

FCC Test Report

Test Report

On Behalf of

Dongguan HaiLingFeng Precision Technology Co., Ltd

For

Electric Scooter

Model No.: B01, B01-Pro, B02, B02-Pro, B03, B03-Pro, B04, B04-Pro, B05, B05-Pro, B06, B06-Pro, B07, B07-Pro, B08, B08-Pro, B09, B09-Pro, B10, B10-Pro, B11, B11-Pro, B12, B12-Pro, B13, B13-Pro, B14, B14-Pro, B15, B15-Pro

FCC ID: 2BFS7-B01

Prepared For: Dongguan HaiLingFeng Precision Technology Co., Ltd

Room 112, Building 1, No. 323 Jinxing Road, Liaobu Town, Dongguan City,

Guangdong Province, China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai

Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Mar. 22, 2024 ~ Apr. 09, 2024

Date of Report: Apr. 09, 2024

Report Number: HK2403221319-E

Test Result Certification

Applicant's Name Dongguan HaiLingFeng Precision Technology Co., Ltd

Dongguan City, Guangdong Province, China

Manufacturer's Name.....: Dongguan HaiLingFeng Precision Technology Co., Ltd

Room 112, Building 1, No. 323 Jinxing Road, Liaobu Town,

Dongguan City, Guangdong Province, China

Product Description

Trade Mark: N/A

Product Name Electric Scooter

B01, B01-Pro, B02, B02-Pro, B03, B03-Pro, B04, B04-Pro, B05,

Report No.: HK2403221319-

B10, B10-Pro, B11, B11-Pro, B12, B12-Pro, B13, B13-Pro, B14,

B14-Pro, B15, B15-Pro

47 CFR FCC Part 15 Subpart C 15.247

Standards KDB 558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date (s) of Performance of Tests...... Mar. 22, 2024 ~ Apr. 09, 2024

Date of Issue Apr. 09, 2024

Test Result Pass

Testing Engineer

len lian

Len Liao

Technical Manager

iver Wan

Sliver Wan

Authorized Signatory

Jason Yhou

Jason Zhou

		Tontents		WESTING I ag
1 HUAK	est Summary	. WAL	White it	(1) HUAN
1.1	Test Description			
1.2	Measurement Uncertainty			
1.3	Information of the Test Laboratory	HUAK TES I	MAN TES I.	MIAN TES
2 100	General Information		NE TESTING	
2.1	General Description of EUT	AN TESTIN	(ii)	LAK TESTIN
2.2	Description of Test Conditions			
2.3	Description of Test Setup		CESTIN-	1
2.4	Description of Support Units		1	1
3 MARY	Equipments List for All Test Items	The HUM.	Hudkite	
4 T	est Result			1
4.1	Antenna Requirement	, 16 , 16	O _M G	1
4.2	Conduction Emissions Measurement	t	ALAK TES	
4.3	Radiated Emissions Measurement	(i)	<u></u>	1
4.4	Maximum Output Power Measureme	ent		2
4.5	Power Spectral Density	TING	HI AK I	29
4.6	6dB Bandwidth	HUAK		3 <i>t</i>
4.7	Occupied Bandwidth		- Allegaria	3
4.8	Band Edge		MINKTE	3
4.9	Conducted Spurious Emissions	FEETING WEETS TIME W	J. Tree Times	3
5 T	est Setup Photos	(i)	Milan	<u> </u>
6 0	Photos of the FUT			4

** Modified History **

Revisi	ion	Description	1	Issued Data	Rema	rk
Revision	n 1.0	Initial Test Report F	Release	Apr. 09, 2024	Jason Z	<u>'</u> hou
W.TESTING	W. TESTIN	. V TESTING	V TESTIN		X TESTING	KTESTIN
Op.	(1) HOM	HOM	Mose Horse	W HO.	(I) HO	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Test Summary

1.1 Test Description

	and the	1472
Test Item	Test Requirement	Result
Antenna Requirement	§15.203/§15.247(b)(4)	PASS
Conducted Emission	FCC Part 15.207	PASS
Radiated Emissions	FCC Part 15.205/15.209	PASS
Maximum Peak Output Power	FCC Part 15.247(b)	PASS
Power Spectral Density	FCC Part 15.247(e)	PASS
6dB Bandwidth & 99% Bandwidth	FCC Part 15.247(a)(2)	PASS
Spurious RF Conducted Emission	FCC Part 15.247(d)	PASS
Band Edge	FCC Part 15.247(d)	PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

Report No.: HK2403221319-

1.2 Measurement Uncertainty

All measurements involve certain levels of uncertainties. The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. The maximum value of the uncertainty as below:

No.	ltem	Uncertainty
HI TES	Conducted Emission Test	±2.71dB
2	All emissions, radiated(<1G)	±3.90dB
3	All emissions, radiated(>1G)	±4.28dB

1.3 Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01.

FCC Designation Number is CN1229.

Canada IC CAB identifier is CN0045.

CNAS Registration Number is L9589.

Report No.: HK2403221319-

2 General Information

2.1 General Description of EUT

EUT Name:	Electric Scooter	WAX TEST	- JUAK TESTIN	- uuak
Model No:	B01	9	0	(1)
Series Model:	B01-Pro, B02, B02- B05-Pro, B06, B06- B09-Pro, B10, B10- B13-Pro, B14, B14-	Pro, B07, B07-Pi Pro, B11, B11-Pr	ro, B08, B08-Pro o, B12, B12-Pro	o, B09,
Model Difference:	All model's the function same, only with promodel: B01.	-100 HEEF		
Trade Mark:	N/A			
Operation Frequency:	2402 MHz to 2480	MHz	.G	
Channel Separation:	2MHz	JAK TESTING	LAKTESTIN	10%
Number of Channel:	40	3	0	0
Modulation Technology:	GFSK		CTING	
Hardware Version:	V1.0	TESTING	HUAK	TESTING
Software Version:	V1.0	1		HUAR
Antenna Type:	PCB Antenna		TESTING	
Antenna Gain:	0dBi	TING THUA	-23	G
Power Supply:	DC42V From Adapt From Battery	er with AC100-24	10V, 50/60Hz or	DC36V
Note:				

^{1.} For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

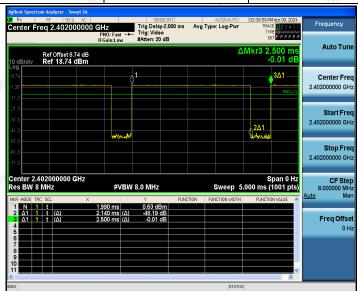
e)(G	TING MAKE	Description of	of Channel	AK	ig ting
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	14	2430	28	2458
-STN1	2404	15	2432	29	2460
JAK 2	2406	16	2434	30	2462
3	2408	17	2436	31	2464
4	2410	18	2438	32	2466
5 HUAKT	2412	19	2440	33	2468
6	2414	20	2442	34	2470
7	2416	21	2444	35	2472
8	2418	22	2446	36	2474
9	2420	23	2448	37	2476
10	2422	24	2450	38	2478
TEST 11	2424	25	2452	39	2480
12	2426	26	2454		O HOM
13	2428	27	2456	and a	

The EUT has been operated in modulations: GFSK independently.

No.		Test Mode Description	
TESTI13	. 124	Low channel TX	TIME D.
3 HUAR 2	M. HO.	Middle channel TX	
3		High channel TX	

Note

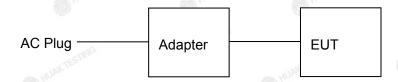
- 1. All the test modes can be supply by button battery, only the result of the worst case was recorded in the report if no any records.
- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.


2.2 Description of Test Conditions

(1) E.U.T. test conditions:

For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

- (2) Frequency range of radiated measurements:
 The test range will be up to the tenth harmonic of the highest fundamental frequency.
- (3) Pre-test the EUT in all transmitting mode at the lowest (2402 MHz), middle (2440 MHz) and highest (2480 MHz) channel with different data packet and conducted to determine the worst-case mode, only the worst-case results are recorded in this report.
- (4) Mode Test Duty Cycle


HIAKTESTING M	ode	Duty Cycle	Duty Cycle Factor (dB)
BT-LE	(1Mbps)	0.856	-0.675

2.3 Description of Test Setup

Operation of EUT during conducted testing and below 1GHz radiation testing:

Operation of EUT during above1GHz radiation testing:

The sample was placed (0.1m below 1GHz, 0.1m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

	PRINCEL.	BRENGER.	PRINCE C	PRINCEL	PRINCE L
Item	Equipment	Trade Mark	Model/Type No.	Specification	Note
1	Electric Scooter	N/A	B01	N/A	EUT
2	Adapter	N/A	JY-420150	Input: AC100-240V, 50/60Hz, 2A Output: DC42V, 1.5A	Accessory
3	Power cord	N/A	N/A	Length: 1.24m	Accessory
J HO.	O	O HO.	9	O.10.	

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

CET CI =

Report No.: HK2403221319-

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

Equipments List for All Test Items

1500	AK The	. 180	ak 1		TES	
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
TE TING	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Feb. 20, 2024	1 Year
2.	L.I.S.N.	R&S	ENV216	HKE-059	Feb. 20, 2024	1 Year
3.	Receiver	R&S	ESR-7	HKE-010	Feb. 20, 2024	1 Year
4.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	1 Year
5.	Spectrum analyzer	R&S	FSP40	HKE-025	Feb. 20, 2024	1 Year
6.	Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 20, 2024	1 Year
7.	High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	Feb. 21, 2024	2 Year
8.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Feb. 20, 2024	1 Year
9.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Feb. 21, 2024	2 Year
10.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 21, 2024	2 Year
11.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Feb. 21, 2024	2 Year
12.	Pre-amplifier	EMCI	EMC051845SE	HKE-015	Feb. 20, 2024	1 Year
13.	Pre-amplifier	Agilent	83051A	HKE-016	Feb. 20, 2024	1 Year
14.5	High pass filter unit	Tonscend	JS0806-F	HKE-055	Feb. 20, 2024	1 Year
15.	Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A
16.	Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A
17.	RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A
18.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	1 Year
19.	RF test software	Tonscend	JS1120-4	HKE-113	N/A	N/A
20.	RF test software	Tonscend	JS1120-3	HKE-114	N/A	N/A
21.	RF test software	Tonscend	JS1120-1	HKE-115	N/A	N/A
22.	Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 20, 2024	1 Year
23.	Signal generator	Agilent	N5182A	HKE-029	Feb. 20, 2024	1 Year
24.	Signal Generator	Agilent	83630A	HKE-028	Feb. 20, 2024	1 Year
25.	Power meter	Agilent	E4419B	HKE-085	Feb. 20, 2024	1 Year

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Report No.: HK2403221319-E

ATTACA .		
* 4 4	HUAK	TESTING

26.	Power Sensor	Agilent	E9300A	HKE-086	Feb. 20, 2024	1 Year
27.	RF Cable(below1GHz)	Times	9kHz-1GHz	HKE-117	Feb. 20, 2024	1 Year
28.	RF Cable(above 1GHz)	Times	1-40G	HKE-034	Feb. 20, 2024	1 Year
29.	RF Cable (9KHz-40GHz)	Tonscend	170660	N/A	Feb. 20, 2024	1 Year
30.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 09, 2021	3 Year
31.	High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	Feb. 21, 2024	2 Year
32.	10dB Attenuator	Schwarzbeck	VTSD9561F	HKE-153	Feb. 20, 2024	1 Year

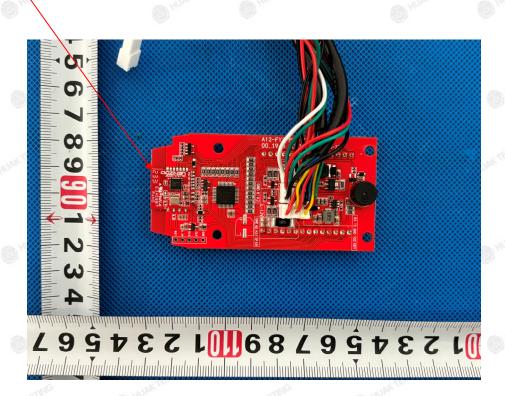
4 Test Result

4.1 Antenna Requirement

4.1.1 Standard Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.


Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a PCB Antenna, is a permanently attached antenna on the PCB. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 0dBi.

4.1.2 EUT Antenna

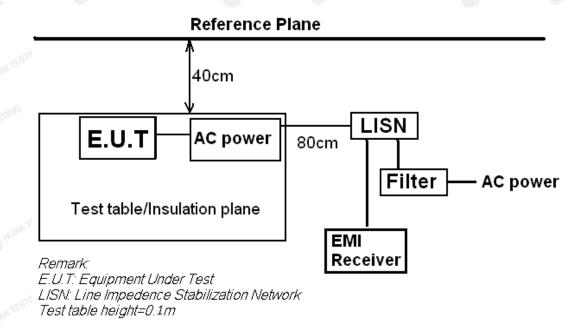
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

4.2 Conduction Emissions Measurement

4.2.1 Applied Procedures / Limit

According to FCC CFR Title 47 Part 15 Subpart C Section 15.207, AC Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus as below:

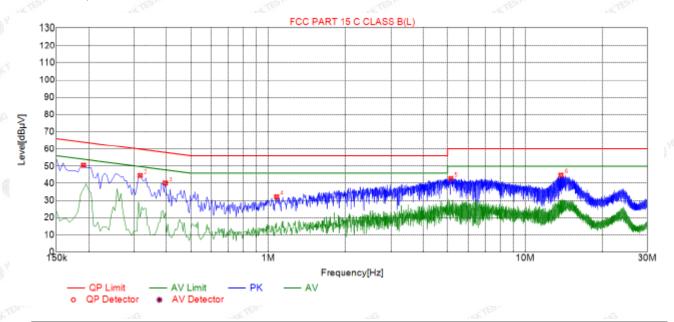
	0,	Limit (d	BuV)
TESTINE	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	755 THE 50


^{*} Decreases with the logarithm of the frequency.

4.2.2 Test Procedure

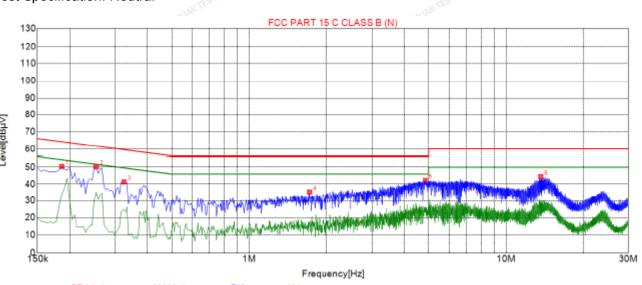
- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.1 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

4.2.3 Test Setup



4.2.4 Test Results

All modes have been tested, only the worst result was reported as below:


S	Suspected List											
N	Ο.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Type			
1	1	0.1905	50.54	20.04	64.01	13.47	30.50	PK	٦			
2	2	0.3165	44.60	20.05	59.80	15.20	24.55	PK	L			
3	3	0.3975	40.10	20.04	57.91	17.81	20.06	PK	L			
4	4	1.0770	32.15	20.07	56.00	23.85	12.08	PK	L			
5	5	5.1495	42.86	20.26	60.00	17.14	22.60	PK	L			
6	8	13.8075	44.85	19.96	60.00	15.15	24.89	PK	L			

Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss

Level=Test receiver reading + correction factor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Sus	Suspected List											
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре				
1	0.1860	50.41	20.05	64.21	13.80	30.36	PK	N				
2	0.2535	50.28	20.04	61.64	11.36	30.24	PK	N				
3	0.3255	41.32	20.05	59.57	18.25	21.27	PK	N				
4	1.7160	35.43	20.13	56.00	20.57	15.30	PK	N				
5	4.8480	42.42	20.26	56.00	13.58	22.16	PK	N				
6	13.6590	44.58	19.96	60.00	15.42	24.62	PK	N				

Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss

Level=Test receiver reading + correction factor

Report No.: HK2403221319-E

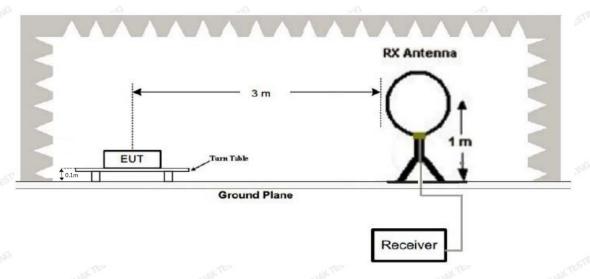
4.3 Radiated Emissions Measurement

4.3.1 Applied Procedures / Limit

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Except when the requirements applicable to a given device state otherwise, emissions from license-exempt transmitters shall comply with the field strength limits shown in table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

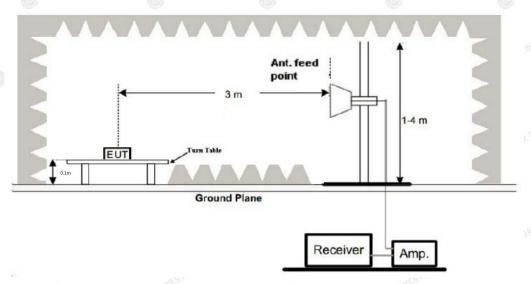

Radiated emission limits

and the same of th	ACCIDATE TO A CONTRACT OF THE PROPERTY OF THE	EUCCON ACCUSED A	4,055,753
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3 TESTING	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

4.3.2 Test Setup

Test Configuration:

1) 9 kHz to 30 MHz emissions:

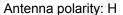


2) 30 MHz to 1 GHz emissions:

3) 1 GHz to 25 GHz emissions:

Test Procedure

- 1. The EUT was placed on turn table which is 0.1m above ground plane for below 1GHz test, and on a low permittivity and low loss tangent turn table which is 0.1m above ground plane for above 1GHz test.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0 degrees to 360 degrees to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.

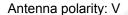

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

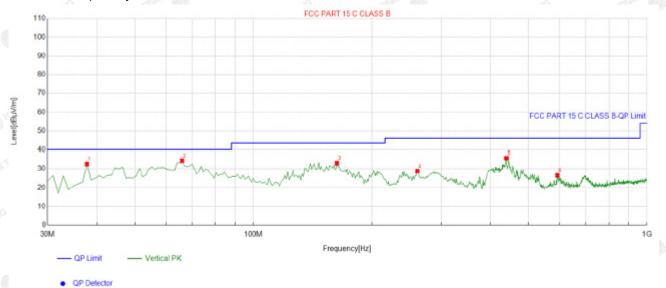


4.3.3 Test Result

Below 1GHz Test Results:

All modes have been tested, only the worst mode of GFSK Low channel TX is reflected.


QP Detector


	Suspected List											
		Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle			
	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
ğ	1	62.042042	-14.19	36.98	22.79	40.00	17.21	100	222	Horizontal		
	2	161.08108	-17.19	45.52	28.33	43.50	15.17	100	0	Horizontal		
	3	220.31031	-14.26	47.64	33.38	46.00	12.62	100	129	Horizontal		
	4	282.45245	-12.61	44.65	32.04	46.00	13.96	100	102	Horizontal		
Ý	5	433.92392	-8.21	45.88	37.67	46.00	8.33	100	112	Horizontal		
	6	597.04704	-5.15	34.56	29.41	46.00	16.59	100	178	Horizontal		

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level;

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Suspected List Freq. Factor Reading Level Limit Margin Height Angle NO. Polarity [MHz] [dB] [dBµV/m] [dBµV/m] [dBµV/m] [dB] [cm] [°] 37.767768 -15.62 48.20 32.58 40.00 7.42 100 192 Vertical 2 65.925926 -15.15 100 168 49.46 34.31 40.00 5.69 Vertical 3 163.02302 -17.19 50.24 33.05 43.50 10.45 100 350 Vertical 4 261.09109 -12.73 41.56 28.83 46.00 17.17 100 178 Vertical 5 439.74975 -8.46 44.19 35.73 46.00 10.27 100 77 Vertical 592.19219 -5.33 31.89 26.56 46.00 6 19.44 100 170 Vertical

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level;

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

Frequ	ency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
"JAK TESTI	NO.	HANTESTIN	- HANTESTIN
(i)		-	(a) (b)
	JAK TESTIN		ak ESTIV
TING	CANG WHO	TIME - STIME OF ME	TING-

Note: 1. Emission Level=Reading+ Cable loss+ Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

For 1GHz to 25GHz

CH Low (2402MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	HUAKTE
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804.00	56.50	-3.65	52.85	74.00	-21.15	peak
4804.00	45.40	-3.65	41.75	54.00	-12.25	AVG
7206.00	54.44	-0.95	53.49	74.00	-20.51	peak
7206.00	42.37	-0.95	41.42	54.00	-12.58	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	MHUAK TE
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804.00	56.78	-3.65	53.13	74.00	-20.87	peak
4804.00	46.59	-3.65	42.94	54.00	-11.06	AVG
7206.00	52.01	-0.95	51.06	74.00	-22.94	peak
7206.00	44.61	-0.95	43.66	54.00	-10.34	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Report No.: HK2403221319-

CH Middle (2440MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4880.00	54.78	-3.54	51.24	74.00	-22.76	peak
4880.00	46.35	-3.54	42.81	54.00	-11.19	AVG
7320.00	52.52	-0.81	51.71	74.00	-22.29	peak
7320.00	41.47	-0.81	40.66	54.00	-13.34	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastan
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4880.00	56.05	-3.54	52.51	74.00	-21.49	peak
4880.00	44.30	-3.54	40.76	54.00	-13.24	AVG
7320.00	53.21	-0.81	52.40	74.00	-21.60	peak
7320.00	43.21	-0.81	42.40	54.00	-11.60	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Report No.: HK2403221319-E

CH High (2480MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastan
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960.00	56.19	-3.43	52.76	74.00	-21.24	peak
4960.00	44.13	-3.44	40.69	54.00	-13.31	AVG
7440.00	50.92	-0.77	50.15	74.00	-23.85	peak
7440.00	43.39	-0.77	42.62	54.00	-11.38	AVG
Remark: Facto	r = Antenna Fa	ctor + Cable Lo	oss – Pre-amplifier;	Level = Reading	y + Factor; Ma	rgin = Level-

Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	D. t t
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960.00	55.06	-3.43	51.63	74.00	-22.37	peak
4960.00	43.37	-3.44	39.93	54.00	-14.07	AVG
7440.00	54.34	-0.77	53.57	74.00	-20.43	peak
7440.00	41.05	-0.77	40.28	54.00	-13.72	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

(7) All modes of operation were investigated and the worst-case emissions are reported.

Radiated Band Edge Test:

Operation Mode: TX CH Low (2402MHz)

Horizontal (Worst case):

-0		-0		-6	
Reading Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
57.35	-5.81	51.54	74	-22.46	peak
1	-5.81	O HO	54	1 🔘	AVG
54.15	-5.84	48.31	74	-25.69	peak
HUAK TES !	-5.84	ESTING HUAKTES!	54	MAK TEFTIME	AVG
55.12	-5.84	49.28	74	-24.72	peak
1	-5.84	1	54	1	AVG
	Result (dBµV) 57.35 / 54.15	Result (dBμV) (dB) 57.35 -5.81 / -5.81 54.15 -5.84 / -5.84 55.12 -5.84	Result Factor Emission Level (dBμV) (dB) (dBμV/m) 57.35 -5.81 51.54 / -5.81 / 54.15 -5.84 48.31 / -5.84 / 55.12 -5.84 49.28	Result Factor Emission Level Limits (dBμV) (dB) (dBμV/m) (dBμV/m) 57.35 -5.81 51.54 74 / -5.81 / 54 54.15 -5.84 48.31 74 / -5.84 / 54 55.12 -5.84 49.28 74	Result Factor Emission Level Limits Margin (dBμV) (dB) (dBμV/m) (dBμV/m) (dB) 57.35 -5.81 51.54 74 -22.46 / -5.81 / 54 / 54.15 -5.84 48.31 74 -25.69 / -5.84 / 54 / 55.12 -5.84 49.28 74 -24.72

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310.00	53.55	-5.81	47.74	74	-26.26	peak
2310.00	1	-5.81	1	54	1	AVG
2390.00	54.06	-5.84	48.22	74	-25.78	peak
2390.00	HUAKTESTIN	-5.84	/ HUAKTES	54	AK TESTI	AVG
2400.00	55.31	-5.84	49.47	74	-24.53	peak
2400.00	TESTING /	-5.84	/ STING	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit

Operation Mode: TX CH High (2480MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	52.52	-5.81	46.71	74	-27.29	peak
2483.50	mig /	-5.81	1	54	STING /	AVG
2500.00	51.32	-6.06	45.26	74	-28.74	peak
2500.00	1	-6.06	1	54 TESTING	1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	51.42	-5.81	45.61	74	-28.39	peak
2483.50	TESTING /	-5.81	JAK TESTING	54	1	AVG
2500.00	51.64	-6.06	45.58	74	-28.42	peak
2500.00	Ing My	-6.06	1	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Remark:

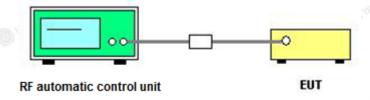
- 1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.
- 2. In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

4.4 Maximum Output Power Measurement

4.4.1 Limit

The Maximum Peak Output Power Measurement is 30dBm.

4.4.2 Test Procedure


The maximum peak conducted output power may be measured using a broadband peak RF automatic control unit. The RF automatic control unit shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

The maximum Average conducted output power may be measured using a wideband RF automatic control unit with a thermocouple detector or equivalent. The RF automatic control unit shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

4.4.3 Deviation from Standard

No deviation.

4.4.4 Test Setup

4.4.5 Test Results

Channel	Channel Frequency (Mhz)	Maximum Peak Conducted Output Power (dBm)	Limit (dBm)	Result
Low	2402	0.97	MIAK TE	Pass
Middle	2440	1.72	30.00	Pass
High	2480	2.23	TESTING	Pass

Note: The test results including the cable loss.

4.5 Power Spectral Density

4.5.1 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

4.5.2 Test Procedure

Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.

Set the RBW =10 kHz.

Set the VBW =30 kHz.

Set the span to 1.5 times the DTS channel bandwidth.

Detector = peak.

Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum power level.

If measured value exceeds limit, reduce RBW(no less than 3 kHz)and repeat.

The resulting peak PSD level must be 8 dBm.

4.5.3 Deviation from Standard

No deviation.

4.5.4 Test Setup

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

4.5.5 Test Results

			D. Y. STORY STATE OF THE STATE
Channel frequency (MHz)	Result (dBm/10kHz)	10log (3/10)	Test Result (dBm/3kHz)
2402	-9.38	-5.23	-14.61
2440	-8.83	-5.23	-14.06
2480	-7.99	-5.23	-13.22
	frequency (MHz) 2402 2440	frequency (MHz) 2402 -9.38 2440 -8.83	frequency (MHz) Result (dBm/10kHz) 10log (3/10) 2402 -9.38 -5.23 2440 -8.83 -5.23

Limit: 8dBm/3KHz

Test Result (dBm/3kHz)= Result (dBm/10kHz)+10log (3/10)

Test Result PASS

CH 00

9

Report No.: HK2403221319-E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

CH 39

4.6 6dB Bandwidth

4.6.1 Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

4.6.2 Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100 KHz and VBW=300 KHz. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) ≥ 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.6.3 Deviation from Standard

No deviation.

4.6.4 Test Setup

4.6.5 Test Result

Channel	Channel frequency (MHz)	6dB Bandwidth (MHz)	Limit (KHz)	Result
Low	2402	0.732	MAKTESTI	Pass
Middle	2440	0.688	≥500	Pass
High	2480	0.752	O HUM	Pass

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

CH 00

CH 19

CH 39

4.7 Occupied Bandwidth

4.7.1 Test Procedure

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

RBW=1% to 5% of the OBW

VBW=approximately 3 X RBW

Detector=Peak

Trace Mode: Max Hold

Use the 99% power bandwidth function of the instrument to measure the Occupied Bandwidth and recorded.

4.7.2 Deviation from Standard

No deviation.

4.7.3 Test Setup

4.7.4 Test Result

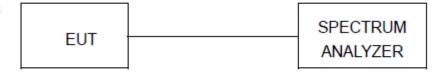
N/A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

4.8 Band Edge

4.8.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under FCC rules in section 5.8.1, the attenuation required shall be 30 dB instead of 20 dB.

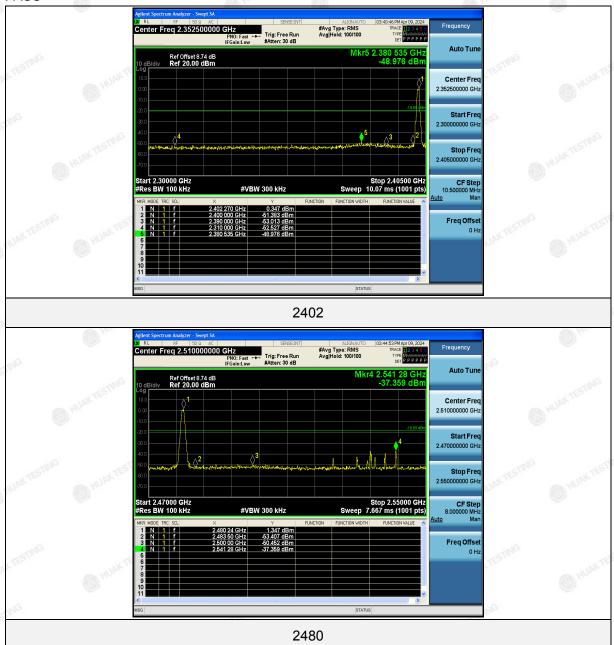

4.8.2 Test Procedure

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation, RBW ≥ 1% of the span, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold.

4.8.3 Deviation from Standard

No deviation.

4.8.4 Test Setup


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

A FICATION

Report No.: HK2403221319-

4.8.5 Test Results

PASS

4.9 Conducted Spurious Emissions

4.9.1 Applied Procedures / Limit

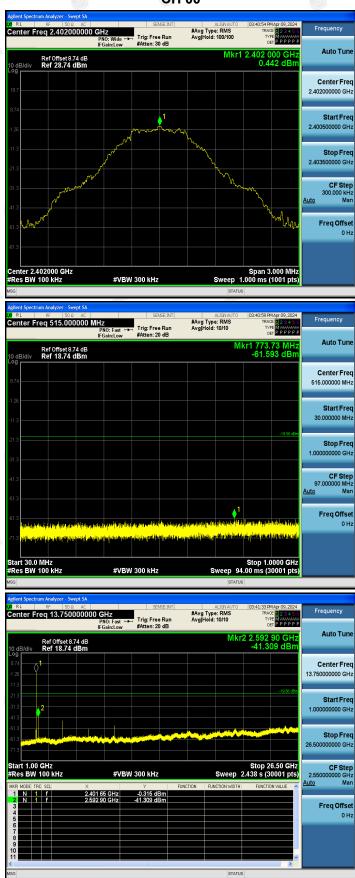
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section (b)(3) of RSS 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. For below 30MHz,For 9KHz-150kHz,150K-10MHz,We use the RBW 1KHz,10KHz, So the limit need to calculated by "10lg(BW1/BW2)". for example For9KHz-150kHz,RBW 1KHz, The Limit= the highest emission level-20-10log(100/1)= the highest emission level-40.

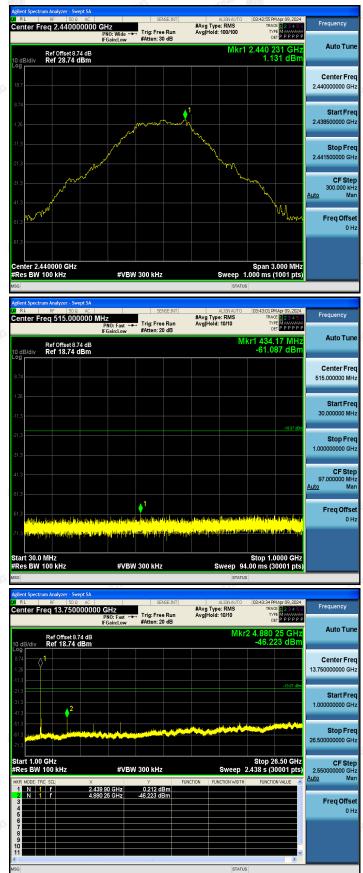
4.9.2 Test Procedure

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation, RBW ≥ 1% of the span, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold.

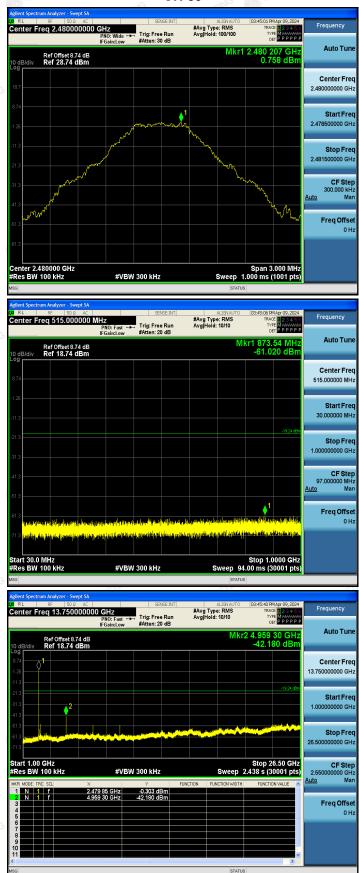
4.9.3 Deviation from Standard

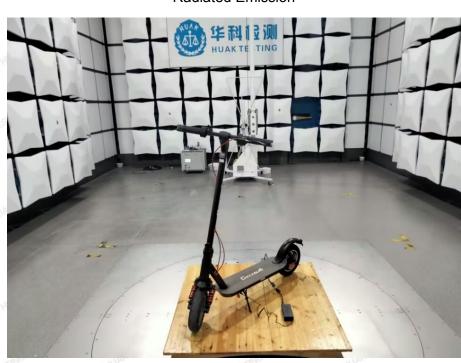
No deviation.

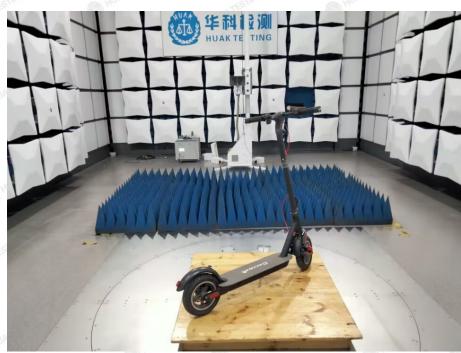

4.9.4 Test Setup


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

4.9.5 Test Results


CH 00


CH 39



5 Test Setup Photos

Radiated Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Conducted Emission

6 Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.