655	35.98	10.66	46.64	56.00	-9.36	QP
	9	1.0230	24.87	10.64	35.51	46.00	-10.49	AVG
	10	1.0410	38.69	10.64	49.33	56.00	-6.67	QP
	11	3.6330	37.84	10.98	48.82	56.00	-7.18	QP
	12	4.1369	27.09	11.00	38.09	46.00	-7.91	AVG

Page 33 of 34

Model name:		A1	A1							Test Date :				2024-06-24		
Temperatu	26C	26C							Relative Humidity:				54%			
ATM Press	sure:	101 k	Pa					1	est Re	esult:				Pass Fail		
Phase :		Neutra	al					•								
120.0	dBuV															
110																
100																
90																
80																
70																
60	į,	-														
50	AA	3			6 X		Ç		9	!		- i	2	Marine and the second s		
40	IJÅ ₩	M	/ Pm/s	lite i N	1 11 1	1	4	L-Alphanense Language	1 1	10		11 *		The state of the s		
30	+	MM	Yann	100	WY	Mary	* ***********************************	cod/daysons Lyanons	Water Branch	, ware	*********	\mathbb{H}		peak		
20		NYV	 	4 – †								Н		AVG		
10										$\forall t$		Н				
0 -										$\dagger \dagger$		Н				
-10										$\dagger \dagger$						
-20 0.1!	 50		0.50					MHz)		Щ,	5.000			30.000		

Remark: Correct Factor = Insertion loss of LISN + Cable loss + Insertion loss of Pulse Limiter; Measurement Result = Reading Level +Correct Factor; Margin = Measurement Result- Limit;

No	0.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
		(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1		0.1905	44.11	10.69	54.80	64.01	-9.21	QP
2	2	0.1905	31.62	10.69	42.31	54.01	-11.70	AVG
3	3	0.3704	37.75	10.69	48.44	58.49	-10.05	QP
4	1	0.3750	25.80	10.69	36.49	48.39	-11.90	AVG
5	0	0.6045	23.55	10.68	34.23	46.00	-11.77	AVG
6	6	0.8655	35.73	10.65	46.38	56.00	-9.62	QP
7	7	1.3650	35.54	10.68	46.22	56.00	-9.78	QP
8	3	1.3650	23.05	10.68	33.73	46.00	-12.27	AVG
9	9	3.8130	35.24	11.00	46.24	56.00	-9.76	QP
10	0	4.4970	24.44	11.00	35.44	46.00	-10.56	AVG
1	1	6.2564	26.70	11.01	37.71	50.00	-12.29	AVG
12	2	6.9810	37.16	11.03	48.19	60.00	-11.81	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Guangdong Asia Hongke Test Technology Limited B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.

7 Test Setup Photographs of EUT

Please refer to separated files for Test Setup Photos of the EUT.

8 External Photographs of EUT

Please refer to separated files for External Photos of the EUT.

9 Internal Photographs of EUT

Please refer to separated files for Internal Photos of the EUT.

-----End-----