

18220WC40073101 FCC ID: 2BFWB-F1 Page 1 of 34 Report No.:

FCC Test Report

Applicant Brilliant Labs Limited

: 68 Circular Road #02-01, Singapore Address

Product Name : Frame

: May 07, 2024 **Report Date**

ce Laboratory Limited

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 2 of 34

Contents

1. General Information	Aur Chek	potek Aupo	y(
1.1. Client Information 1.2. Description of Device (EUT) 1.3. Auxiliary Equipment Used During Test 1.4. Operation channel list 1.5. Description of Test Modes 1.6. Measurement Uncertainty 1.7. Test Summary 1.8. Description of Test Facility 1.9. Disclaimer 1.10. Test Equipment List 2. Antenna requirement 2.1. Conclusion 3. Conducted Emission at AC power line 3.1. EUT Operation 3.2. Test Setup 3.3. Test Data 4. Occupied Bandwidth 4.1. EUT Operation 4.2. Test Setup 4.3. Test Data	abotek Antooten	And Lotek	'upatek '''
2. Antenna requirement			ek
2.1. Conclusion	upo kek jupojek	popore A	1
3. Conducted Emission at AC power line	Anbor Ar.	ek kopo _{ter}	
3.1. EUT Operation	Anborek And	1000 May 100	1; 1; 14
4. Occupied Bandwidth	Ker VUD	, Motek Anbo	10
4.1. EUT Operation4.2. Test Setup4.3. Test Data	toolek Village Williams		10 11
5. Maximum Conducted Output Power	Auporen Aup	ak "botek	Anbor
4.2. Test Setup		-10	
6. Power Spectral Density	otek Anbore	VII PO	potek 18
6. Power Spectral Density	200		18
7. Emissions in non-restricted frequency bands	Tapolek Yup,	o. k. Gotek	4!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
7.1. EUT Operation 7.2. Test Setup 7.3. Test Data	r	PLIE VILLE	19
7.3. Test Data	katek Anboten	And	hotek
8.1. EUT Operation 8.2. Test Setup 8.3. Test Data		rek pologis	20 2
9. Emissions in frequency bands (below 1GHz)	k botek At	hore Arr	
9.1. EUT Operation 9.2. Test Setup	olek Vuotek	Anbotek Anb	23

Report No.: 18220WC40073101	FCC ID: 2	3FWB-F1	Pag	e 3 of 34
10. Emissions in frequency bands (above 1GHz)po _{tek}	Anbore. And	14 ^N 5100	29
10.1. EUT Operation	botek	Aupor	Hu.	Modern 29
10.2. Test Setup	bl.,	*po _{√e} ,	Aup	30
10.3. Test Data	sk Vupo,	br.	apoier	31
APPENDIX I TEST SETUP PHOTOGRAPH	stek suboti	sk Aupo.	k hotek	34
APPENDIX II EXTERNAL PHOTOGRAPH	Do	atek Anbore	by.	34
APPENDIX III INTERNAL PHOTOGRAPH	spoter Ani		otek pupo	34

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 4 of 34

TEST REPORT

Applicant : Brilliant Labs Limited

Manufacturer : Brilliant Labs Limited

Product Name : Frame

Test Model No. : F1

Reference Model No. : N/A

Trade Mark : N/A

Input:

Frame: DC 5V, 0.25A

Rating(s) : Charging dock: DC 5V, 0.5A

Frame battery: DC 3.7V, 222mAh Battery inside

Charging dock battery: DC 3.6V, 120mAh Battery inside

47 CFR Part 15.247

Test Standard(s) : KDB 558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10-2020

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:	Apr. 10, 2024
Ar. Anbotek Anbotek Anb	
Date of Test:	Apr. 11, 2024 to Apr. 23, 2024
	Ella Liang
Prepared By:	K Anbotek Anbote. Jane otek anbotek
	(Ella Liang)
	Idward pan
Approved & Authorized Signer:	Anbore Anborek Anborek Anbo
	(Edward Pan)

www.anbotek.com.cn

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 5 of 34

Revision History

Report Version		Description	Issued Date		
	Anbore R00 potek Ant	Original Issue.	May 07, 2024		
,e	Anbotek Anbotek	Anbotek Anbotek Anbotek	K Anbotek Anbotek Anb		
(10	ore Ambotek Anbotek	Anbotek Anbotek Anbot	tek Anbotek Anboter		

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 6 of 34

1. General Information

1.1. Client Information

Applicant	:	Brilliant Labs Limited
Address	:	68 Circular Road #02-01, Singapore
Manufacturer	:	Brilliant Labs Limited
Address	:	68 Circular Road #02-01, Singapore
Factory	:	Brilliant Labs Limited
Address	:	68 Circular Road #02-01, Singapore

1.2. Description of Device (EUT)

	0	
Product Name	:	Frame Anborek Anborek Anborek Anborek
Test Model No.	:	F1 tek Anbotek Anbotek Anbotek Anbotek
Reference Model No.	:	N/A Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek
Trade Mark	:	N/A Anbotek Anbotek Anbotek Anbotek Anbotek
Test Power Supply	:	AC 120V/60Hz for Adapter; DC 3.7V Battery inside
Test Sample No.	•	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	•	N/A* Anboret Anb Dorek Anborek Anborek
RF Specification		
Operation Frequency	:	2402MHz to 2480MHz
Number of Channel	:	40 Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek
Modulation Type	:	GFSK Anbores Anborek Anborek Anborek An
Antenna Type		Ceramic antenna
Antenna Gain(Peak)	:	2.4dBi Anborek Anborek Anborek Anborek

Remark:

- (1) All of the RF specification are provided by customer.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 7 of 34

1.3. Auxiliary Equipment Used During Test

Title		Manufacturer	Model No.	Serial No.	
	Anbotek / Anboten	Anbotek Anbotek	Anbo, sek abotek	Anboret And More	

1.4. Operation channel list

Operation Band:

	V	10 P	0.0			
Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
2402	10 ×	2422	20	2442	30 tek	2462
2404	13otek	2424	21 orek	2444	31	2464
2406	12 Anbote	2426	22	2446	32	2466
2408	otek 13 Anb	2428	23	2448	33	2468
2410	, e14	2430	24	2450	34	2470
2412	15	2432	25	2452	35	2472
2414	16	2434	^{An} 26	2454	36	2474
2416	17 botel	2436	27	2456	37 ¹⁰⁰¹	2476
2418	18	2438	28	2458	38 Anbo	2478
2420 Prior	19	2440	29	2460	o ^{tek} 39 N	2480
	(MHz) 2402 2404 2406 2408 2410 2412 2414 2416 2418	(MHz) Channel 2402 10 2404 11 2406 12 2408 13 2410 14 2412 15 2414 16 2416 17 2418 18	(MHz) Channel (MHz) 2402 10 2422 2404 11 2424 2406 12 2426 2408 13 2428 2410 14 2430 2412 15 2432 2414 16 2434 2416 17 2436 2418 18 2438	(MHz) Channel (MHz) Channel 2402 10 2422 20 2404 11 2424 21 2406 12 2426 22 2408 13 2428 23 2410 14 2430 24 2412 15 2432 25 2414 16 2434 26 2416 17 2436 27 2418 18 2438 28	(MHz) Channel (MHz) Channel (MHz) Channel (MHz) 2402 10 2422 20 2442 2404 11 2424 21 2444 2406 12 2426 22 2446 2408 13 2428 23 2448 2410 14 2430 24 2450 2412 15 2432 25 2452 2414 16 2434 26 2454 2416 17 2436 27 2456 2418 18 2438 28 2458	(MHz) Channel (MHz) Channel (MHz) Channel 2402 10 2422 20 2442 30 2404 11 2424 21 2444 31 2406 12 2426 22 2446 32 2408 13 2428 23 2448 33 2410 14 2430 24 2450 34 2412 15 2432 25 2452 35 2414 16 2434 26 2454 36 2416 17 2436 27 2456 37 2418 18 2438 28 2458 38

1.5. Description of Test Modes

Pretest Modes	Descriptions
Anbotek TM1Anbo otek	Keep the EUT works in continuously transmitting mode (BLE 1M)
TM2 Anboret	Keep the EUT works in continuously transmitting mode (BLE 2M)

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 8 of 34

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB
Occupied Bandwidth	925Hz
Conducted Output Power	0.76dB
Power Spectral Density	0.76dB
Conducted Spurious Emission	1.24dB
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	oot 3.53dB. nbotek Anbotek Anbotek
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Test Summary

Test Items	Test Modes	Status
Antenna requirement	tek vuptek Vupo	P
Conducted Emission at AC power line	Mode1	P
Occupied Bandwidth	Mode1,2	Aupor P
Maximum Conducted Output Power	Mode1,2	PUB.
Power Spectral Density	Mode1,2	P
Emissions in non-restricted frequency bands	Mode1,2	P Anh
Band edge emissions (Radiated)	Mode1,2	P
Emissions in frequency bands (below 1GHz)	Mode1,2	Anbore P
Emissions in frequency bands (above 1GHz)	Mode1,2	Anhor
Note: P: Pass N: N/A, not applicable	Anbotek Anbotek	anbote Anbote

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 9 of 34

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

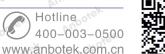
FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location


Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 10 of 34

1.10. Test Equipment List

Cond	ucted Emission at A	C power line				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
. 1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-01-18	2025-01-17
tek 2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
3,000	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	Alootek	Anborek
4	EMI Test Receiver	Rohde & Schwarz	ESPI3	100926	2023-10-12	2024-10-11

Maximum Conducted Output Power

Power Spectral Density

Emissions in non-restricted frequency bands

Occupied Bandwidth

450			N 55 *		· /		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date	
1 _{An} h	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A N/O	2023-10-16	2024-10-15	
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19	
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25	
An4ore	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2023-10-12	2024-10-11	
5nb	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11	
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03	

Hotline

www.anbotek.com.cn

400-003-0500

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 11 of 34

ote.	And	stek rupo.	N. Ok	pote.	AUS	iek
	edge emissions (Ra sions in frequency ba		Anbore	Anboick	Aupotek	Anbotek
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 00	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
nboto. 4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	Ambotek	Anborek
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
re ^k 7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2023-05-25	2024-05-24

Emiss	sions in frequency ba	ands (below 1GHz)				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
. 2	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-16
34	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
4ntel	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-11
5,00	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A, Noot	y Aupon	k Anbotek

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 12 of 34

2. Antenna requirement

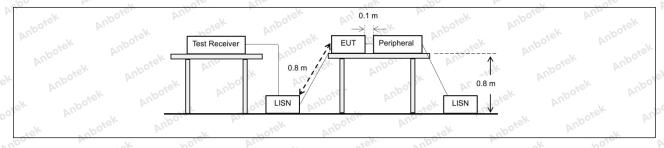
Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1. Conclusion

The antenna is a Ceramic antenna which permanently attached, and the best case gain of the antenna is 2.4dBi. It complies with the standard requirement.

Report No.: FCC ID: 2BFWB-F1 Page 13 of 34 18220WC40073101

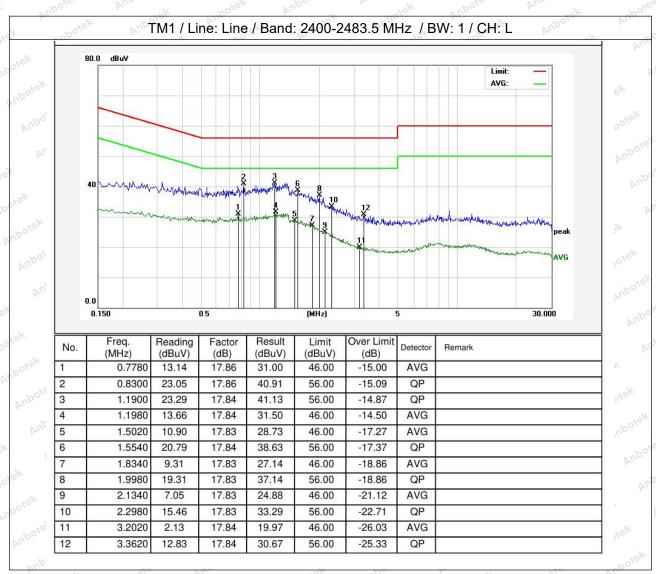

3. Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except section, for an intentional radiator public utility (AC) power line, the result back onto the AC power line on are band 150 kHz to 30 MHz, shall no measured using a 50 µH/50 ohms (LISN).	that is designed to be con adio frequency voltage that my frequency or frequencient t exceed the limits in the f	nected to the at is conducted es, within the ollowing table, as		
spotek Anboy	Frequency of emission (MHz)	Conducted limit (dBµV)			
YII.	Anbore Anbore	Quasi-peak	Average		
Aupor Ar.	0.15-0.5	66 to 56*	56 to 46*		
Test Limit:	0.5-5	56. An	46		
VII.	5-30 And 5	60	50 PER AND		
k Aupor K Ai.	*Decreases with the logarithm of t	he frequency.			
Test Method:	ANSI C63.10-2020 section 6.2	Anbores.	Aug		
Procedure:	Refer to ANSI C63.10-2020 section line conducted emissions from un				

3.1. EUT Operation

	Operating Envir	onment:							Aupo.
3/6	Test mode:	1: TX mod 1M)	e(BLE 1	И): Кеер	the EUT	works in cor	ntinuously tr	ansmitting mod	de (BLE
- 1		HIVI)							

3.2. Test Setup


Hotline

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 14 of 34

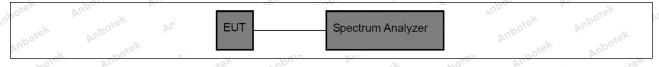
3.3. Test Data


Temperature: 20.6 °C	Humidity: 66 %	Atmospheric Pressure: 101 kPa
----------------------	----------------	-------------------------------

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 15 of 34

Temperature: 20.6 °C Humidity: 66 % Atmospheric Pressure: 101 kPa

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 16 of 34


4. Occupied Bandwidth

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Anbotek	11.8.1 Option 1 The steps for the first option are as follows: a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz. b) Set the VBW ≥ [3 × RBW]. c) Detector = peak. d) Trace mode = max-hold. e) Sweep = No faster than coupled (auto) time. f) Allow the trace to stabilize. g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude" value, then it shall be as close as possible to this value.
sek Aupotek Aupo	11.8.2 Option 2
potek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW \geq 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

4.1. EUT Operation

Operating Enviro	onment:	Anto	k anbotel	Aup	-ek	abotek	Aupore	
Tost mode:	1: TX mode(BL 1M) 2: TX mode(BL 2M)	ntek anb			botek	Aupo.	h	

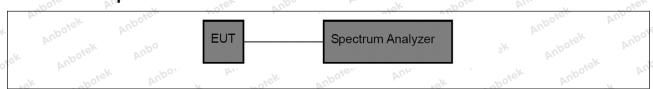
4.2. Test Setup

4.3. Test Data

Temperature:	25.3 °C	AUD	Humidity:	48 %	Atmos	pheric Pressu	re: 101 kPa	

Please Refer to Appendix for Details.

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 17 of 34


5. Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Anbotek	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2020 section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.9.1 Maximum peak conducted output power

5.1. EUT Operation

×	Operating Envir	onment:	abořek	Aupore	Vu., Polsk	Aupolek	Aupor	12.
,d	Test mode:	1M) , , bote	Anlos	"K NO	works in cont	bring	ek anboit	Sk. Vi

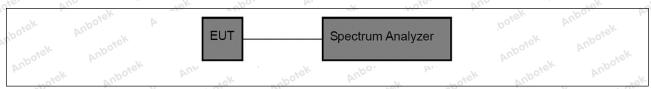
5.2. Test Setup

5.3. Test Data

Temperature:	25.3 °C	Humidity:	48 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

FCC ID: 2BFWB-F1 Report No.: 18220WC40073101 Page 18 of 34


6. Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2020, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.10, Maximum power spectral density level in the fundamental emission

6.1. EUT Operation

Operating Envir	onment:	Anbotek	Anbo	hotek	Aupore	r Purposek
Test mode:	1: TX mode(BLE 1M) 2: TX mode(BLE 2M)	DI.			- N	otek Anbore

6.2. Test Setup

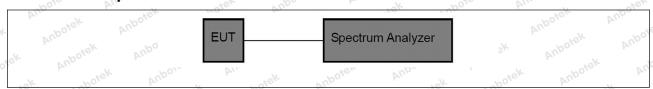
6.3. Test Data

Temperature:	25.3 °C	Humidity:	48 %	Atmospheric Pressure:	101 kPa
16, 1		. No.	Day	7.00	3/4

Please Refer to Appendix for Details.

Hotline

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 19 of 34


7. Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit: Anborek	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020 Section 11.11.1, Section 11.11.2, Section 11.11.3

7.1. EUT Operation

Operating Envir	ronment:	p spotek	Aupoto	Vunn Vunn	k Anbore	k Vupo.	*ek *po
Test mode:	1M) 2001°	e(BLE 1M): K e(BLE 2M): K	. W.		Jose Ame	*e\	Spojek, Ar

7.2. Test Setup

7.3. Test Data

Temperature:	25.3 °C	Humidity: 48 %	Atmospheric Pressure:	101 kPa	

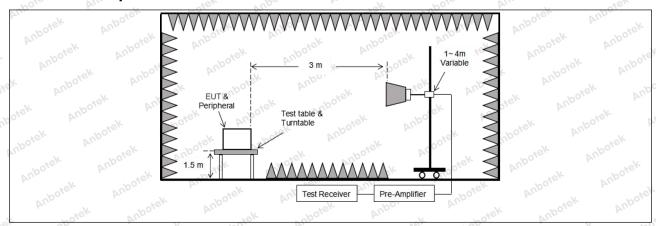
Please Refer to Appendix for Details.

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 20 of 34

8. Band edge emissions (Radiated)

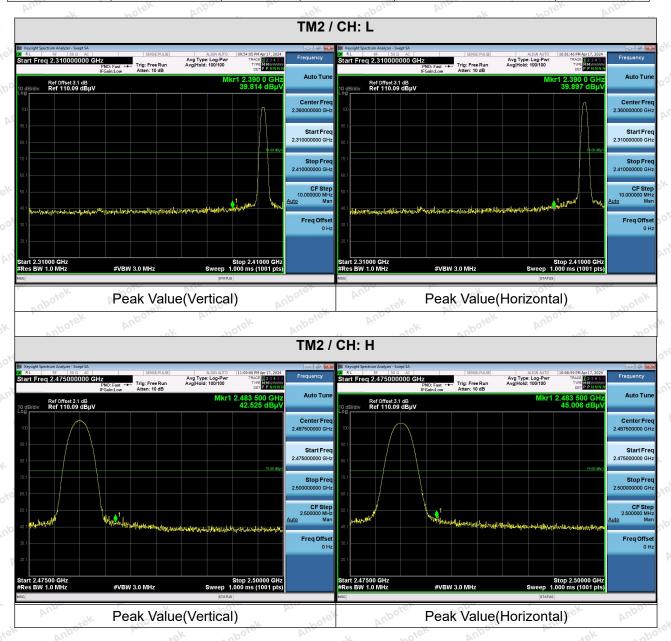
		- 10	
Test Requirement:	restricted bands, as defined	In addition, radiated emissions d in § 15.205(a), must also comp ecified in § 15.209(a)(see § 15.20	ly with the
k Aupotek Aupot	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300 000
botek Anbo	0.490-1.705	24000/F(kHz)	30 stell
	1.705-30.0	3000	30
	30-88	100 **	3.ek anbore
	88-216	150 **	3
	216-960	200 **	3 botel And
	Above 960	500	3 30%
	intentional radiators operatifrequency bands 54-72 MH However, operation within t sections of this part, e.g., § In the emission table above The emission limits shown	ragraph (g), fundamental emissing under this section shall not be z, 76-88 MHz, 174-216 MHz or 4 hese frequency bands is permitt § 15.231 and 15.241. In the tighter limit applies at the bein the above table are based on beak detector except for the frequency.	e located in the 470-806 MHz. ed under other and edges. measurements
	90 kHz, 110–490 kHz and a these three bands are base	above 1000 MHz. Radiated emised on measurements employing	sion limits in
tek ^{Vupotek} Yup	90 kHz, 110–490 kHz and a these three bands are base detector.	above 1000 MHz. Radiated emised on measurements employing	sion limits in
Test Method:	90 kHz, 110–490 kHz and a these three bands are base	above 1000 MHz. Radiated emised on measurements employing 6.10	sion limits in

8.1. EUT Operation


oie	Operating Envir	onment:	Anbotek	Anbe	F	notek A	upore Ar	siek vi
o'n,	Test mode:	1: TX mode(BLE 1M)	1M): Keep	the EUT v	works in	continuousl	y transmitting	mode (BLE
9	inbounde.	2: TX mode(BLE 2M)	2M): Keep	the EUT v	works in	continuousl	y transmitting	mode (BLE

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 21 of 34

8.2. Test Setup



Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 22 of 34

8.3. Test Data

Temperature: 25.3 °C Humidity: 48 % Atmospheric Pressure: 101 kPa

Remark

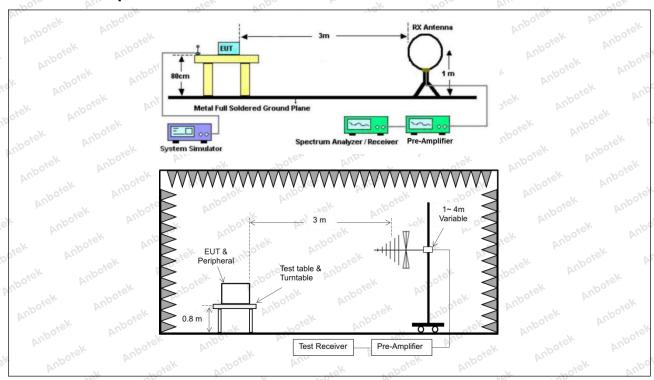
- 1. During the test, pre-scan all modes, the report only record the worse case mode.
- 2. When the PK measure result value is less than the AVG limit value, the AV measure result values test not applicable.

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 23 of 34

9. Emissions in frequency bands (below 1GHz)

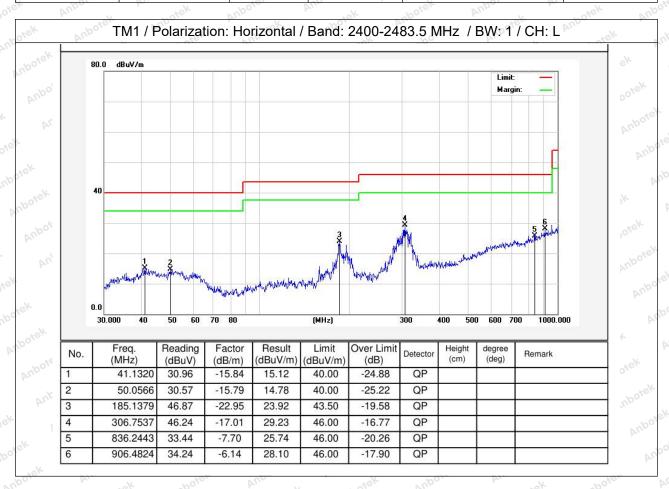
Anbore And	radiated emission limits sp	pecified in § 15.209(a)(see § 15.2	ply with the 205(c)).`
tek Anbotek Anb	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300 000
ooter And	0.490-1.705	24000/F(kHz)	30 Lotek
	1.705-30.0	30	30
Anbe K hotek	30-88	100 **	3,ek Anbore
	88-216	150 **	3
	216-960	200 **	3/pore, Mur
est Limit:	Above 960	500	3 orek
	I reducito parios 34-72 ivi	MZ. 70-88 IVIMZ. 174-216 IVIMZ OF	4/0-806 MHz.
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	However, operation within sections of this part, e.g., In the emission table about The emission limits shown employing a CISPR quasi 90 kHz, 110–490 kHz and	Hz, 76-88 MHz, 174-216 MHz or these frequency bands is permit §§ 15.231 and 15.241. We, the tighter limit applies at the in the above table are based or peak detector except for the free above 1000 MHz. Radiated emissed on measurements employing	tted under other band edges. measurements quency bands 9– ssion limits in
Anborek Anborek Anborek Anborek Anborek Anborek Anborek Anborek	However, operation within sections of this part, e.g., In the emission table about The emission limits shown employing a CISPR quasi 90 kHz, 110–490 kHz and these three bands are based.	these frequency bands is permit §§ 15.231 and 15.241. Ye, the tighter limit applies at the in the above table are based or peak detector except for the free above 1000 MHz. Radiated emised on measurements employing in 6.6.4	ted under other band edges. measurements quency bands 9– ssion limits in

9.1. EUT Operation


o'l	Operating Envir	onment:	Aupolek	Aupo	ok N	-boiek	Anbore	Vien	otek vi
70	Test mode:	1: TX mode(BLE 1M) 2: TX mode(BLE 2M)	AND. Cal	٧			. bu.	ek .	anboise

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 24 of 34

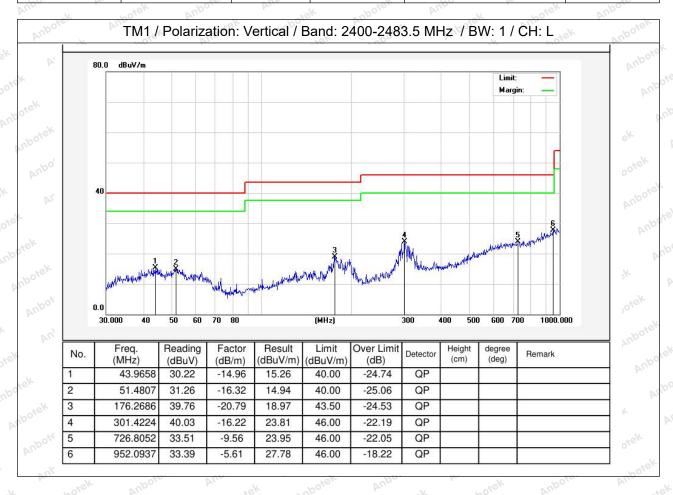
9.2. Test Setup



Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 25 of 34

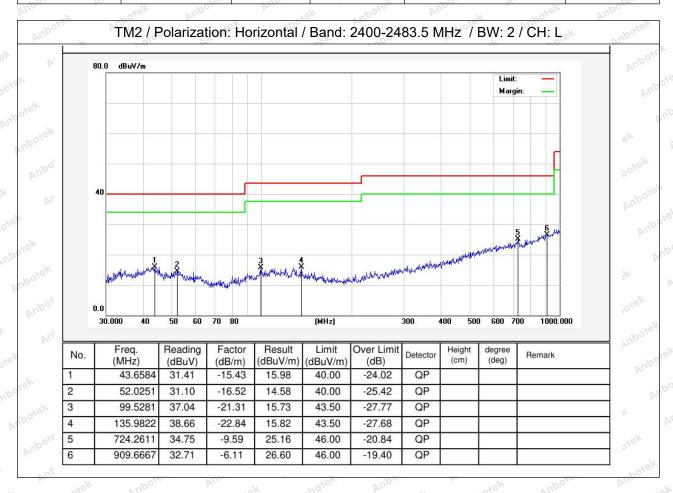
9.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.


	Temperature:	25.3 °C	VUP	Humidity:	48%	Atmos	spheric Pressure:	101 kPa
--	--------------	---------	-----	-----------	-----	-------	-------------------	---------

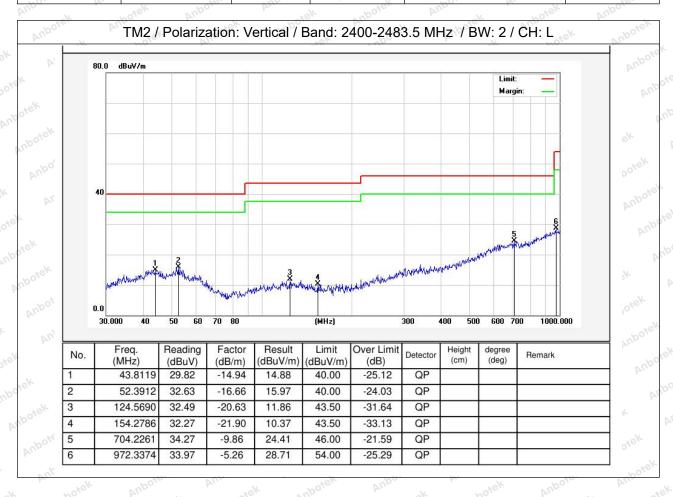
Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 26 of 34

Temperature: 25.3 °C Humidity: 48 % Atmospheric Pressure: 101 kPa



Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 27 of 34

Temperature: 25.3 °C Humidity: 48 % Atmospheric Pressure: 101 kPa



Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 28 of 34

Temperature: 25.3 °C Humidity: 48 % Atmospheric Pressure: 101 kPa

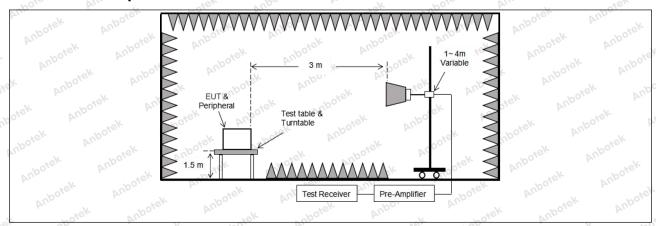
Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 29 of 34

10. Emissions in frequency bands (above 1GHz)

upp sek upojek	In addition, radiated emissi	ons which fall in the restricted ba	ands as defined
Test Requirement:	in § 15.205(a), must also co	omply with the radiated emissior	
Vupo.	in § 15.209(a)(see § 15.205	1, 10, 10,	in the copy
Anbotek Anbo	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
And Stek	0.009-0.490	2400/F(kHz)	300
botek Anbo.	0.490-1.705	24000/F(kHz)	30
iek spotek	1.705-30.0	30	30
Anbore Air	30-88	100 **	3,ek abote
Potek Vupo,	88-216	150 **	3
Aur apote	216-960	200 **	3 botel And
Anbore Air	Above 960	500 MANDO	3
botek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	frequency bands 54-72 MH However, operation within to sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi-page 110–490 kHz and a section with the section of the emission limits of the emission limits shown employing a CISPR quasi-page 110–490 kHz and a section with the emission limits and a section with the emission limits and the emission limits are section with the emission limits and the emission limits are section within the emission limits are section with the emission with	ing under this section shall not be 2, 76-88 MHz, 174-216 MHz or these frequency bands is permit § 15.231 and 15.241. In the tighter limit applies at the being the above table are based on the detector except for the frequency above 1000 MHz. Radiated emisted on measurements employing	470-806 MHz. ted under other pand edges. measurements luency bands 9– ssion limits in
ootek Anbo	16 160, by	ck spotek Aupo	N. Olok
Test Method:	ANSI C63.10-2020 section KDB 558074 D01 15.247 M		

10.1. EUT Operation

Operating Envir	onment:	anbotek	Anbe	-hoi	k Anbor	All.	stek no
Test mode:	1: TX mode(BLE 1M)	And			, , , , , , , , , , , , , , , , , , ,	otek	Anbore.
Anbor Mode.	2: TX mode(BLE 2M)	2M): Keep	the EUT w	orks in cor	ntinuously tra	nsmitting m	ode (BLE



Hotline

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 30 of 34

10.2. Test Setup

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 31 of 34

10.3. Test Data

Temperature: 25.3 °C	Humidity: 48 %	Atmospheric Pressure:	101 kPa
----------------------	----------------	-----------------------	---------

Vur.	hotek Anb		atek anbott	And	ok hotek	Anbo.
			TM2 / CH: L			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	27.85	15.27	43.12	74.00	-30.88	Vertical
7206.00	28.01	18.09	46.10	74.00	-27.90	Vertical
9608.00	28.66	23.76	52.42	74.00	-21.58	Vertical
12010.00	Anboie * A	iek .	Spotek Anb	74.00	otek Anbote	Vertical
14412.00	VUPO*SIK	Aupo	Polek b	74.00	otek onk	Vertical
4804.00	27.57	15.27	42.84	74.00	-31.16	Horizontal
7206.00	28.31	18.09	46.40	74.00	-27.60	Horizontal
9608.00	27.85	23.76	51.61	74.00	-22.39	Horizontal
12010.00	otek * Anbo	V. 20	lek Aupote	74.00	s abotek	Horizontal
14412.00	hotek*	bose bus	atek anbo	74.00	ok hote	Horizontal
Average value: Frequency	Reading	Factor	Result	Limit	Over Limit	
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	polarization
4804.00	16.12	15.27	31.39	54.00	-22.61	Vertical
7206.00	17.06	18.09	35.15°	54.00	-18.85	Vertical
9608.00	18.13	23.76	41.89	54.00	-12.11	Vertical
12010.00	No tek	Anbore. An	-xek	54.00	- No Pro-	Vertical o
14412.00	Ant *	anbotek .	Aupo, ok	54.00	ipole. Aug	Vertical
4804.00	15.90	15.27	31.17	54.00	-22.83	Horizontal
7206.00	17.34	18.09	35.43	54.00	-18.57	Horizontal
9608.00	17.36	23.76	41.12	54.00	-12.88	Horizontal
12010.00	rek *	otek Yupo.	-K NO!	54.00	And	Horizontal
14412.00	Upo. *	work and	O'TO AND	54.00	ek Aupo	Horizontal

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 32 of 34

ek Anboie	And	anbotek	Aupo	hotek	Anbore A	'As alek
		٦	ГМ2 / CH: M			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	27.40	15.42	42.82	74.00	-31.18	Vertical
7320.00	27.98	18.02	46.00	74.00	-28.00	Vertical
9760.00	28.16	23.80	51.96	74.00	-22.04	Vertical
12200.00	ek * nbotek	Anbo.	hotek.	74.00	And	Vertical
14640.00	* * *	ick Aupole	Pur Vie	74.00	Anbo	Vertical
4880.00	27.38	15.42	42.80	74.00	-31.20	Horizontal
7320.00	28.18	18.02	46.20	74.00	-27.80	Horizontal
9760.00	27.57	23.80	51.37	74.00	-22.63	Horizontal
12200.00	*ořek	Anboie	And	74.00	Yupo, b.	Horizontal
14640.00	A.T. Stek	Anbotek	Anbo	74.00	Anbore	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4880.00	16.21	15.42	31.63	54.00	-22.37	Vertical
7320.00	16.92	18.02	34.94	54.00	-19.06 Ann	Vertical
9760.00	17.98	23.80	41.78	54.00	-12.22	Vertical
12200.00	k *upor	N Diek	anboter	54.00	abotek	Vertical
14640.00	otek * Anbot	Anda	ek aboiek	54.00	Pu. Potek	Vertical
4880.00	16.01	15.42	31.43	54.00	-22.57	Horizontal
7320.00	17.69	18.02	35.71	54.00	-18.29	Horizontal
9760.00	17.66	23.80	41.46	54.00	-12.54	Horizontal
12200.00	anb*otek	Aupo 'Ck	abotek	54.00	- otek	Horizontal
14640.00	* ~ ~ ~ *	Aupor	A. rek	54.00	AUD	Horizontal

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 33 of 34

PULL TURN	, tek	"upo,	by.	-hote.	VUD.	atek.
		•	TM2 / CH: H			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	27.53	15.58	43.11	74.00	-30.89	Vertical
7440.00	28.14	17.93	46.07	74.00	-27.93	Vertical
9920.00	28.86	23.83	52.69	74.00	-21.31	Vertical
12400.00	* Market	anboten	And "ek	74.00	Aupo,	Vertical
14880.00	* And	iek upotek	Aupo	74.00	Aupole	Vertical
4960.00	o ^{telk} 27.52 Anbo	15.58	43.10	74.00	-30.90	Horizontal
7440.00	28.39	17.93	46.32	74.00	-27.68	Horizontal
9920.00	27.95	23.83	51.78	74.00	-22.22	Horizonta
12400.00	Vup.*	abotek	Aupo, k	74.00	Anbotes Ant	Horizonta
14880.00	Viapo,	hotek	Anborek	74.00	anbotek	Horizonta
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarizatio
4960.00	17.33	15.58	32.91	54.00	-21.09	Vertical
7440.00	18.19	17.93	36.12	54.00	17.88 And	Vertical
9920.00	18.63	23.83	42.46	54.00	-11.54	Vertical
12400.00	k * upotek	Anbo.	hotek	54.00	Pur	Vertical
14880.00	* * *	ak Anboro	And	54.00	Aupo	Vertical
4960.00	17.19	15.58 NO	32.77	54.00	-21.23	Horizonta
7440.00	18.49	17.93	36.42	54.00	-17.58	Horizonta
9920.00	17.81	23.83	41.64	54.00 ^{Mill}	-12.36	Horizonta
12400.00	* tek	Anbores	Aur	54.00	100 Vr	Horizonta
14880 00	An*	hotek	Anbo	54 00	Vupote V	Horizontal

Remark:

- 1. Result =Reading + Factor
- 2. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.
- 3. Only the worst case is recorded in the report.

Report No.: 18220WC40073101 FCC ID: 2BFWB-F1 Page 34 of 34

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----

